1
|
Guo L, Zheng C, Chen J, Du R, Li F. Phenylalanine Regulates Milk Protein Synthesis via LAT1-mTOR Signaling Pathways in Bovine Mammary Epithelial Cells. Int J Mol Sci 2024; 25:13135. [PMID: 39684845 DOI: 10.3390/ijms252313135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Phenylalanine (Phe) is a potentially limiting amino acid for lactating cows. The mechanism by which Phe regulates milk protein synthesis remains unclear. The present study elucidates the mechanisms by which phenylalanine affects milk protein synthesis, amino acid utilization, and related signaling pathways in bovine mammary epithelial cells (BMECs). The BMECs were treated with five concentrations (0, 0.22, 0.44, 0.88, 1.76 mM, and serum free). Rapamycin inhibitors and RNA interference (RNAi) were used to inhibit the phosphorylation of the mammalian target of rapamycin (mTOR) signaling pathway and the expression of relevant amino acid transporters, respectively. The results showed that 4×Phe (0.88 mM) significantly increased (p < 0.05) both the mRNA and protein expression of α-casein (CSN1S1), β-casein (CSN2), and κ-casein (CSN3), as well as L-type amino acid transporter-1 (LAT1) mRNA expression. Protein expression and modification assays of mTOR-related proteins showed that 4×Phe could increase (p < 0.05) the expression of α-casein and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) and tended to increase the expression of ribosomal protein S6 protein kinase (S6K1, p = 0.054). The general control nonderepressible 2 (GCN2) signaling pathway factor, eukaryotic initiation factor 2 (eIF2α), was downregulated by 4×Phe treatment (p < 0.05). The rapamycin inhibition test showed that Phe regulated casein synthesis via the mTOR signaling pathway. RNAi experiments showed that LAT1 mediated the entry of Phe into cells. Moreover, 4×Phe treatment tended to decrease (0.05 < p < 0.10) the consumption of valine, leucine, histidine, tyrosine, cysteine, alanine, asparagine, and serine in the medium. Collectively, phenylalanine enhanced α-casein synthesis by regulating the phosphorylation of 4EBP1 and eIF2α and promoting the formation of the mTOR-centered casein translation initiation complex.
Collapse
Affiliation(s)
- Long Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chen Zheng
- Animal Nutrition Group, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Jiao Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ruifang Du
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
2
|
Cuchillo-Hilario M, Fournier-Ramírez MI, Díaz Martínez M, Montaño Benavides S, Calvo-Carrillo MC, Carrillo Domínguez S, Carranco-Jáuregui ME, Hernández-Rodríguez E, Mora-Pérez P, Cruz-Martínez YR, Delgadillo-Puga C. Animal Food Products to Support Human Nutrition and to Boost Human Health: The Potential of Feedstuffs Resources and Their Metabolites as Health-Promoters. Metabolites 2024; 14:496. [PMID: 39330503 PMCID: PMC11434278 DOI: 10.3390/metabo14090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Recent attention has been given to animal feeding and its impact on human nutrition. Animal feeding is essential for meeting human dietary needs, making it a subject of significant interest and investigation. This review seeks to outline the current understanding of this disciplinary area, with a focus on key research areas and their potential implications. The initial part of the paper discusses the importance of animal feed resources and recognizes their crucial role in guaranteeing sufficient nutrition for both humans and animals. Furthermore, we analyzed the categorization of animal feeds based on the guidelines established by the National Research Council. This approach offers a valuable structure for comprehending and classifying diverse types of animal feed. Through an examination of this classification, we gain an understanding of the composition and nutritional content of various feedstuffs. We discuss the major categories of metabolites found in animal feed and their impact on animal nutrition, as well as their potential health advantages for humans. Flavonoids, polyphenols, tannins, terpenoids, vitamins, antioxidants, alkaloids, and essential oils are the primary focus of the examination. Moreover, we analyzed their possible transference into animal products, and later we observed their occurrence in foods from animal sources. Finally, we discuss their potential to promote human health. This review offers an understanding of the connections among the major metabolites found in feedstuffs, their occurrence in animal products, and their possible impact on the health of both animals and humans.
Collapse
Affiliation(s)
- Mario Cuchillo-Hilario
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores de Cuautitlán, Universidad Nacional Autónoma de México, Km 3.5 Carretera Teoloyucan-Cuautitlán, Estado de México 54000, Mexico
| | - Mareli-Itzel Fournier-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores de Cuautitlán, Universidad Nacional Autónoma de México, Km 3.5 Carretera Teoloyucan-Cuautitlán, Estado de México 54000, Mexico
| | - Margarita Díaz Martínez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Sara Montaño Benavides
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - María-Concepción Calvo-Carrillo
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Silvia Carrillo Domínguez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - María-Elena Carranco-Jáuregui
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Elizabeth Hernández-Rodríguez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Patricia Mora-Pérez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Yesica R Cruz-Martínez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| |
Collapse
|
3
|
Maurya R, Misro L, Boini T, Radhakrishnan T, Nair PG, Gaidhani SN, Jain A. Transforming Medicinal Oil into Advanced Gel: An Update on Advancements. Gels 2024; 10:342. [PMID: 38786260 PMCID: PMC11121385 DOI: 10.3390/gels10050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 05/25/2024] Open
Abstract
The present study delves into the evolution of traditional Ayurvedic oil preparations through innovative strategies to develop advanced gel formulations, aiming at amplifying their therapeutic efficacy. Ayurvedic oils have a rich historical context in healing practices, yet their conversion into contemporary gel-based formulations represents a revolutionary approach to augment their medicinal potential. The primary objective of this transformation is to leverage scientific advancements and modern pharmaceutical techniques to enhance the application, absorption, and overall therapeutic impact of these traditional remedies. By encapsulating the essential constituents of Ayurvedic oils within gel matrices, these novel strategies endeavor to improve their stability, bioavailability, and targeted delivery mechanisms. This review highlights the fusion of traditional Ayurvedic wisdom with cutting-edge pharmaceutical technology, paving the way for more effective and accessible utilization of these revered remedies in modern healthcare.
Collapse
Affiliation(s)
- Rahul Maurya
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Lakshminarayana Misro
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thirupataiah Boini
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thulasi Radhakrishnan
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Parvathy G. Nair
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Sudesh N. Gaidhani
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| |
Collapse
|
4
|
Kjølbæk L, Raben A. The impact of dairy matrix structure on postprandial lipid responses. Proc Nutr Soc 2024; 83:9-16. [PMID: 37728057 DOI: 10.1017/s0029665123003622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
This review presents evidence related to the postprandial responses after consumption of dairy products focusing on the effect of the dairy matrix and lipid response, which was also presented as part of a speech at the Nutrition Society Winter Conference, January 2023. The key findings are that the dairy product(s) that differentiate from others in the postprandial TAG response are products with a semi-solid structure. There were no differences in lipid responses between cheese and butter. The main factors viscosity, fat globule size and milk fat globule membrane do not seem to explain the effect of the dairy matrix in the acute postprandial response. In summary, it is very difficult to investigate the effects of the dairy matrix per see and with the few studies conducted to date, no clear cause and effect can be established. Future research should focus on the semi-solid dairy matrix, and studies investigating specifically the yoghurt matrix are warranted.
Collapse
Affiliation(s)
- Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Copenhagen, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Copenhagen, Denmark
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
5
|
Teixeira da Silva JA. Comment on "Cow products: boon to human health and food security". Trop Anim Health Prod 2023; 55:316. [PMID: 37737878 DOI: 10.1007/s11250-023-03712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
|
6
|
Chandran D, J AI, K S, S M, M S, V R A, Ahamed K, Ram G, Mohan D, P A, Chakraborty S, Chopra H, Akash S, Amin R, Ahmed SK, Dey A, Sharma AK, Dhama K. Potential benefits and therapeutic applications of "Panchgavya" therapy (Cowpathy) for human and animal health: Current scientific knowledge. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2023; 11:520-533. [DOI: 10.18006/2023.11(3).520.533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Cow's milk, urine, dung, ghee, and curd (together known as "Panchgavya") have incomparable medicinal value in Ayurveda and ancient Indian clinical methods. Panchgavya is also known as Cowpathy in Ayurveda. In India, the cow is revered as a goddess known as "Gaumata" because of its nurturing qualities similar to those of a mother. Almost no adverse effects are associated with using Panchgavya, which is why it is recommended in Ayurveda for treating disorders affecting numerous body systems. Its possible antimicrobial effects have piqued the curiosity of medical researchers and practitioners. Cow milk is widely regarded as a nutritious diet and has been shown to effectively treat various medical conditions, including high body temperature, pain, cancer, diabetes, kidney diseases, and weakness. Milk can prevent the growth of microorganisms, has erotic qualities when combined with the leaves of medicinal herbs, and the fat in milk has anticancer characteristics. Toned and skim milk, lassi, yoghurt, cottage cheese, and khoa all come from milk and have important medicinal characteristics. Curd (dahi) is recommended as a blood purifier for conditions such as hemorrhoids, piles, and gastrointestinal issues. Ghee made from cows has been shown to boost immunity. It is important to highlight the use of cow dung as an antifungal and for treating malaria and tuberculosis. It has the potential to aid in the development of a populace free from disease, the creation of sustainable energy systems, the fulfilment of all nutritional needs, the elimination of poverty, the promotion of organic farming culture, and the like. Cow urine is a powerful remedy for numerous medical conditions, including but not limited to epileptic convulsions, diabetes, hepatitis, inflammation, fever, and anaemia. The current review article explores how the Panchgavya ingredients can be employed to safeguard human and animal health.
Collapse
|