1
|
Damiani G, Dell'Omo G, Costantini D. City life anticipates the breeding of a bird of prey without affecting its reproductive success. ENVIRONMENTAL RESEARCH 2025:121235. [PMID: 40015427 DOI: 10.1016/j.envres.2025.121235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
Urbanisation poses a profound threat to biodiversity, leading to the loss of natural ecosystems and changes in animal communities. Many species of birds of prey are increasingly associated with urban habitats even when they have low reproductive success. However, it is unclear if this poor reproductive performance is due to the worse environmental conditions of the cities or to the poorer quality of the nesting sites. Addressing the effects of urban habitat on reproduction under similar nesting conditions (nest-boxes of same size and material) is therefore important if we were to test a direct effect of the habitat quality on cavity-nesting raptors. To address this question, we compared life-history traits, metrics of reproductive success, and morphological traits of chicks of common kestrels (Falco tinnunculus) breeding in artificial nest boxes in the city of Rome, and in nearby rural and natural environments over a period of five years. We found that kestrels laid significantly earlier in the city (10 days on average) than in the natural habitat. We also found novel evidence that chicks in rural habitats had shorter wings compared to chicks raised in urban habitats (1.2 cm on average). By contrast, we did not detect any differences in clutch size, brood size at fledging, egg volume, hatching success, fledging success, and body mass, tarsus length, and body condition of chicks among breeding habitats. Our findings suggest that, despite the differences in breeding phenology, kestrels had similar reproductive performances across different habitat types. This result is in contrast with previous studies on the same species carried out in other European cities, indicating that some urban habitats might be optimal for sustaining viable bird populations.
Collapse
Affiliation(s)
- Gianluca Damiani
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy; Ornis italica, Piazza Crati 15, 00199 Rome, Italy.
| | | | - David Costantini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy; Ornis italica, Piazza Crati 15, 00199 Rome, Italy
| |
Collapse
|
2
|
Oliver KE, Harrison XA. Temperature and land use change are associated with Rana temporaria reproductive success and phenology. PeerJ 2024; 12:e17901. [PMID: 39224827 PMCID: PMC11368080 DOI: 10.7717/peerj.17901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chemical pollution, land cover change, and climate change have all been established as important drivers of amphibian reproductive success and phenology. However, little is known about the relative impacts of these anthropogenic stressors, nor how they may interact to alter amphibian population dynamics. Addressing this gap in our knowledge is important, as it allows us to identify and prioritise the most needed conservation actions. Here, we use long-term datasets to investigate landscape-scale drivers of variation in the reproductive success and phenology of UK Common frog (Rana temporaria) populations. Consistent with predictions, we found that increasing mean temperatures resulted in earlier initialisation of spawning, and earlier hatching, but these relationships were not consistent across all sites. Lower temperatures were also linked to increased spawn mortality. However, temperature increases were also strongly correlated with increases in urban area, arable area, and nitrate levels in the vicinity of spawning grounds. As with spawning and hatching, there was marked spatial variation in spawn mortality trends, where some sites exhibited steady increases over time in the proportion of dead or diseased spawn. These findings support previous work linking warming temperatures to shifts in timing of amphibian breeding, but also highlight the importance of assessing the effect of land use change and pollution on wild amphibian populations. These results have implications for our understanding of the response of wild amphibian populations to climate change, and the management of human-dominated landscapes for declining wildlife populations.
Collapse
Affiliation(s)
- Kat E. Oliver
- Centre for Ecology and Conservation, University of Exeter, Falmouth, United Kingdom
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Falmouth, United Kingdom
| |
Collapse
|
3
|
Franco-Belussi L, de Oliveira Júnior JG, Goldberg J, De Oliveira C, Fernandes CE, Provete DB. Multiple morphophysiological responses of a tropical frog to urbanization conform to the pace-of-life syndrome. CONSERVATION PHYSIOLOGY 2024; 12:coad106. [PMID: 38293639 PMCID: PMC10823355 DOI: 10.1093/conphys/coad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
The Pace-of-Life syndrome proposes that behavioural, physiological and immune characteristics vary along a slow-fast gradient. Urbanization poses several physiological challenges to organisms. However, little is known about how the health status of frogs is affected by urbanization in the Tropics, which have a faster and more recent urbanization than the northern hemisphere. Here, we analysed a suite of physiological variables that reflect whole organism health, reproduction, metabolic and circulatory physiology and leukocyte responses in Leptodactylus podicipinus. Specifically, we tested how leukocyte profile, erythrocyte morphometrics and germ cell density, as well as somatic indices and erythrocyte nuclear abnormalities differ throughout the adult life span between urban and rural populations. We used Phenotypic Trajectory Analysis to test the effect of age and site on each of the multivariate data sets; and a Generalised Linear Model to test the effect of site and age on nuclear abnormalities. Somatic indices, erythrocyte nuclear abnormalities, erythrocyte morphometrics and leukocyte profile differed between populations, but less so for germ cell density. We found a large effect of site on nuclear abnormalities, with urban frogs having twice as many abnormalities as rural frogs. Our results suggest that urban frogs have a faster pace of life, but the response of phenotypic compartments is not fully concerted.
Collapse
Affiliation(s)
- Lilian Franco-Belussi
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, São Paulo, 15054-000, Brazil
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002970, Brazil
| | - José Gonçalves de Oliveira Júnior
- Graduate Program in Animal Biology, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Javier Goldberg
- Instituto de Diversidad y Ecología Animal - CONICET; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Classius De Oliveira
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Carlos E Fernandes
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002970, Brazil
| | - Diogo B Provete
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002970, Brazil
- Gothenburg Global Biodiversity Centre, Göteborg, Box 100, S 405 30, Sweden
| |
Collapse
|
4
|
Minias P. The effects of urban life on animal immunity: Adaptations and constraints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165085. [PMID: 37379938 DOI: 10.1016/j.scitotenv.2023.165085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Land transformation, including urbanization, is a dominant form of anthropogenic change to the global environment at the dawn of the Anthropocene epoch. More and more species are brought into direct contact with humans, being either required to develop broad-scale adaptations to urban environment or filtered out from urbanized areas. While behavioural or physiological adaptations are at the forefront of urban biology research, there is accumulating evidence for divergent pathogen pressure across urbanization gradients, requiring adjustments in host immune function. At the same time, host immunity may be constrained by unfavourable components of an urban environment, such as poor-quality food resources, disturbance, or pollution. Here, I reviewed existing evidence for adaptations and constrains in the immune system of urban animals, focusing on the recent implementation of metabarcoding, genomic, transcriptomic, and epigenomic approaches in urban biology research. I show that spatial variation in pathogen pressure across urban and non-urban landscapes is highly complex and may be context-dependent, but there is solid evidence for pathogen-driven immunostimulation in urban-dwelling animals. I also show that genes coding for molecules directly involved in interactions with pathogens are the prime candidates for immunogenetic adaptations to urban life. Evidence emerging from landscape genomics and transcriptomics show that immune adaptations to urban life may have a polygenic nature, but immune traits may not be among the key biological functions experiencing broad-scale microevolutionary changes in response to urbanization. Finally, I provided recommendations for future research, including i) a better integration of different 'omic' approaches to obtain a more complete picture of immune adaptations to urban life in non-model animal taxa, ii) quantification of fitness landscapes for immune phenotypes and genotypes across urbanization gradient, and iii) much broader taxonomic coverage (including invertebrates) necessary to draw more robust conclusions on how general (or taxa-specific) are immune responses of animals to urbanization.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland.
| |
Collapse
|
5
|
Is Fluctuating Asymmetry a Sufficient Indicator of Stress Level in Two Lizard Species (Zootoca vivipara and Lacerta agilis) from Alpine Habitats? Symmetry (Basel) 2023. [DOI: 10.3390/sym15030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Alpine habitats are exposed to increasing anthropogenic pressure and climate change. The negative impacts can lead to chronic stress that can affect the survival and reproductive success of individuals and even lead to population extinction. In this study, we analyse different morphological and ecological traits and indices of abiotic and biotic stressors (such as head size and shape, fluctuating asymmetry, body condition index, tail autotomy, and population abundance) in alpine and subalpine populations of two lacertid species (Zootoca vivipara and Lacerta agilis) from Serbia and North Macedonia. These lizards live under different conditions: allotopy/syntopy, different anthropogenic pressure, and different levels of habitat protection. We found differences between syntopic and allotopic populations in pileus size, body condition index (in both species), pileus shape, fluctuating asymmetry (in L. agilis), and abundance (in Z. vivipara). Differences between populations under anthropogenic pressure and populations without it were observed in pileus shape, body condition index (in both species), pileus size, fluctuating asymmetry, tail autotomy and abundance (in L. agilis). On the basis of our results, it is necessary to include other stress indicators in addition to fluctuating asymmetry to quickly observe and quantify the negative effects of threat factors and apply protective measures.
Collapse
|
6
|
Vargová V, Balogová M, Figurová M, Bočkay A, Pipová N, Kaňuch P, Uhrin M. Skeletal morphology and fluctuating asymmetry of the European green toad, Bufotes viridis, in contrasting habitats. AMPHIBIA-REPTILIA 2022. [DOI: 10.1163/15685381-bja10111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Current environment changes and global amphibian decline suggest specific responses assuming urbanisation potential of the species. Amphibians are generally considered to be suitable bio-indicators of environmental health due to their ecological requirements. Therefore, fluctuating asymmetry (FA), a measure of small random deviations from bilateral symmetry is used for assessing morphological disruptions and parallelly the environment health. We measured the snout-vent length and lengths of five skeletal traits of limbs (humerus, radioulna, femur, tibiofibula, calcaneus) among the five European green toad populations from two contrasting habitats (urban and rural). We did not confirm our hypothesis that urban populations would exhibit higher level of FA as an indicator of higher environmental stress comparing to rural populations. However, asymmetry measured on forelimb bones was significantly larger than on hindlimbs. In addition, one urban population had significantly longer limbs comparing to the other sites.
Collapse
Affiliation(s)
- Viktória Vargová
- Department of Zoology, Institute of Biology and Ecology, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Monika Balogová
- Department of Zoology, Institute of Biology and Ecology, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Mária Figurová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Andrej Bočkay
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Natália Pipová
- Department of Animal Physiology, Institute of Biology and Ecology, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Peter Kaňuch
- Department of Zoology, Institute of Biology and Ecology, P.J. Šafárik University, 040 01 Košice, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, 960 01 Zvolen, Slovakia
| | - Marcel Uhrin
- Department of Zoology, Institute of Biology and Ecology, P.J. Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
7
|
Touzot M, Lefebure T, Lengagne T, Secondi J, Dumet A, Konecny-Dupre L, Veber P, Navratil V, Duchamp C, Mondy N. Transcriptome-wide deregulation of gene expression by artificial light at night in tadpoles of common toads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151734. [PMID: 34808173 DOI: 10.1016/j.scitotenv.2021.151734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Artificial light at night (ALAN) affects numerous physiological and behavioural mechanisms in various species by potentially disturbing circadian timekeeping systems and modifying melatonin levels. However, given the multiple direct and indirect effects of ALAN on organisms, large-scale transcriptomic approaches are essential to assess the global effect of ALAN on biological processes. Moreover, although studies have focused mainly on variations in gene expression during the night in the presence of ALAN, it is necessary to investigate the effect of ALAN on gene expression during the day. In this study, we combined de novo transcriptome sequencing and assembly, and a controlled laboratory experiment to evaluate the transcriptome-wide gene expression response using high-throughput (RNA-seq) in Bufo bufo tadpoles exposed to ecologically relevant light levels. Here, we demonstrated for the first time that ALAN affected gene expression at night (3.5% and 11% of differentially expressed genes when exposed to 0.1 and 5 lx compared to controls, respectively), but also during the day (11.2% of differentially expressed genes when exposed to 5 lx compared to controls) with a dose-dependent effect. ALAN globally induced a downregulation of genes (during the night, 58% and 62% of the genes were downregulated when exposed to 0.1 and 5 lx compared to controls, respectively, and during the day, 61.2% of the genes were downregulated when exposed to 5 lx compared to controls). ALAN effects were detected at very low levels of illuminance (0.1 lx) and affected mainly genes related to the innate immune system and, to a lesser extend to lipid metabolism. These results provide new insights into understanding the effects of ALAN on organism. ALAN impacted the expression of genes linked to a broad range of physiological pathways at very low levels of ALAN during night-time and during daytime, potentially resulting in reduced immune capacity under environmental immune challenges.
Collapse
Affiliation(s)
- Morgane Touzot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France.
| | - Tristan Lefebure
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Thierry Lengagne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Jean Secondi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Faculté des Sciences, Université d'Angers, 49045 Angers, France
| | - Adeline Dumet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Lara Konecny-Dupre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Philippe Veber
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Vincent Navratil
- PRABI, Pôle Rhône-Alpes Bioinformatics Center, Université Lyon 1, 69622 Villeurbanne, France; Institut Français de Bioinformatique, UMS 3601, 91057 Évry, France
| | - Claude Duchamp
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Nathalie Mondy
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| |
Collapse
|
8
|
Jojić V, Čabrilo B, Bjelić-Čabrilo O, Jovanović VM, Budinski I, Vujošević M, Blagojević J. Canalization and developmental stability of the yellow-necked mouse (Apodemus flavicollis) mandible and cranium related to age and nematode parasitism. Front Zool 2021; 18:55. [PMID: 34689812 PMCID: PMC8543932 DOI: 10.1186/s12983-021-00439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammalian mandible and cranium are well-established model systems for studying canalization and developmental stability (DS) as two elements of developmental homeostasis. Nematode infections are usually acquired in early life and increase in intensity with age, while canalization and DS of rodent skulls could vary through late postnatal ontogeny. We aimed to estimate magnitudes and describe patterns of mandibular and cranial canalization and DS related to age and parasite intensity (diversity) in adult yellow-necked mice (Apodemus flavicollis). RESULTS We found the absence of age-related changes in the levels of canalization for mandibular and cranial size and DS for mandibular size. However, individual measures of mandibular and cranial shape variance increased, while individual measures of mandibular shape fluctuating asymmetry (FA) decreased with age. We detected mandibular and cranial shape changes during postnatal ontogeny, but revealed no age-related dynamics of their covariance structure among and within individuals. Categories regarding parasitism differed in the level of canalization for cranial size and the level of DS for cranial shape. We observed differences in age-related dynamics of the level of canalization between non-parasitized and parasitized animals, as well as between yellow-necked mice parasitized by different number of nematode species. Likewise, individual measures of mandibular and cranial shape FA decreased with age for the mandible in the less parasitized category and increased for the cranium in the most parasitized category. CONCLUSIONS Our age-related results partly agree with previous findings. However, no rodent study so far has explored age-related changes in the magnitude of FA for mandibular size or mandibular and cranial FA covariance structure. This is the first study dealing with the nematode parasitism-related canalization and DS in rodents. We showed that nematode parasitism does not affect mandibular and cranial shape variation and covariance structure among and within individuals. However, parasite intensity (diversity) is related to ontogenetic dynamics of the levels of canalization and DS. Overall, additional studies on animals from natural populations are required before drawing some general conclusions.
Collapse
Affiliation(s)
- Vida Jojić
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Borislav Čabrilo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Olivera Bjelić-Čabrilo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Vladimir M Jovanović
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.,Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany.,Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany
| | - Ivana Budinski
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mladen Vujošević
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Blagojević
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Mühlenhaupt M, Baxter-Gilbert J, Makhubo BG, Riley JL, Measey J. Growing up in a new world: trait divergence between rural, urban, and invasive populations of an amphibian urban invader. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.67995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cities are focal points of introduction for invasive species. Urban evolution might facilitate the success of invasive species in recipient urban habitats. Here we test this hypothesis by rearing tadpoles of a successful amphibian urban coloniser and invader in a common garden environment. We compared growth rate, morphological traits, swimming performance, and developmental rate of guttural toad tadpoles (Sclerophrys gutturalis) from native rural, native urban, and non-native urban habitats. By measuring these traits across ontogeny, we were also able to compare divergence across different origins as the tadpoles develop. The tadpoles of non-native urban origin showed significantly slower developmental rate (e.g., the proportion of tadpoles reaching Gosner stage 31 or higher was lower at age 40 days) than tadpoles of native urban origin. Yet, tadpoles did not differ in growth rate or any morphological or performance trait examined, and none of these traits showed divergent ontogenetic changes between tadpoles of different origin. These findings suggest that prior adaptation to urban habitats in larval traits likely does not play an important role in facilitating the invasion success of guttural toads into other urban habitats. Instead, we suggest that evolutionary changes in larval traits after colonization (e.g., developmental rate), together with decoupling of other traits and phenotypic plasticity might explain how this species succeeded in colonising extra-limital urban habitats.
Collapse
|
10
|
Petrozzi F, Akani GC, Eniang EA, Ajong SN, Funk SM, Fa JE, Amadi N, Dendi D, Luiselli L. Generalist, selective or ‘mixed’ foragers? Feeding strategies of two tropical toads across suburban habitats. J Zool (1987) 2021. [DOI: 10.1111/jzo.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - G. C. Akani
- Department of Animal and Environmental Biology Rivers State University of Science and Technology Port Harcourt Rivers State Nigeria
- Institute for Development, Ecology, Conservation & Cooperation Rome Italy
| | - E. A. Eniang
- Department of Forestry and Wildlife University of Uyo Uyo Nigeria
| | - S. N. Ajong
- Institute for Development, Ecology, Conservation & Cooperation Rome Italy
- Department of Fisheries Lagos State University Ojo Lagos Nigeria
| | - S. M. Funk
- NatureHeritage Jersey, Channel Islands UK
| | - J. E. Fa
- Department of Natural Sciences School of Science and the Environment Manchester Metropolitan University Manchester UK
- Center for International Forestry Research (CIFOR) CIFOR Headquarters Bogor Indonesia
| | - N. Amadi
- Department of Animal and Environmental Biology Rivers State University of Science and Technology Port Harcourt Rivers State Nigeria
| | - D. Dendi
- Department of Animal and Environmental Biology Rivers State University of Science and Technology Port Harcourt Rivers State Nigeria
- Institute for Development, Ecology, Conservation & Cooperation Rome Italy
- Department of Zoology and Animal Biology University of Lomé Lomé Togo
| | - L. Luiselli
- Department of Animal and Environmental Biology Rivers State University of Science and Technology Port Harcourt Rivers State Nigeria
- Institute for Development, Ecology, Conservation & Cooperation Rome Italy
- Department of Zoology and Animal Biology University of Lomé Lomé Togo
| |
Collapse
|
11
|
Cogălniceanu D, Stănescu F, Székely D, Topliceanu TS, Iosif R, Székely P. Age, size and body condition do not equally reflect population response to habitat change in the common spadefoot toad Pelobates fuscus. PeerJ 2021; 9:e11678. [PMID: 34316392 PMCID: PMC8286710 DOI: 10.7717/peerj.11678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Urbanization impacts biodiversity both directly through physical expansion over land, and indirectly due to land use conversion and human behaviors associated with urban areas. We assessed the response of a common spadefoot toad population (Pelobates fuscus) to habitat loss and fragmentation resulting from urban development by studying changes in size, body condition and age parameters. We compared samples collected in the early 2000s (sample A) and later on during 2012-2014 (sample B). The terrestrial habitats in the study area were severely reduced and fragmented due to the expansion of the human settlement. We found no significant differences in the age parameters between the two sampling periods; the median lifespan shortened from 3.5 (sample A) to 3.0 years (sample B), while the other age parameters were similar in both samples. In contrast, snout-vent length, body mass and body condition experienced a significant decrease over time. Our results suggest that changes in body size and body condition, rather than age parameters, better reflect the response of the common spadefoot toad population to declining habitat quality. Therefore, body measurements can provide reliable estimates of the impact of habitat degradation in amphibian populations.
Collapse
Affiliation(s)
- Dan Cogălniceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Florina Stănescu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Diana Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Theodor-Sebastian Topliceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Ruben Iosif
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Paul Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| |
Collapse
|
12
|
Ziegler AK, Watson H, Hegemann A, Meitern R, Canoine V, Nilsson JÅ, Isaksson C. Exposure to artificial light at night alters innate immune response in wild great tit nestlings. J Exp Biol 2021; 224:jeb.239350. [PMID: 33771912 PMCID: PMC8180251 DOI: 10.1242/jeb.239350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
The large-scale impact of urbanization on wildlife is rather well documented; however, the mechanisms underlying the effects of urban environments on animal physiology and behaviour are still poorly understood. Here, we focused on one major urban pollutant - artificial light at night (ALAN) - and its effects on the capacity to mount an innate immune response in wild great tit (Parus major) nestlings. Exposure to ALAN alters circadian rhythms of physiological processes, by disrupting the nocturnal production of the hormone melatonin. Nestlings were exposed to a light source emitting 3 lx for seven consecutive nights. Subsequently, nestlings were immune challenged with a lipopolysaccharide injection, and we measured haptoglobin and nitric oxide levels pre- and post-injection. Both haptoglobin and nitric oxide are important markers for innate immune function. We found that ALAN exposure altered the innate immune response, with nestlings exposed to ALAN having lower haptoglobin and higher nitric oxide levels after the immune challenge compared with dark-night nestlings. Unexpectedly, nitric oxide levels were overall lower after the immune challenge than before. These effects were probably mediated by melatonin, as ALAN-treated birds had on average 49% lower melatonin levels than the dark-night birds. ALAN exposure did not have any clear effects on nestling growth. This study provides a potential physiological mechanism underlying the documented differences in immune function between urban and rural birds observed in other studies. Moreover, it gives evidence that ALAN exposure affects nestling physiology, potentially causing long-term effects on physiology and behaviour, which ultimately can affect their fitness.
Collapse
Affiliation(s)
| | - Hannah Watson
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Richard Meitern
- Department of Zoology, University of Tartu, 51005 Tartu, Estonia
| | - Virginie Canoine
- Department of Behavioural and Cognitive Biology, University of Vienna, 1090Vienna, Austria
| | | | | |
Collapse
|
13
|
Cummings CR, Khan NY, Murray MM, Ellison T, Welch CN, Hernandez SM, Navara KJ. Foraging in Urban Environments Increases Bactericidal Capacity in Plasma and Decreases Corticosterone Concentrations in White Ibises. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.575980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As humans continue to infringe on natural habitats, more animals are exposed to urbanization and its associated challenges. It is still unclear, however, whether the movement of animals into urban habitats negatively influences the health and/or survival of those animals, however those animals often experience shifts in resource availability, diet composition, and exposure to stimuli that are new and potentially stressful. Recently, white ibises (Eudocimus albus) have become increasingly common in urban habitats where they forage in close proximity to humans and even interact with them, collecting food handouts. We hypothesized that foraging in urban habitats would negatively impact measures of health, impair innate immunity, trigger elevated concentrations of corticosterone, and depress physiological responses to stressors in white ibises. We found that plasma from birds captured from urban sites had higher bactericidal capacity against Escherichia coli than those captured in natural sites. Additionally, adults captured in urban habitats had a significantly lower baseline corticosterone concentrations during the post-breeding season, and corticosterone responses to a handling challenge were lower for birds captured from urban sites during year 2 of the study. These results indicate that exposure to urban habitats impacts ibis health, though in the opposite direction of what was predicted.
Collapse
|
14
|
Niemeier S, Müller J, Struck U, Rödel MO. Superfrogs in the city: 150 year impact of urbanization and agriculture on the European Common Frog. GLOBAL CHANGE BIOLOGY 2020; 26:6729-6741. [PMID: 32975007 DOI: 10.1111/gcb.15337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Despite growing pressure on biodiversity deriving from increasing anthropogenic disturbances, some species successfully persist in altered ecosystems. However, these species' characteristics and thresholds, as well as the environmental frame behind that process are usually unknown. We collected data on body size, fluctuating asymmetry (FA), as well as nitrogen stable isotopes (δ15 N) from museum specimens of the European Common Frog, Rana temporaria, all originating from the Berlin-Brandenburg area, Germany, in order to test: (a) if specimens have changed over the last 150 years (1868-2018); and (b) if changes could be attributed to increasing urbanization and agricultural intensity. We detected that after the Second World War, frogs were larger than in pre-war Berlin. In rural Brandenburg, we observed no such size change. FA analysis revealed a similar tendency with lower levels in Berlin after the war and higher levels in Brandenburg. Enrichment of δ15 N decreased over time in both regions but was generally higher and less variable in sites with agricultural land use. Frogs thus seem to encounter favorable habitat conditions after pollution in postwar Berlin improved, but no such tendencies were observable in the predominantly agricultural landscape of Brandenburg. Urbanization, characterized by the proportion of built-up area, was not the main associated factor for the observed trait changes. However, we detected a relationship with the amount of urban greenspace. Our study exemplifies that increasing urbanization must not necessarily worsen conditions for species living in urban habitats. The Berlin example demonstrates that public parks and other urban greenspaces have the potential to serve as suitable refuges for some species. These findings underline the urgency of establishing, maintaining, and connecting such habitats, and generally consider their importance for future urban planning.
Collapse
Affiliation(s)
- Stephanie Niemeier
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research - BBIB, Berlin, Germany
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research - BBIB, Berlin, Germany
| | - Ulrich Struck
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research - BBIB, Berlin, Germany
| |
Collapse
|
15
|
Rojas-Hucks S, Gutleb AC, González CM, Contal S, Mehennaoui K, Jacobs A, Witters HE, Pulgar J. Xenopus laevis as a Bioindicator of Endocrine Disruptors in the Region of Central Chile. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:390-408. [PMID: 31422435 DOI: 10.1007/s00244-019-00661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
One of the direct causes of biodiversity loss is environmental pollution resulting from the use of chemicals. Different kinds of chemicals, such as persistent organic pollutants and some heavy metals, can be endocrine disruptors, which act at low doses over a long period of time and have a negative effect on the reproductive and thyroid system in vertebrates worldwide. Research on the effects of endocrine disruptors and the use of bioindicators in neotropical ecosystems where pressure on biodiversity is high is scarce. In Chile, although endocrine disruptors have been detected at different concentrations in the environments of some ecosystems, few studies have been performed on their biological effects in the field. In this work, Xenopus laevis (African clawed frog), an introduced species, is used as a bioindicator for the presence of endocrine disruptors in aquatic systems with different degrees of contamination in a Mediterranean zone in central Chile. For the first time for Chile, alterations are described that can be linked to exposure to endocrine disruptors, such as vitellogenin induction, decreased testosterone in male frogs, and histological changes in gonads. Dioxin-like and oestrogenic activity was detected in sediments at locations where it seem to be related to alterations found in the frogs. In addition, an analysis of land use/cover use revealed that urban soil was the best model to explain the variations in frog health indicators. This study points to the usefulness of an invasive species as a bioindicator for the presence of endocrine-disruptive chemicals.
Collapse
Affiliation(s)
- Sylvia Rojas-Hucks
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile.
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carlos M González
- Escuela de Medicina Veterinaria, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Servane Contal
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - An Jacobs
- Department Environmental Health and Risk, Team Applied Bio and Molecular Sciences (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Hilda E Witters
- Department Environmental Health and Risk, Team Applied Bio and Molecular Sciences (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| |
Collapse
|
16
|
Eakin C, Calhoun AJK, Hunter ML. Indicators of wood frog (
Lithobates sylvaticus
) condition in a suburbanizing landscape. Ecosphere 2019. [DOI: 10.1002/ecs2.2789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Carly Eakin
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono Maine 04469 USA
| | - Aram J. K. Calhoun
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono Maine 04469 USA
| | - Malcolm L. Hunter
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono Maine 04469 USA
| |
Collapse
|
17
|
Kärvemo S, Laurila A, Höglund J. Urban environment and reservoir host species are associated with Batrachochytrium dendrobatidis infection prevalence in the common toad. DISEASES OF AQUATIC ORGANISMS 2019; 134:33-42. [PMID: 32132271 DOI: 10.3354/dao03359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human-induced changes of the environment, including landscape alteration and habitat loss, may affect wildlife disease dynamics and have important ramifications for wildlife conservation. Amphibians are among the vertebrate taxa most threatened by anthropogenic habitat change. The emerging fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused extinctions and population declines in hundreds of anuran species globally. We studied how the urban landscape is associated with the prevalence of Bd infections by sampling 655 anurans of 3 species (mainly the common toad Bufo bufo) in 42 ponds surrounded by different amounts of urban habitat (defined as towns, cities or villages). We also examined the association between Bd infections and a potential reservoir host species (the moor frog Rana arvalis). We found that 38% of the sites were positive for Bd with an infection prevalence of 4.4%. The extent of urban landscape was negatively correlated with Bd infection prevalence. However, the positive association of Bd with the presence of the possible reservoir species was substantially stronger than the urban effects. The body condition index of B. bufo was negatively associated with Bd infection. This Bd effect was stronger than the negative effect of urban landscape on body condition. Our results suggest that urban environments in Sweden have a negative impact on Bd infections, while the presence of the reservoir species has a positive impact on Bd prevalence. Our study also highlights the potential importance of Bd infection on host fitness, especially in rural landscapes.
Collapse
Affiliation(s)
- Simon Kärvemo
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, 75236 Uppsala, Sweden
| | | | | |
Collapse
|
18
|
Zamora-Camacho FJ. Integrating time progression in ecoimmunology studies: beyond immune response intensity. Curr Zool 2019; 65:205-212. [PMID: 30936910 PMCID: PMC6430971 DOI: 10.1093/cz/zoy045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022] Open
Abstract
Habitat alterations in agroecosystems may damage amphibian immune capacity. As agroecosystem extension is increasing worldwide, broader-context knowledge on the effects of agroecosystem stressful conditions on amphibian immune capacity is crucial for understanding and management of amphibian global declines. However, most studies on ecoimmunology assume synchronal among-group immune-response peaks, and focus on immune response after standardized time lapses, neglecting its progression. Herein, I compared inflamatory response short-term progression of agroecosystem and natural-habitat female and male natterjack toads Epidalea calamita, by measuring swelling response, once per hour, 6 h following an artificial immune challenge with innocuous antigen phytohemagglutinin. I also compared maximum magnitude of swelling response, irrespective of the moment when it was reached. Habitat differences arose only 3 h after challenge, when natural-habitat toads showed greater swelling response. Maximum magnitude of swelling response was similar in toads from both habitats. However, agroecosystem toads showed a delayed swelling response as compared with natural-habitat conspecifics, probably as a consequence of agroecosystem stressful conditions. Such a delay suggests a weaker immune capacity, and consequently impaired anti-pathogen performance. Regarding sex, swelling response magnitude did not differ between males and females. Female swelling response peaked earlier, but that of males was more sustained in time, which contradicts general across-taxa findings that males show impaired immune response. Interestingly, results suggest that measuring swelling response only after some standardized period following stimulation may be a simplistic approach and produce unrealistic results. Consequently, studies on ecoimmunology should implement swelling response progression in order to produce unbiased science.
Collapse
Affiliation(s)
- Francisco Javier Zamora-Camacho
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
19
|
Thawley CJ, Moniz HA, Merritt AJ, Battles AC, Michaelides SN, Kolbe JJ. Urbanization affects body size and parasitism but not thermal preferences inAnolislizards. JOURNAL OF URBAN ECOLOGY 2019. [DOI: 10.1093/jue/juy031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christopher J Thawley
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, USA
| | - Haley A Moniz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, USA
| | - Amanda J Merritt
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, USA
| | - Andrew C Battles
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, USA
| | - Sozos N Michaelides
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, USA
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, USA
| |
Collapse
|
20
|
Zamora-Camacho FJ, Comas M. Early swelling response to phytohemagglutinin is lower in older toads. PeerJ 2018; 6:e6104. [PMID: 30595980 PMCID: PMC6304268 DOI: 10.7717/peerj.6104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 01/29/2023] Open
Abstract
The effects of age on performance of life-history traits are diverse, but a common outcome is senescence, an irreversible deterioration of physical and physiological capabilities of older individuals. Immune response is potentially bound to senescence. However, little is known about immune response ageing in amphibians. In this work, we test the hypothesis that amphibian early immune response is reduced in older individuals. To this end, we captured adult natterjack toads (Epidalea calamita) and inoculated them with phytohemagglutinin, an innocuous protein that triggers a skin-swelling immune response whose magnitude is directly proportional to the ability of the individual to mount an immune response. We measured early swelling immune response (corresponding to an innate-response stage) hourly, for six hours, and we calculated the area under the curve (AUC) for each individual's time series, as a measure of immune response magnitude incorporating time. We estimated toad age by means of phalanx skeletochronology. Swelling and AUC decreased with age. Therefore, in accordance with our predictions, early immune response seems subject to senescence in these toads. Reduced ability to get over infections due to senescence of immune respose might be-together with a worse functioning of other organs and systems-among the causes of lower survival of older specimens.
Collapse
Affiliation(s)
- Francisco Javier Zamora-Camacho
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States of America
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mar Comas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD), Spanish National Research Council (CSIC), Sevilla, Spain
| |
Collapse
|
21
|
Amdekar MS, Kakkar A, Thaker M. Measures of Health Provide Insights Into the Coping Strategies of Urban Lizards. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Iglesias-Carrasco M, Head ML, Cabido C. Effect of an immune challenge on the anti-predator response of the green Iberian frog (Pelophylax perezi): the influence of urban habitats. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Maider Iglesias-Carrasco
- Department of Evolutionay Ecology, Museo Nacional de Ciencias Naturales (MNCN-CSIC). José Madrid, Spain
- Department of Herpetology, Aranzadi Science Society. Zorroagagaina, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Megan L Head
- Division of Evolution, Ecology and Genetics. Australian National University. Research School of Biology, Linnaeus Way, Acton ACT 2601. Canberra, Australia
| | - Carlos Cabido
- Department of Herpetology, Aranzadi Science Society. Zorroagagaina, Donostia-San Sebastián, Gipuzkoa, Spain
| |
Collapse
|