1
|
Das S, Ramanathan G. Assessing the Inhibitory Potential of Pregnenolone Sulfate on Pentraxin 3 in Diabetic Kidney Disease: A Molecular Docking and Simulation Study. J Cell Biochem 2024:e30661. [PMID: 39344977 DOI: 10.1002/jcb.30661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Diabetic Kidney Disease (DKD), a frequent consequence of diabetes, has substantial implications for both morbidity and mortality rates, prompting the exploration of new metabolic biomarkers due to limitations in current methods like creatinine and albumin measurements. Pentraxin 3 (PTX3) shows promise for assessing renal inflammation in DKD. This study investigates how DKD metabolites could influence PTX3 expression through molecular docking, ADMET profiling, and dynamic simulation. Network and pathway analyses were conducted to explore metabolite interactions with DKD genes and their contributions to DKD pathogenesis. Thirty-three DKD-associated metabolites were screened, using pentoxifylline (PEN) as a reference. The pharmacokinetic properties of these compounds were evaluated through molecular docking and ADMET profiling. Molecular dynamics simulations over 200 ns assessed the stability of PTX3 (apo), the PRE-PTX3 complex, and PEN-PTX3 across multiple parameters. Cytoscape identified 1082 nodes and 1381 edges linking metabolites with DKD genes. KEGG pathway analysis underscored PTX3's role in inflammation. Molecular docking revealed pregnenolone sulfate (PRE) with the highest binding affinity (-6.25 kcal/mol), followed by hydrocortisone (-6.03 kcal/mol) and 2-arachidonoylglycerol (-5.92 kcal/mol), compared to PEN (-5.35 kcal/mol). ADMET profiling selected PRE for dynamic simulation alongside PEN. Analysis of RMSD, RMSF, RG, SASA, H-bond, PCA, FEL, and MM-PBSA indicated stable complex behavior over time. Our findings suggest that increasing PRE levels could be beneficial in managing DKD, potentially through isolating PRE from fungal sources, synthesizing it as dietary supplements, or enhancing endogenous PRE synthesis within the body.
Collapse
Affiliation(s)
- Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Wang J, Song X, Xia Z, Feng S, Zhang H, Xu C, Zhang H. Serum biomarkers for predicting microvascular complications of diabetes mellitus. Expert Rev Mol Diagn 2024; 24:703-713. [PMID: 39158206 DOI: 10.1080/14737159.2024.2391021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Diabetic microvascular complications such as retinopathy, nephropathy, and neuropathy are primary causes of blindness, terminal renal failure, and neuropathic disorders in type 2 diabetes mellitus patients. Identifying reliable biomarkers promptly is pivotal for early detection and intervention in these severe complications. AREAS COVERED This review offers a thorough examination of the latest research concerning serum biomarkers for the prediction and assessment of diabetic microvascular complications. It encompasses biomarkers associated with glycation, oxidative stress, inflammation, endothelial dysfunction, basement membrane thickening, angiogenesis, and thrombosis. The review also highlights the potential of emerging biomarkers, such as microRNAs and long non-coding RNAs. EXPERT OPINION Serum biomarkers are emerging as valuable tools for the early assessment and therapeutic guidance of diabetic microvascular complications. The biomarkers identified not only reflect the underlying pathophysiology but also align with the extent of the disease. However, further validation across diverse populations and improvement of the practicality of these biomarkers in routine clinical practice are necessary. Pursuing these objectives is essential to advance early diagnosis, risk assessment, and individualized treatment regimens for those affected by diabetes.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital Chuandong Hospital & Dazhou First People's Hospital, Dazhou, China
| | - Xiaoyi Song
- School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziqiao Xia
- Laboratory medicine, Qianwei People's Hospital, Leshan, Sichuan, China
| | - Shu Feng
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hangfeng Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengjie Xu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Zhang
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Violetta L, Kartasasmita AS, Supriyadi R, Rita C. Circulating Biomarkers to Predict Diabetic Retinopathy in Patients with Diabetic Kidney Disease. Vision (Basel) 2023; 7:vision7020034. [PMID: 37092467 PMCID: PMC10123608 DOI: 10.3390/vision7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
The purpose of this review is to outline the currently available circulating biomarkers to predict diabetic retinopathy (DR) in patients with diabetic kidney disease (DKD). Studies have extensively reported the association between DR and DKD, suggesting the presence of common pathways of microangiopathy. The presence of other ocular complications including diabetic cataracts may hinder the detection of retinopathy, which may affect the visual outcome after surgery. Unlike DKD screening, the detection of DR requires complex, costly machines and trained technicians. Recognizing potential biological markers related to glycation and oxidative stress, inflammation and endothelial dysfunction, basement membrane thickening, angiogenesis, and thrombosis as well as novel molecular markers involved in the microangiopathy process may be useful as predictors of retinopathy and identify those at risk of DR progression, especially in cases where retinal visualization becomes a clinical challenge. Further investigations could assist in deciding which biomarkers possess the highest predictive power to predict retinopathy in clinical settings.
Collapse
Affiliation(s)
- Laurencia Violetta
- Nephrology Division, Department of Internal Medicine, Gatot Soebroto Indonesia Army Central Hospital, Jakarta 10410, Indonesia
| | | | - Rudi Supriyadi
- Faculty of Medicine, Universitas Padjajaran, Bandung 40132, Indonesia
| | - Coriejati Rita
- Faculty of Medicine, Universitas Padjajaran, Bandung 40132, Indonesia
| |
Collapse
|
4
|
Berezina TA, Obradovic Z, Boxhammer E, Berezin AA, Lichtenauer M, Berezin AE. Adropin Predicts Chronic Kidney Disease in Type 2 Diabetes Mellitus Patients with Chronic Heart Failure. J Clin Med 2023; 12:2231. [PMID: 36983232 PMCID: PMC10059962 DOI: 10.3390/jcm12062231] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Adropin is a multifunctional secreted protein, which is involved in the metabolic modulation of the heart-brain-kidney axis in heart failure (HF). The aim of the study was to detect the plausible predictive value of serum levels of adropin for chronic kidney disease (CKD) grades 1-3 in type 2 diabetes mellitus (T2DM) patients with chronic HF. We enrolled 417 T2DM individuals with chronic HF and subdivided them into two groups depending on the presence of CKD. The control group was composed of 25 healthy individuals and 30 T2DM patients without HF and CKD. All eligible patients underwent an ultrasound examination. Adropin was detected by ELISA in blood samples at the study baseline. We found that adropin levels in T2DM patients without HF and CKD were significantly lower than in healthy volunteers, but they were higher than in T2DM patients with known HF. The optimal cut-off point for adropin levels was 2.3 ng/mL (area under the curve [AUC] = 0.86; 95% CI = 0.78-0.95; sensitivity = 81.3%, specificity = 77.4%). The multivariate logistic regression adjusted for albuminuria/proteinuria showed that serum levels of adropin <2.30 ng/mL (OR = 1.55; p = 0.001) independently predicted CKD. Conclusions: Low levels of adropin in T2DM patients with chronic CH seem to be an independent predictor of CKD at stages 1-3.
Collapse
Affiliation(s)
- Tetiana A. Berezina
- Department of Nephrology, “Vita Center”, 3, Sedov Str., 69000 Zaporozhye, Ukraine
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Alexander A. Berezin
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
- Department of Internal Medicine, Zaporozhye Medical Academy of Postgraduate Education, 20, Vinter Av., 69096 Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
- Department of Internal Medicine, Zaporozhye State Medical University, 26, Mayakovsky Av., 69035 Zaporozhye, Ukraine
| |
Collapse
|
5
|
Rashed S, Hameed O, Al-Helaly L. Changes in the level of zinc and copper and some biochemical parameters in patients with chronic kidney failure. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_22_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Chen RB, Wang QY, Wang YY, Wang YD, Liu JH, Liao ZZ, Xiao XH. Feeding-induced hepatokines and crosstalk with multi-organ: A novel therapeutic target for Type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1094458. [PMID: 36936164 PMCID: PMC10020511 DOI: 10.3389/fendo.2023.1094458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Hyperglycemia, which can be caused by either an insulin deficit and/or insulin resistance, is the main symptom of Type 2 diabetes, a significant endocrine metabolic illness. Conventional medications, including insulin and oral antidiabetic medicines, can alleviate the signs of diabetes but cannot restore insulin release in a physiologically normal amount. The liver detects and reacts to shifts in the nutritional condition that occur under a wide variety of metabolic situations, making it an essential organ for maintaining energy homeostasis. It also performs a crucial function in glucolipid metabolism through the secretion of hepatokines. Emerging research shows that feeding induces hepatokines release, which regulates glucose and lipid metabolism. Notably, these feeding-induced hepatokines act on multiple organs to regulate glucolipotoxicity and thus influence the development of T2DM. In this review, we focus on describing how feeding-induced cross-talk between hepatokines, including Adropin, Manf, Leap2 and Pcsk9, and metabolic organs (e.g.brain, heart, pancreas, and adipose tissue) affects metabolic disorders, thus revealing a novel approach for both controlling and managing of Type 2 diabetes as a promising medication.
Collapse
Affiliation(s)
- Rong-Bin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qi-Yu Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xin-Hua Xiao, ; Zhe-Zhen Liao,
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xin-Hua Xiao, ; Zhe-Zhen Liao,
| |
Collapse
|
7
|
Yu M, Wang D, Zhong D, Xie W, Luo J. Adropin Carried by Reactive Oxygen Species-Responsive Nanocapsules Ameliorates Renal Lipid Toxicity in Diabetic Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37330-37344. [PMID: 35951354 DOI: 10.1021/acsami.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetes complication mainly caused by lipid toxicity characterized by oxidative stress. Studies have shown that adropin (Ad) regulates energy metabolism and may be an effective target to improve DKD. This study investigated the effect of exogenous Ad encapsulated in reactive oxygen species (ROS)-responsive nanocapsules (Ad@Gel) on DKD. HK2 cells were induced with high glucose (HG) and intervened with Ad@Gel. A diabetes mouse model was established using HG and high-fat diet combined with streptozotocin and treated with Ad@Gel to observe its effects on renal function, pathological damage, lipid metabolism, and oxidative stress. Results showed that Ad@Gel could protect HK2 from HG stimulation in vitro. It also effectively controls blood glucose and lipid levels, improves renal function, inhibits excessive production of ROS, protects mitochondria from damage, improves lipid deposition in renal tissues, and downregulates the expression of lipogenic proteins SEBP-1 and ADRP in DKD mice. In HG-induced HK2 cells or the kidney of DKD patients, the low expression of neuronatin (Nnat) and high expression of translocator protein (TSPO) were observed. Knockdown Nnat or overexpression of TSPO significantly reversed the effect of Ad@Gel on improving mitochondrial damage. In addition, knockdown Nnat also significantly reversed the effect of Ad@Gel on lipid metabolism. The results suggest that the effect of Ad on DKD may be achieved by activating Nnat to improve lipid metabolism and inhibit TSPO activity, thereby enhancing mitochondrial function.
Collapse
Affiliation(s)
- Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Di Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Da Zhong
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Weichang Xie
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
8
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Crosstalk between the liver and kidney in diabetic nephropathy. Eur J Pharmacol 2022; 931:175219. [PMID: 35987257 DOI: 10.1016/j.ejphar.2022.175219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes, and its pathogenesis has not been fully elucidated. Recently, communication between organs has gradually become a new focus in the study of diseases pathogenesis, and abnormal interorgan communication has been proven to be involved in the occurrence and progression of many diseases. As an important metabolic organ in the human body, the liver plays an important role in maintaining homeostasis in humans. The liver secretes a series of proteins called hepatokines that affect adjacent and distal organs through paracrine or endocrine signaling pathways. In this review, we summarize some of the hepatokines identified to date and describe their roles in DN to discuss the possibility that the liver-renal axis is potentially useful as a therapeutic target for DN. We summarize the important hepatokines identified thus far and discuss their relationship with DN. We propose for the first time that the "liver-renal axis" is a potential therapeutic target in individuals with DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Varikasuvu SR, Reddy EP, Thangappazham B, Varshney S, Das VL, Munikumar M. Adropin levels and its associations as a fat-burning hormone in patients with polycystic ovary syndrome: a correlational meta-analysis. Gynecol Endocrinol 2021; 37:879-884. [PMID: 34241553 DOI: 10.1080/09513590.2021.1950136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AIMS Adropin is a peptide hormone with potential implications in patients with polycystic ovary syndrome (PCOS). The aim of this meta-analysis was to compare the circulating (serum/plasma) and follicular fluid adropin levels between human PCOS patients and non-PCOS controls. METHODS Relevant studies were retrieved by online database and manual searching. The standardized mean differences (SMDs) with 95% confidence intervals (CIs) were obtained by a random-effects meta-analysis. Meta-analysis of correlations was performed for the associations of adropin with anthropometric, lipid, insulin resistance and hormonal covariates. The funnel plot analysis with Begg's and Egger's tests was used for publication bias. RESULTS A total of 9 studies were included in this meta-analysis. The results indicated that the adropin levels were significantly decreased in PCOS patients as compared to non-PCOS controls (SMD = -1.87, 95% CI = -2.55 to -1.18, p < .0001). This decrease was more evident in overweight PCOS patients than their normoweight counterparts (SMD = -0.55, 95% CI = -0.80 to -0.30, p < .0001). A one-study leave-out sensitivity analysis indicated that no single study had a significant influence on the overall outcome, suggesting the robustness of this meta-analysis. There were significant associations of decreased adropin levels with the body mass index, dyslipidemia and insulin resistance in PCOS. CONCLUSION Adropin levels are significantly reduced in PCOS patients compared to controls, and this decrease was more evident in overweight PCOS patients.
Collapse
Affiliation(s)
| | - E Prabhakar Reddy
- Department of Biochemistry, Bharath Medical College and Hospital (BIHER), Chennai, India
| | | | | | - Vanita Lal Das
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Deoghar, India
| | - Manne Munikumar
- Clinical division, ICMR-National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
10
|
Memi G, Yazgan B. Adropin and spexin hormones regulate the systemic inflammation in adenine-induced chronic kidney failure in rat. CHINESE J PHYSIOL 2021; 64:194-201. [PMID: 34472450 DOI: 10.4103/cjp.cjp_13_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chronic kidney disease is one of the major global health problems. Chronic renal failure is stimulated by many cytokines and chemokines. Adropin and spexin (SPX) are peptides hormones. These peptides could affect inflammatory conditions, but this is unclear. Due to the limited information, we planned to investigate the impact of adropin and SPX hormones on systemic inflammation in adenine induced chronic kidney failure rat model. Chronic kidney failure was induced by administering adenine hemisulfate. Renal functions were measured by an autoanalyzer. Granulocyte colony-stimulating factor (G-CSF), interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-17A, tumor necrosis factor-alpha, Eotaxin, growth-regulated oncogene-alpha, IP-10, monocyte chemoattractant protein (MCP)-1, MCP-3, macrophage inflammatory protein (MIP)-1α, MIP-2, and RANTES levels were determined by Luminex. We observed an increase in 24-h urine volume and serum creatinine. Blood urea nitrogen (BUN) and urine protein levels were also significantly higher in the chronic kidney failure (CKF) group. Urine protein and 24-h urine volume were reduced with adropin and SPX treatments. Furthermore, G-CSF, IFN-γ, IL-4, IL-5, IL-10, IL-12, IL-17A, and GRO-α significantly increased by CKF induction; however, these cytokines and chemokines significantly decreased by adropin treatment in the CKF group. Furthermore, adropin increased IP-10, MCP-1, MIP-1α, and MIP-2 levels. In addition, SPX treatment had a more limited effect, decreasing only G-CSF, IFN-γ, and IL-5 levels. The combined adropin + SPX treatment significantly reduced G-CSF, IFN-γ, IL-4, IL-5, IL-12, and IL-17A. Furthermore, IP-10, MCP-1, MCP-3, and MIP-2 were significantly increased by these combined treatments. Our findings indicate that renal functions and inflammatory response were modulated by adropin and SPX peptides. These peptides may have protective effects on systemic inflammation and renal failure progression.
Collapse
Affiliation(s)
- Gulsun Memi
- Department of Physiology, School of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School; Department of Molecular Medicine, Institute of Health Sciences, Amasya University, Amasya, Turkey
| |
Collapse
|
11
|
Yazgan B, Avcı F, Memi G, Tastekin E. Inflammatory response and matrix metalloproteinases in chronic kidney failure: Modulation by adropin and spexin. Exp Biol Med (Maywood) 2021; 246:1917-1927. [PMID: 34024143 PMCID: PMC8424640 DOI: 10.1177/15353702211012417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease is a major global public health problem. The peptide hormones adropin and spexin modulate many physiological functions such as energy balance and glucose, lipid and protein metabolism. However, it is unclear whether these peptides may exert effects on renal damage, tissue remodeling, and inflammatory conditions. In view of the limited information, we aimed to investigate the effect of adropin and spexin on matrix metalloproteinase and inflammatory response genes a rat model of adenine-induced chronic kidney failure. Chronic kidney failure was induced in rats by administering adenine hemisulfate. Renal function was determined in an autoanalyzer. Histopathological modifications were assessed by H&E staining. mRNA expression levels of ALOX 15, COX 1, COX 2, IL-1β, IL-10, IL-17A, IL-18 IL-21, IL-33, KIM-1, MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-13, NGAL, TGFβ1, TIMP-1, and TNFα in kidney tissue were measured by qPCR. Our results showed an increase of 24-h urine volume, serum creatinine, BUN, and urine protein levels in group with adenine-induced CKF. Adropin and spexin treatments decreased urine protein and 24-h urine volume. Renal damage, TIMP-1, IL-33, and MMP-2 increased after CKF induction, while COX 1, MMP-9, and MMP-13 levels were significantly reduced. Furthermore, KIM-1, TIMP-1, IL-33, and MMP-2 were downregulated by spexin treatment. Renal damage, NGAL, TIMP-1 IL-17A, IL-33, MMP-2, and MMP-3 decreased after adropin treatment, while MMP-13 levels were upregulated. Treatment with adropin+spexin decreased KIM-1, NGAL, TIMP-1, IL-1β, IL-17A, IL-18, IL-33, ALOX 15, COX 1, COX 2, TGFβ1, TNFα, MMP-2, MMP-3, and MMP-7, but increased MMP-13 levels. Our findings revealed that inflammatory response and MMP genes were modulated by adropin and spexin. These peptides may have protective effects on inflammation and chronic kidney damage progression.
Collapse
Affiliation(s)
- Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoğlu Serefeddin Health Services Vocational School, Amasya University, Amasya 05100, Turkey
- Department of Molecular Medicine, Institute of Health Sciences, Amasya University, Amasya 05100, Turkey
| | - Filiz Avcı
- Department of Molecular Medicine, Institute of Health Sciences, Amasya University, Amasya 05100, Turkey
| | - Gülsün Memi
- Department of Nursing, Hakkı Yoruk Health School, Trakya University, Edirne 22030, Turkey
- Department of Physiology, Institute of Health Sciences, Trakya University, Edirne 22030, Turkey
| | - Ebru Tastekin
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| |
Collapse
|