1
|
Guo YF, Su T, Yang M, Li CJ, Guo Q, Xiao Y, Huang Y, Liu Y, Luo XH. The role of autophagy in bone homeostasis. J Cell Physiol 2021; 236:4152-4173. [PMID: 33452680 DOI: 10.1002/jcp.30111] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular process and is considered one of the main catabolism pathways. In the process of autophagy, cells are digested nonselectively or selectively to recover nutrients and energy, so it is regarded as an antiaging process. In addition to the essential role of autophagy in cellular homeostasis, autophagy is a stress response mechanism for cell survival. Here, we review recent literature describing the pathway of autophagy and its role in different bone cell types, including osteoblasts, osteoclasts, and osteocytes. Also discussed is the mechanism of autophagy in bone diseases associated with bone homeostasis, including osteoporosis and Paget's disease. Finally, we discuss the application of autophagy regulators in bone diseases. This review aims to introduce autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role and therapeutic potential in the pathogenesis of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
REDDY IJ, AWACHAT VB, MISHRA A, MONDAL S, RAVIKIRAN G. Effect of embryonic and post-hatch photo-stimulation with variable light sources on hatchability, endocrine parameters and growth performance in broiler chicken. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i7.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The objective of this study was to investigate the effects of embryonic and post-hatch photo-stimulation with variable light sources with respect to hatchability parameters, hormonal profile and growth performance of commercial broiler chicken. Uniform sized Cobb broiler eggs (174) were procured from commercial hatchery and incubated in three different groups with arrangement of variable colour light source [Control group; Red light photo-stimulated (675 nm); Green light photo-stimulated group (575 nm) of light]. After hatching, as per earlier grouping, chicks hatched out from respective groups reared under continuous lighting in normal, red, green light up to six week of age in standard management condition in battery cages. The result of the present study indicated that photo-stimulation of incubated eggs with different lights sources had no significant effect on hatchability percentage and hatching time. Green light photo-stimulated group showed significantly higher body weight gain with better feed conversion ratio than red and control groups from 0 to 6 wk of age. Feed intake did not differ significantly within the groups. Green light photo-stimulation promotes growth performance traits via stimulating circulating level of gonadal axis and somatotrophic axis hormone. The results of the study provide evidence that green light photo-stimulation used in this study is beneficial in terms of improved growth performance without affecting hatchability in broiler chicken.
Collapse
|
3
|
Porcine bone collagen peptides promote osteoblast proliferation and differentiation by activating the PI3K/Akt signaling pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103697] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
4
|
Pronsato L, Milanesi L, Vasconsuelo A, La Colla A. Testosterone modulates FoxO3a and p53-related genes to protect C2C12 skeletal muscle cells against apoptosis. Steroids 2017; 124:35-45. [PMID: 28554727 DOI: 10.1016/j.steroids.2017.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/05/2017] [Accepted: 05/25/2017] [Indexed: 01/26/2023]
Abstract
The loss of muscle mass and strength with aging, sarcopenia, is a prevalent condition among the elderly, associated with skeletal muscle dysfunction and enhanced muscle cell apoptosis. We have previously demonstrated that testosterone protects against H2O2-induced apoptosis in C2C12 muscle cells, at different levels: morphological, biochemical and molecular. Since we have observed that testosterone reduces p-p53 and maintains the inactive state of FoxO3a transcription factor, induced by H2O2, we analyzed if the hormone was exerting its antiapoptotic effect at transcriptional level, by modulating pro and antiapoptotic genes associated to them. We detected the upregulation of the proapoptotic genes Puma, PERP and Bim, and MDM2 in response to H2O2 at different periods of the apoptotic process, and the downregulation of the antiapoptotic gene Bcl-2, whereas testosterone was able to modulate and counteract H2O2 effects. Furthermore, ERK and JNK kinases have been demonstrated to be linked to FoxO3a phosphorylation and thus its subcellular distribution. This work show some transcription level components, upstream of the classical apoptotic pathway, that are activated during oxidative stress and that are points where testosterone exerts its protective action against apoptosis, exposing some of the puzzle pieces of the intricate network that aged skeletal muscle apoptosis represents.
Collapse
Affiliation(s)
- Lucía Pronsato
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR CONICET-UNS), 8000 Bahía Blanca, Argentina
| | - Lorena Milanesi
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR CONICET-UNS), 8000 Bahía Blanca, Argentina.
| | - Andrea Vasconsuelo
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR CONICET-UNS), 8000 Bahía Blanca, Argentina
| | - Anabela La Colla
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR CONICET-UNS), 8000 Bahía Blanca, Argentina
| |
Collapse
|
5
|
Potikanond S, Rattanachote P, Pintana H, Suntornsaratoon P, Charoenphandhu N, Chattipakorn N, Chattipakorn S. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats. J Endocrinol 2016; 228:85-95. [PMID: 26675491 DOI: 10.1530/joe-15-0333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 01/03/2023]
Abstract
The present study aimed to test the hypothesis that testosterone deprivation impairs osteoblastic insulin signaling, decreases osteoblast survival, reduces bone density, and that obesity aggravates those deleterious effects in testosterone-deprived rats. Twenty four male Wistar rats underwent either a bilateral orchiectomy (O, n=12) or a sham operation (S, n=12). Then the rats in each group were further divided into two subgroups fed with either a normal diet (ND) or a high-fat diet (HF) for 12 weeks. At the end of the protocol, blood samples were collected to determine metabolic parameters and osteocalcin ratios. The tibiae were collected to determine bone mass using microcomputed tomography and for osteoblast isolation. The results showed that rats fed with HF (sham-operated HF-fed rats (HFS) and ORX HF-fed rats (HFO)) developed peripheral insulin resistance and had decreased trabecular bone density. In ND-fed rats, only the ORX ND-fed rats (NDO) group had decreased trabecular bone density. In addition, osteoblastic insulin resistance, as indicated by a decrease in tyrosine phosphorylation of the insulin receptor and Akt, were observed in all groups except the sham-operated ND-fed rats (NDS) rats. Those groups, again with the exception of the NDS rats, also had decreased osteoblastic survival. No differences in the levels of osteoblastic insulin resistance and osteoblastic survival were found among the NDO, HFS, and HFO groups. These findings suggest that either testosterone deprivation or obesity alone can impair osteoblastic insulin signaling and decrease osteoblastic survival leading to the development of osteoporosis. However, obesity does not aggravate those deleterious effects in the bone of testosterone-deprived rats.
Collapse
Affiliation(s)
- Saranyapin Potikanond
- Department of PharmacologyFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pinyada Rattanachote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Center of Calcium and Bone Research (COCAB)Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Narattaphol Charoenphandhu
- Cardiac Electrophysiology Unit Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Department of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19). Int J Mol Sci 2015; 16:13908-20. [PMID: 26090716 PMCID: PMC4490530 DOI: 10.3390/ijms160613908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/02/2022] Open
Abstract
Casein and soy protein were digested by papain to three degrees of hydrolysis (DH) 7.3%–13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells). Six casein and soy protein hydrolysates at five levels (0.01–0.2 mg/mL) mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%–114% and 104%–123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment), or from 19.5% to 17.7% and 12.4% (NaF treatment), respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment), or from 14.5% to 11.0% (NaF treatment), but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.
Collapse
|
7
|
Camozzi V, Bonanni G, Frigo A, Piccolo M, Ferasin S, Zaninotto M, Boscaro M, Luisetto G. Effect of a single injection of testosterone enanthate on 17β estradiol and bone turnover markers in hypogonadal male patients. J Endocrinol Invest 2015; 38:389-97. [PMID: 25319469 DOI: 10.1007/s40618-014-0183-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/22/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE Several clinical studies testify the critical role played by estrogens in male bone metabolism. The aim of our study is to assess the effect of a single injection of testosterone enanthate in a group of hypogonadal men on 17β estradiol serum levels and some bone metabolic parameters. METHOD Twenty-one hypogonadal males were given one testosterone enanthate injection (250 mg). Blood samples were drawn before the injection and after 1, 2 and 3 weeks. The following variables were measured: Total testosterone (TT), 17β estradiol (17β E2), Sex hormone binding globulin, total alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen (CTx). RESULTS After testosterone injection, both TT and 17β E2 increased, peaking 1 week after the injection. Individual observation of the response of 17β E2 to testosterone showed that a subgroup (n = 9) failed to respond with any increase in 17β E2 at any of the weekly tests (group E2-), while the remainder (n = 12) showed a significant increase in 17β E2, which reached a mean value three times higher than at baseline (group E2+). The E2- patients reached a TT peak lower than that observed in the E+ group. CTx serum levels declined progressively in the E2+ group, reaching the significance (p = 0.03) at the end of the study, while it did not change in E- group. CONCLUSION This study suggests that a single injection of testosterone might have different effects on the production of endogenous estrogens, and a significant reduction of bone resorption parameters takes place only in the patients who show a significant increase of 17ß estradiol in response to testosterone administration.
Collapse
Affiliation(s)
- V Camozzi
- Department of Medicine, Unit of Endocrinology, University of Padova, via Ospedale 105, 35128, Padua, Italy.
| | - G Bonanni
- Department of Medicine, Unit of Endocrinology, University of Padova, via Ospedale 105, 35128, Padua, Italy.
| | - A Frigo
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Biostatistics, Epidemiology and Public Health, University of Padova, via Loredan 18, 35131, Padua, Italy.
| | - M Piccolo
- Department of Medicine, Unit of Endocrinology, University of Padova, via Ospedale 105, 35128, Padua, Italy.
| | - S Ferasin
- Department of Medicine, Unit of Endocrinology, University of Padova, via Ospedale 105, 35128, Padua, Italy.
| | - M Zaninotto
- Department of Medical Laboratory, University of Padova, via Giustiniani 2, 35128, Padua, Italy.
| | - M Boscaro
- Department of Medicine, Unit of Endocrinology, University of Padova, via Ospedale 105, 35128, Padua, Italy.
| | - G Luisetto
- Department of Medicine, Unit of Endocrinology, University of Padova, via Ospedale 105, 35128, Padua, Italy.
| |
Collapse
|
8
|
Yang YH, Chen K, Li B, Chen JW, Zheng XF, Wang YR, Jiang SD, Jiang LS. Estradiol inhibits osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway. Apoptosis 2014; 18:1363-1375. [PMID: 23743762 DOI: 10.1007/s10495-013-0867-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Estradiol could protect osteoblast against apoptosis, and apoptosis and autophagy were extensively and intimately connected. The aim of the present study was to test the hypothesis that autophagy was present in osteoblasts under serum deprivation and estrogen protected against osteoblast apoptosis via promotion of autophagy. MC3T3-E1 osteoblastic cells were cultured in a serum-free and phenol red-free minimal essential medium (α-MEM). Ultrastructural analysis, lysosomal activity assessment and monodansycadaverine (MDC) staining were employed to determine the presence of autophagy, and real time PCR was used to evaluate the expression of autophagic markers. Meanwhile, the osteoblasts were transferred in a serum-free and phenol red-free α-MEM containing either vehicle or estradiol. Apoptosis and autophagy was assessed by using the techniques of real-time PCR, Western blot, immunofluorescence assay, and flow cytometry. The possible pathway through which estrogen promoted autophagy in the serum-deprived osteoblasts was also investigated. Real-time PCR demonstrated the expression of LC3, beclin1 and ULK1 genes in osteoblasts under serum deprivation, and immunofluorescence assay verified high expression of proteins of these three autophagic bio-markers. Lysosomes and autolysosomes accumulated in the cytoplasm of osteoblasts were also detected under transmission electron microscopy, MDC staining and lysosomal activity assessment. Meanwhile, estradiol significantly decreased the expression of proteins of the bio-markers of apoptosis, and at the same time increased the expression of proteins of the bio-markers of autophagy in the serum-deprived osteoblasts. Furthermore, the estradiol-promoted autophagy in serum-deprived osteoblasts could be blocked by estrogen receptor (ER) antagonist (ICI 182780), and estradiol failed to rescue the cells pretreated with an inhibitor of vacuolar ATPase (bafilomycin A) from apoptosis. Serum deprivation resulted in apoptosis through activation of Caspase-3 and induced autophagy through inhibition of phospho-mammalian target of rapamycin (p-mTOR). Both 3-methyladenine (3MA) and U0126 led to increase of apoptosis in osteoblasts with serum deprivation. Estradiol failed to over-ride the inhibitory effect of 3MA on phosphorylation of AKT but directly led to dephosphorylation of mTOR and upregulation of LC3 protein expression. However, the estradiol-enhanced LC3 protein expression was significantly suppressed by U0126 through inhibition of phosphorylation of extracellular signal-regulated kinase (ERK). Estradiol rescued osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway.
Collapse
Affiliation(s)
- Yue-Hua Yang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Ke Chen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Bo Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jiang-Wei Chen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Xin-Feng Zheng
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Yu-Ren Wang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Sheng-Dan Jiang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| | - Lei-Sheng Jiang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
9
|
Chen SY, Li TY, Tsai CH, Lo DY, Chen KL. Gender, caponization and exogenous estrogen effects on lipids, bone and blood characteristics in Taiwan country chickens. Anim Sci J 2013; 85:305-12. [PMID: 24261681 DOI: 10.1111/asj.12147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022]
Abstract
This study investigated gender, caponization and exogenous estrogen effects on lipids, bone and blood characteristics in Taiwan country chickens. Thirty male chickens were caponized at 8 weeks (capons); 15 capons were injected with estrogen (5 mg/bird estradiol 3-benzoate) every 2 weeks from 8 to 28 weeks, and 15 sham-operated male (shams) chickens and 15 females were selected for this trial. The results showed that the shams had lower relative abdominal and chest subcutaneous fat than females (P < 0.05). The estrogen-treated capons had greater relative abdominal and chest subcutaneous fat than shams and capons (P < 0.05), which might result from higher blood very low-density lipoproteins and triacylglycerol concentrations (P < 0.05). Caponization could dramatically increase relative abdominal fat (506%; P < 0.05). The shams had higher tibia weight and biomechanical properties, such as maximum bone strength and bending moment values than the capons (P < 0.05). Tibia biomechanical properties were reduced by estrogen treatment (P < 0.05). The females obtained the lowest biomechanical value in all treatments (P < 0.05). Histological examination revealed cavity formation in the cortical bone of estrogen-treated capons and female chickens, which suggested that estrogen reduced bone biomechanical properties by destroying its structural integrity.
Collapse
Affiliation(s)
- Shih Yi Chen
- Department of Animal Science, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Benowitz-Fredericks ZM, Hodge M. Yolk androstenedione in domestic chicks (Gallus gallus domesticus): uptake and sex-dependent alteration of growth and behavior. Gen Comp Endocrinol 2013; 193:48-55. [PMID: 23871777 DOI: 10.1016/j.ygcen.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 11/22/2022]
Abstract
In birds, causes and consequences of variation in maternally-derived steroids in egg yolk have been the subject of intense experimentation. Many studies have quantified or manipulated testosterone ("T") and one of its immediate precursors, androstenedione ("A4") - often lumping the two steroids as "androgens" and treating them as functionally equivalent. However, yolk A4 is deposited in substantially higher concentrations than T, binds only weakly to the androgen receptor, and is readily converted into either T or estrone by steroidogenic enzymes present during embryonic development. Thus it may not be appropriate to assume that A4 has the same effect as T. In addition, A4's metabolic fate is likely to differ between females and males. The goals of this study were to examine the sex-specific uptake and metabolism of yolk A4 and consequences of elevated levels of yolk A4 on development and behavior of domestic chicks. Eggs were injected with 2μ Ci of tritiated androstenedione; radioactivity was detected in all tissues of day 7 and day 16 embryos and found in both aqueous and organics phases of day 7 yolk, with no difference between sexes. A second set of eggs was injected with 125ng of A4. A4 increased growth of morphological traits (tarsus, beak) in females, but not males. A4 males had smaller combs than controls; there was no treatment effect in females. A4 reduced tonic immobility behavior in both sexes. The results of this study illustrate the importance of distinguishing both between androgens and between sexes when investigating avian endocrine maternal effects.
Collapse
|
11
|
In vitro responses of hFOB1.19 cells towards chum salmon (Oncorhynchus keta) skin gelatin hydrolysates in cell proliferation, cycle progression and apoptosis. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Pronsato L, Boland R, Milanesi L. Testosterone exerts antiapoptotic effects against H2O2 in C2C12 skeletal muscle cells through the apoptotic intrinsic pathway. J Endocrinol 2012; 212:371-81. [PMID: 22219300 DOI: 10.1530/joe-11-0234] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental data indicate that apoptosis is activated in the aged skeletal muscle, contributing to sarcopenia. We have previously demonstrated that testosterone protects against hydrogen peroxide (H(2)O(2))-induced apoptosis in C2C12 muscle cells. Here we identified molecular events involved in the antiapoptotic effect of testosterone. At short times of exposure to H(2)O(2) cells exhibit a defense response but at longer treatment times cells undergo apoptosis. Incubation with testosterone prior to H(2)O(2) induces BAD inactivation, inhibition of poly(ADP-ribose) polymerase cleavage, and a decrease in BAX levels, and impedes the loss of mitochondrial membrane potential, suggesting that the hormone participates in the regulation of the apoptotic intrinsic pathway. Simultaneous treatment with testosterone, H(2)O(2), and the androgen receptor (AR) antagonist, flutamide, reduces the effects of the hormone, pointing to a possible participation of the AR in the antiapoptotic effect. The data presented allow us to begin to elucidate the mechanism by which the hormone prevents apoptosis in skeletal muscle.
Collapse
Affiliation(s)
- Lucía Pronsato
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca 8000, Argentina
| | | | | |
Collapse
|
13
|
Vasconsuelo A, Pronsato L, Ronda AC, Boland R, Milanesi L. Role of 17β-estradiol and testosterone in apoptosis. Steroids 2011; 76:1223-31. [PMID: 21855557 DOI: 10.1016/j.steroids.2011.08.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/13/2011] [Accepted: 08/03/2011] [Indexed: 12/20/2022]
Abstract
17β-Estradiol (E2) and Testosterone (T) exert actions in most animal tissues, in addition to the reproductive system. Thus, both sex steroid hormones affect growth and different cell functions in several organs. Accordingly, the nuclear estrogen (ER) and androgen (AR) receptors are ubiquitously expressed. Moreover, ER and AR may have non-classical intracellular localizations, e.g. plasma membrane, mitochondria and endoplasmic reticulum, raising additional complexity to the functional roles of E2 and T. In addition to the modulation of gene transcription by direct interaction with their cognate nuclear receptors, the steroids can rapidly activate signaling pathways by a non-genomic mechanism mediated by receptors identical to or different from known steroid receptors. Among various functions, E2 and T can regulate apoptosis through those pathways. In mitochondria, the presence of ER and AR and actions of estrogen and androgen have been shown, in keeping with the organelle being a control point of apoptosis. The most recurrent action for each steroid hormone is the protection of mitochondria against different insults, resulting in antiapoptosis. This review summarizes the molecular basis of the modulation of programmed cell death by E2 and T in several tissues.
Collapse
Affiliation(s)
- Andrea Vasconsuelo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| | | | | | | | | |
Collapse
|
14
|
Wetzel M, Marchais-Oberwinkler S, Hartmann RW. 17β-HSD2 inhibitors for the treatment of osteoporosis: Identification of a promising scaffold. Bioorg Med Chem 2011; 19:807-15. [DOI: 10.1016/j.bmc.2010.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/29/2010] [Accepted: 12/03/2010] [Indexed: 11/26/2022]
|