1
|
Sun S, Zhang K, Zhang J, He P, Zhang P, Deng D, Chi C, Jiang S, Zheng W, Chen N, Zhu J. A nucleocapsid monoclonal antibody based sandwich ELISA for the general detection of both PRRSV-2 and PRRSV-1. Vet Microbiol 2025; 302:110399. [PMID: 39847872 DOI: 10.1016/j.vetmic.2025.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in growing pigs, leading to significant economic losses worldwide. Due to the constant mutation and recombination, PRRSV exhibits significant genetic diversity, the general detection of all PRRSV-2 and PRRSV-1 strains is thus needed. In our study, four monoclonal antibodies (mAbs) against PRRSV nucleocapsid (N) protein were generated and the precise and novel B cell epitopes (52KPHF55 and 109HHTVR113) were identified. The epitope 52KPHF55 is highly conserved across all strains of PRRSV-2 lineages and PRRSV-1 subtypes, and the corresponding two mAbs (6D7, 4D12) were selected to develop a sandwich ELISA that was able to detect all tested PRRSV-2 and PRRSV-1 strains. The developed sandwich ELISA demonstrated high specificity, sensitivity and repeatability. In detection of 133 clinical samples, the sandwich ELISA achieved 84.21 % coincidence with the real-time RT-PCR. In conclusion, the mAb based sandwich ELISA can be suitable for detection of potential all PRRSV-2 lineages and PRRSV-1 subtypes, providing a simple, quick and high content method for diagnosis of PRRS.
Collapse
Affiliation(s)
- Shaohua Sun
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Kaili Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Jiajia Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Ping He
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Pingping Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Dafu Deng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Chenglin Chi
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Sen Jiang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Zheng Y, Li G, Luo Q, Sha H, Zhang H, Wang R, Kong W, Liao J, Zhao M. Research progress on the N protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2024; 15:1391697. [PMID: 38741730 PMCID: PMC11089252 DOI: 10.3389/fmicb.2024.1391697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV exhibits genetic diversity and complexity in terms of immune responses, posing challenges for eradication. The nucleocapsid (N) protein of PRRSV, an alkaline phosphoprotein, is important for various biological functions. This review summarizes the structural characteristics, genetic evolution, impact on PRRSV replication and virulence, interactions between viral and host proteins, modulation of host immunity, detection techniques targeting the N protein, and progress in vaccine development. The discussion provides a theoretical foundation for understanding the pathogenic mechanisms underlying PRRSV virulence, developing diagnostic techniques, and designing effective vaccines.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Jiedan Liao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
3
|
Wang Y, Zhang G, Zhong L, Qian M, Wang M, Cui R. Filamentous bacteriophages, natural nanoparticles, for viral vaccine strategies. NANOSCALE 2022; 14:5942-5959. [PMID: 35389413 DOI: 10.1039/d1nr08064d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamentous bacteriophages are natural nanoparticles formed by the self-assembly of structural proteins that have the capability of replication and infection. They are used as a highly efficient vaccine platform to enhance immunogenicity and effectively stimulate the innate and adaptive immune response. Compared with traditional vaccines, phage-based vaccines offer thermodynamic stability, biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and low toxicity. This review summarizes recent research on phage-based vaccines in virus prevention. In addition, the expression systems of filamentous phage-based virus vaccines and their application principles are discussed. Moreover, the prospect of the prevention of emerging infectious diseases, such as coronavirus 2019 (COVID-19), is also discussed.
Collapse
Affiliation(s)
- Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Min Qian
- Department of Neonatology, The Second Hospital of Jilin University, Changchun 130024, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| |
Collapse
|
4
|
Agarwal G, Gabrani R. Antiviral Peptides: Identification and Validation. Int J Pept Res Ther 2020; 27:149-168. [PMID: 32427225 PMCID: PMC7233194 DOI: 10.1007/s10989-020-10072-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
Despite rapid advances in the human healthcare, the infection caused by certain viruses results in high morbidity and mortality accentuate the importance for development of new antivirals. The existing antiviral drugs are limited, due to their inadequate response, increased rate of resistance and several adverse side effects. Therefore, one of the newly emerging field “peptide-based therapeutics” against viruses is being explored and seems promising. Over the last few years, a lot of scientific effort has been made for the identification of novel and potential peptide-based therapeutics using various advanced technologies. Consequently, there are more than 60 approved peptide drugs available for sale in the market of United States, Europe, Japan, and some Asian countries. Moreover, the number of peptide drugs undergoing the clinical trials is rising gradually year by year. The peptide-based antiviral therapeutics have been approved for the Human immunodeficiency virus (HIV), Influenza virus and Hepatitis virus (B and C). This review enlightens the various peptide sources and the different approaches that have contributed to the search of potential antiviral peptides. These include computational approaches, natural and biological sources (library based high throughput screening) for the identification of lead peptide molecules against their target. Further the applications of few advanced techniques based on combinatorial chemistry and molecular biology have been illustrated to measure the binding parameters such as affinity and kinetics of the screened interacting partners. The employment of these advanced techniques can contribute to investigate antiviral peptide therapeutics for emerging infections.
Collapse
Affiliation(s)
- Garima Agarwal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Reema Gabrani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
5
|
Identification of the B-cell epitopes on N protein of type 2 porcine reproductive and respiratory syndrome virus, using monoclonal antibodies. Int J Biol Macromol 2019; 130:300-306. [DOI: 10.1016/j.ijbiomac.2019.02.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 12/27/2022]
|
6
|
Independent evolution of porcine reproductive and respiratory syndrome virus 2 with genetic heterogeneity in antigenic regions of structural proteins in Korea. Arch Virol 2018; 164:213-224. [PMID: 30317394 DOI: 10.1007/s00705-018-4048-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that affects the global swine industry. The continuous evolution of this virus has made control and prevention difficult, which emphasizes the importance of monitoring currently circulating PRRSV strains. In this study, we investigated the genetic characteristics of whole structural genes of 35 PRRSV-2 isolates that circulated between 2012 and 2017 in Korea. Genetic and phylogenetic analysis demonstrated that a recently identified PRRSV-2 shared a relatively low level of nucleotide sequence identity that ranged from 86.2% to 92.8%; however, they were clustered into four distinct Korean field clades, except KU-N1702, in ORF2-7-based phylogeny. KU-N1702 was closely related to the NADC30-like strains that were identified in the USA and China. Amino acid sequence analysis showed that the GP5 neutralizing epitope was conserved among the KU viruses. In contrast, the viruses had genetic mutations in key residues for viral neutralization within GP5 and M. For minor structural proteins, neutralizing epitopes, aa 41-55 of GP2, 61-75 of GP3, and 51-65 of GP4, were variable among the KU viruses. Bioinformatics demonstrated diversifying evolution within the GP2 and GP4 neutralizing epitopes and the emergence of a novel glycosylation site within the GP3 and GP4 neutralizing epitopes. Taken together, these data provide evidence that Korean PRRSV-2 evolved independently in Korea, with genetic heterogeneity in antigenic regions of structural proteins.
Collapse
|
7
|
Martínez-Bautista NR, Sciutto-Conde E, Cervantes-Torres J, Segura-Velázquez R, Mercado García MC, Ramírez-Mendoza H, Trujillo Ortega ME, Delgadillo Alvarez J, Castillo-Juárez H, Sanchez-Betancourt JI. Phylogenetic analysis of ORF5 and ORF7 of porcine reproductive and respiratory syndrome (PRRS) virus and the frequency of wild-type PRRS virus in México. Transbound Emerg Dis 2018; 65:993-1008. [PMID: 29504285 DOI: 10.1111/tbed.12831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 01/04/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is caused by a genetically diverse RNA virus and is an economically significant disease in the swine industry. In this study, a total of 8,126 serum samples were obtained from 275 technified and semi-technified farms belonging to 30 of the 32 states of Mexico and representative of the eight regions of the country. Anti-PRRSv antibodies against the PRRS vaccine and an isolated wild Mexican virus were tested by ELISA. Antibodies were found in 15%-49% of the tested sera, with 2.4%-9.8% against the vaccine and 7.7%-26% against the wild virus. The PRRSv virus was detected by RT-PCR in 77 of the 1,630 pooled samples tested, representing seven of the eight geographic regions into which the Mexican Republic is divided. The complete sequences of open reading frames 5 and 7 from 20 PRRSv-positive samples were determined. The analysis of the sequences together with the previously published sequences of historic strains revealed that all the strains belonged to the one, five and eight lineages of the PRRSV2. Striking differences, particularly in ORF5 and ORF7, were found between sequences of the strains and the reference virus, due to insertions and substitutions in positions that play key roles in the recognition, structure and function of the virus. Overall, these results established the magnitude of PRRS virus genetic diversity, and the most frequent virus strain that predominates in Mexico. The PRRSV2 is presented in the porcine population of Mexico; the circulating strains have important changes in ORF5 and ORF7, which probably explain the results obtained in the serological analysis of the wild virus and vaccine strains.
Collapse
Affiliation(s)
- N R Martínez-Bautista
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - E Sciutto-Conde
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - J Cervantes-Torres
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - R Segura-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - M C Mercado García
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - H Ramírez-Mendoza
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - M E Trujillo Ortega
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | | | - H Castillo-Juárez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana (UAM), Ciudad de México, México
| | - J I Sanchez-Betancourt
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
8
|
Identification of epitopes on nonstructural protein 7 of porcine reproductive and respiratory syndrome virus recognized by monoclonal antibodies using phage-display technology. Virus Genes 2017; 53:623-635. [DOI: 10.1007/s11262-017-1472-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
|
9
|
Distribution of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in different stages of gestation sows: HP-PRRSV distribution in gestation sows. Vet Immunol Immunopathol 2015; 166:88-94. [PMID: 26143005 DOI: 10.1016/j.vetimm.2015.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/03/2015] [Accepted: 06/08/2015] [Indexed: 01/08/2023]
Abstract
Highly pathogenic PRRSV (HP-PRRSV) emerged in China in 2006 and caused severe reproductive losses, particularly in late-term sows. To determine whether these reproductive failures were related to the susceptibility of late-term sows to HP-PRRV, 60- and 90-days of gestation sows were infected with HP-PRRSV isolate TA-12 (GenBank accession HQ417620). A monoclonal antibody specific to the C-terminal of the nucleocapsid protein was used to evaluate viral distribution by IHC. This showed that HP-PRRSV had a similar distribution in both sets of sows. However, HP-PRRSV infection led to dramatically decreased serum levels of luteinizing hormone (LH) and 17-β-estradiol (E2) in late-term sows, while only E2 was decreased in the 60-day sows. These results indicate that HP-PRRSV-induced reproductive failure is more likely due to reproductive hormone level imbalances rather than tissue tropism differences.
Collapse
|
10
|
Genetic and antigenic characterization of complete genomes of Type 1 Porcine Reproductive and Respiratory Syndrome viruses (PRRSV) isolated in Denmark over a period of 10 years. Virus Res 2013; 178:197-205. [PMID: 24153055 DOI: 10.1016/j.virusres.2013.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) caused by the PRRS virus (PRRSV) is considered one of the most devastating swine diseases worldwide. PRRS viruses are divided into two major genotypes, Type 1 and Type 2, with pronounced diversity between and within the genotypes. In Denmark more than 50% of the herds are infected with Type 1 and/or Type 2 PRRSV. The main objective of this study was to examine the genetic diversity and drift of Type 1 viruses in a population with limited introduction of new animals and semen. A total of 43 ORF5 and 42 ORF7 nucleotide sequences were obtained from viruses collected from 2003 to February 2013. Phylogenetic analysis of ORF5 nucleotide sequences showed that the Danish isolates formed two major clusters within the subtype 1. The nucleotide identity to the subtype 1 protogenotype Lelystad virus (LV) spanned 84.9-98.8% for ORF5 and 90.7-100% for ORF7. Among the Danish viruses the pairwise nucleotide identities in ORF5 and ORF7 were 81.2-100% and 88.9-100%, respectively. Sequencing of the complete genomes, including the 5'- and 3'-end nucleotides, of 8 Danish PRRSV Type 1 showed that the genome lengths differed from 14,876 to 15,098 nucleotides and the pairwise nucleotide identity among the Danish viruses was 86.5-97.3% and the identity to LV was 88.7-97.9%. The study strongly indicated that there have been at least two independent introductions of Type 1 PRRSV in Denmark and analysis of the full genomes revealed a significant drift in several regions of the virus.
Collapse
|
11
|
Choi EJ, Lee CH, Song JY, Song HJ, Park CK, Kim B, Shin YK. Genetic diversity of porcine reproductive and respiratory syndrome virus in Korea. J Vet Sci 2013; 14:115-24. [PMID: 23628658 PMCID: PMC3694182 DOI: 10.4142/jvs.2013.14.2.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 04/04/2012] [Indexed: 11/20/2022] Open
Abstract
The high genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) has been an obstacle to developing an effective vaccine for porcine reproductive and respiratory syndrome (PRRS). This study was performed to assess the degree of genetic diversity among PRRSVs from Korean pig farms where wasting and respiratory syndrome was observed from 2005 to 2009. Samples from 786 farms were tested for the presence of PRRSV using reverse transcription PCR protocol. A total of 117 farms were positive for type 1 PRRSV while 198 farms were positive for type 2. Nucleotide sequences encoding the open reading frame (ORF) 5 were analyzed and compared to those of various published PRRSV isolates obtained worldwide. Sequence identity of the ORF 5 in the isolates was 81.6~100% for type 1 viruses and 81.4~100% for type 2 viruses. Phylogenetic analysis of the ORF 5 sequences showed that types 1 and 2 PRRSVs from Korea were mainly classified into three and four clusters, respectively. The analyzed isolates were distributed throughout the clusters independent of the isolation year or geographical origin. In conclusion, our results indicated that the genetic diversity of PRRSVs from Korean pig farms is high and has been increasing over time.
Collapse
Affiliation(s)
- Eun-Jin Choi
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Anyang 430-757, Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Amrutkar SD, Trier NH, Hansen PR, Houen G. Fine mapping of a monoclonal antibody to the N-Methyl D-aspartate receptor reveals a short linear epitope. Biopolymers 2013. [PMID: 23203762 DOI: 10.1002/bip.22165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anti-N-Methyl D-aspartate receptor encephalitis is an autoimmune disease in which autoantibodies are produced against extracellular regions of the N-Methyl D-aspartate receptor (NMDAR). In this study, we used resin-bound peptides equipped with a base labile linker to map the epitope of a monoclonal NMDAR antibody against the NMDAR NR1 subunit. The antigenicity of the synthesized resin-bound peptides was determined by enzyme-linked immunosorbent assay. Distinct reactivity was found to two extracellular overlapping peptides (amino acids, 658-687). Using N- and C-terminally truncated resin-bound peptides, the minimum functional epitope was identified as the NPSDK sequence. The peptide sequence RNPSDK (amino acids, 673-678) was identified as the complete epitope, which was found to be located in the extracellular S2 domain of the NR1 subunit. Especially, the N-terminal arginine residue was found to be essential for reactivity, whereas the remaining amino acids could be replaced with amino acids of similar side-chain functionality, indicating the importance of backbone interaction in antibody reactivity.
Collapse
Affiliation(s)
- Surekha Dipak Amrutkar
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen S 2300, Denmark
| | | | | | | |
Collapse
|
13
|
Frossard JP, Hughes GJ, Westcott DG, Naidu B, Williamson S, Woodger NGA, Steinbach F, Drew TW. Porcine reproductive and respiratory syndrome virus: genetic diversity of recent British isolates. Vet Microbiol 2012; 162:507-518. [PMID: 23218831 DOI: 10.1016/j.vetmic.2012.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) continues to be a significant problem for European pig producers, contributing to porcine respiratory disease complex, neonatal piglet mortality, infertility and occasional abortion storms. PRRS virus (PRRSV), a member of the arterivirus family with two defined major genotypes, has been shown to be quite genetically diverse. In the present study, genetic analysis of multiple gene regions of over 100 viruses isolated in Britain between 2003 and 2007 revealed that the diversity of British strains is now far greater than during the early 1990s. All isolates belong to genotype 1 (European). While some recent isolates are still very similar to early isolates, a wide range of more diverse viruses is now also circulating. Interestingly, some isolates were found to be very similar to a modified-live vaccine strain, and it is suggested that use of the vaccine has affected the evolution pattern of PRRS virus strains in Britain. Evidence of deletions in one viral gene, ORF3, and of genome recombination was also seen. A molecular clock model using the ORF7 sequences estimates the rate of substitution as 3.8 × 10(-3) per site per year, thereby dating the most recent common ancestor of all British viruses to 1991, coincident with the first outbreak of disease. Our findings therefore have implications for both the diagnostic and prophylactic methods currently being used, which are discussed.
Collapse
Affiliation(s)
- Jean-Pierre Frossard
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom.
| | - Gareth J Hughes
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh EH9 3JT, United Kingdom
| | - David G Westcott
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom
| | - Brindha Naidu
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom
| | - Susanna Williamson
- Animal Health and Veterinary Laboratories Agency - Bury St. Edmunds, Rougham Hill, Bury St. Edmunds, Suffolk IP33 2RX, United Kingdom
| | - Nicholas G A Woodger
- Animal Health and Veterinary Laboratories Agency - Bury St. Edmunds, Rougham Hill, Bury St. Edmunds, Suffolk IP33 2RX, United Kingdom
| | - Falko Steinbach
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom
| | - Trevor W Drew
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
14
|
Qi H, Lu H, Qiu HJ, Petrenko V, Liu A. Phagemid Vectors for Phage Display: Properties, Characteristics and Construction. J Mol Biol 2012; 417:129-43. [PMID: 22310045 DOI: 10.1016/j.jmb.2012.01.038] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 11/20/2022]
Affiliation(s)
- Huan Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | | | | | | |
Collapse
|
15
|
Development and preliminary application of an immunochromatographic strip for rapid detection of infection with porcine reproductive and respiratory syndrome virus in swine. J Virol Methods 2011; 176:46-52. [PMID: 21663767 DOI: 10.1016/j.jviromet.2011.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/05/2011] [Accepted: 05/25/2011] [Indexed: 11/23/2022]
Abstract
A "strip test" to detect porcine reproductive and respiratory syndrome virus (PRRSV) was established using a monoclonal antibody (MAb) 2D7 conjugated with colloidal gold. Two MAbs binding to protein N at different epitopes, 2D7 and 1G7 were obtained. In the test, samples of PRRSV bound to colloidal gold-conjugated MAb 2D7. The complex was then captured by MAb 1G7 at the test line (T) on the nitrocellulose membrane, presenting a purple band. If the sample did not contain PRRSV or if the quantity of PRRSV was less than that required for the kit, only the control line (C), in which goat anti-mouse antibody was added as the capture antibody, was present. Results from the sensitivity test of the kit demonstrated that the lowest detected quantity of PRRSV is 2.9 × 10(3)TCID(50)/ml. In clinical trials, the specificity and the sensitivity of this kit are 98.1% and 88.4%, respectively, compared with RT-PCR. Furthermore, this kit was found to be efficient in three areas of China and appears to have better results in practical applications than in empirical studies. In summary, this kit has not only high rates of specificity and sensitivity but also has the beneficial features such as efficiency, convenience and speed.
Collapse
|
16
|
Hao X, Lu Z, Kuang W, Sun P, Fu Y, Wu L, Zhao Q, Bao H, Fu Y, Cao Y, Li P, Bai X, Li D, Liu Z. Polymorphic genetic characterization of the ORF7 gene of porcine reproductive and respiratory syndrome virus (PRRSV) in China. Virol J 2011; 8:73. [PMID: 21333014 PMCID: PMC3049123 DOI: 10.1186/1743-422x-8-73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/19/2011] [Indexed: 02/06/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) exhibits extensive genetic variation. The outbreak of a highly pathogenic PRRS in 2006 led us to investigate the extent of PRRSV genetic diversity in China. To this end, we analyzed the Nsp2 and ORF7 gene sequences of 98 Chinese PRRSV isolates. Results Preliminary analysis indicated that highly pathogenic PRRSV strains with a 30-amino acid deletion in the Nsp2 protein are the dominant viruses circulating in China. Further analysis based on ORF7 sequences revealed that all Chinese isolates were divided into 5 subgroups, and that the highly pathogenic PRRSVs were distantly related to the MLV or CH-1R vaccine, raising doubts about the efficacy of these vaccines. The ORF7 sequence data also showed no apparent associations between geographic or temporal origin and heterogeneity of PRRSV in China. Conclusion These findings enhance our knowledge of the genetic characteristics of Chinese PRRSV isolates, and may facilitate the development of effective strategies for monitoring and controlling PRRSV in China.
Collapse
Affiliation(s)
- Xiaofang Hao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No, 1 Xujiaping, Yanchangbao, Lanzhou, Gansu 730046, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fast and efficient characterization of an anti-gliadin monoclonal antibody epitope related to celiac disease using resin-bound peptides. J Immunol Methods 2011; 365:174-82. [DOI: 10.1016/j.jim.2010.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/08/2010] [Accepted: 12/21/2010] [Indexed: 11/20/2022]
|
18
|
Johnson CR, Yu W, Murtaugh MP. Cross-reactive antibody responses to nsp1 and nsp2 of Porcine reproductive and respiratory syndrome virus. J Gen Virol 2007; 88:1184-1195. [PMID: 17374762 DOI: 10.1099/vir.0.82587-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) non-structural proteins (nsps) play a key role in processing and maturation of the repertoire of structural and nsps of the virion, but little is known about the anti-nsp immune response. Here, it was hypothesized that pronounced antibody responses are generated to PRRSV nsp1 and nsp2, as they are present in infected cells and cytolytic infection releases viral proteins into interstitial spaces. Accordingly, nsp1 and nsp2 were cloned and expressed, and antibody responses in the sera of infected and vaccinated pigs were determined. Pigs mounted significant cross-reactive antibody responses that appeared equivalent to or greater than the response to nucleocapsid (N). Antibody reactivity to nsp1 and N was highly dependent on refolding of denatured proteins, suggesting that the porcine antibody response is directed primarily to conformational epitopes. The proteins reacted with sera from pigs infected with other PRRSV strains, indicating that multiple epitopes are conserved. Antibody responses to nsp1 and nsp2 were much higher than those to nsp4, which is encoded on the same RNA molecule and is equivalent in predicted antigenicity. These findings suggest either that nsp1 and nsp2 are highly immunogenic or that they are expressed at higher levels than nsp4 in PRRSV-infected cells, or both. Strong antibody responses to nsp1 and nsp2 may benefit the host by limiting potentially pathological consequences of viral protease activities encoded in these proteins that are released from dying cells. The identification of strain-specific antibody responses to a highly variable region of nsp2 may also provide the basis for immunoassays that differentiate serological responses of vaccines from field isolates.
Collapse
Affiliation(s)
- Craig R Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Wanqin Yu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
19
|
de Lima M, Pattnaik AK, Flores EF, Osorio FA. Serologic marker candidates identified among B-cell linear epitopes of Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus. Virology 2006; 353:410-21. [PMID: 16843516 DOI: 10.1016/j.virol.2006.05.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/04/2006] [Accepted: 05/27/2006] [Indexed: 11/21/2022]
Abstract
We describe B-cell linear epitopes detected by Pepscan in the Nsp2 and all of the structural proteins of a US PRRSV strain, using sera of 15 experimentally infected pigs. The Nsp2 was found to contain the highest frequency of immunodominant epitopes (n = 18) when compared to structural proteins. Ten of these 18 Nsp2 peptides were reactive with 80 to 100% of the examined sera. In the structural proteins, epitopes consistently recognized by immune sera were located at gp2 (n = 2), gp3 (n = 4), gp5 (n = 3), M (n = 2) and N (n = 2). Overall, the highest degree of immunogenicity and conservation was exhibited by two epitopes identified in the C-terminal end of the M protein (ORF6). The antibodies recognizing the immunodominant epitopes of each protein were detected as early as days 7 to 15 pi and remained detectable until the end of the experiment (day 90 pi). These findings have direct implications for PRRSV differential diagnostics and eventual eradication as the identified epitopes may represent serologic marker candidates for differential (DIVA) PRRSV vaccines, derived from infectious cDNA clones.
Collapse
Affiliation(s)
- Marcelo de Lima
- Nebraska Center for Virology and Department of Veterinary and Biomedical Sciences, Fair Street and East Campus Loop, University of Nebraska-Lincoln Lincoln, NE 68583-0905, USA
| | | | | | | |
Collapse
|