1
|
Loaiza RA, Ramírez RA, Sepúlveda-Alfaro J, Ramírez MA, Andrade CA, Soto JA, González PA, Bueno SM, Kalergis AM. A molecular perspective for the development of antibodies against the human respiratory syncytial virus. Antiviral Res 2024; 222:105783. [PMID: 38145755 DOI: 10.1016/j.antiviral.2023.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
The human respiratory syncytial virus (hRSV) is the leading etiologic agent causing respiratory infections in infants, children, older adults, and patients with comorbidities. Sixty-seven years have passed since the discovery of hRSV, and only a few successful mitigation or treatment tools have been developed against this virus. One of these is immunotherapy with monoclonal antibodies against structural proteins of the virus, such as Palivizumab, the first prophylactic approach approved by the Food and Drug Administration (FDA) of the USA. In this article, we discuss different strategies for the prevention and treatment of hRSV infection, focusing on the molecular mechanisms against each target that underly the rational design of antibodies against hRSV. At the same time, we describe the latest results regarding currently approved therapies against hRSV and the challenges associated with developing new candidates.
Collapse
Affiliation(s)
- Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Robinson A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
2
|
Bergeron HC, Kauvar LM, Tripp RA. Anti-G protein antibodies targeting the RSV G protein CX3C chemokine region improve the interferon response. Ther Adv Infect Dis 2023; 10:20499361231161157. [PMID: 36938145 PMCID: PMC10017941 DOI: 10.1177/20499361231161157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is a poor inducer of antiviral interferon (IFN) responses which result in incomplete immunity and RSV disease. Several RSV proteins alter antiviral responses, including the non-structural proteins (NS1, NS2) and the major viral surface proteins, that is, fusion (F) and attachment (G) proteins. The G protein modifies the host immune response to infection linked in part through a CX3 C chemokine motif. Anti-G protein monoclonal antibodies (mAbs), that is, clones 3D3 and 2D10 that target the G protein CX3C chemokine motif can neutralize RSV and inhibit G protein-CX3CR1 mediated chemotaxis. Objectives Determine how monoclonal antibodies against the RSV F and G proteins modify the type I and III IFN responses to RSV infection. Design As the G protein CX3 C motif is implicated in IFN antagonism, we evaluated two mAbs that block G protein CX3C-CX3CR1 interaction and compared responses to isotype mAb control using a functional cellular assay and mouse model. Methods Mouse lung epithelial cells (MLE-15 cells) and BALB/c mice were infected with RSV Line19 F following prophylactic mAb treatment. Cell supernatant or bronchoalveolar lavage fluid (BALF) were assayed for types I and III IFNs. Cells were interrogated for changes in IFN-related gene expression. Results Treatment with an anti-G protein mAb (3D3) resulted in improved IFN responses compared with isotype control following infection with RSV, partially independently of neutralization, and this was linked to upregulated SOCS1 expression. Conclusions These findings show that anti-G protein antibodies improve the protective early antiviral response, which has important implications for vaccine and therapeutic design. Plain Language Summary RSV is a leading cause of respiratory disease in infants and the elderly. The only Food and Drug Administration-approved prophylactic treatment is limited to an anti-F protein monoclonal antibody (mAb), that is, palivizumab which has modest efficacy against RSV disease. Accumulating evidence suggests that targeting the RSV attachment (G) protein may provide improved protection from RSV disease. It is known that the G protein is an IFN antagonist, and IFN has been shown to be protective against RSV disease. In this study, we compared IFN responses in mouse lung epithelial (MLE-15) cells and in mice infected with RSV Line19 F treated with anti-G protein or anti-F protein mAbs. The levels of type I and III IFNs were determined. Anti-G protein mAbs improved the levels of IFNs compared with isotype-treated controls. These findings support the concept that anti-G protein mAbs mediate improved IFN responses against RSV disease, which may enable improved treatment of RSV infections.
Collapse
Affiliation(s)
- Harrison C. Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
3
|
B Cells and Tertiary Lymphoid Structures Influence Survival in Lung Cancer Patients with Resectable Tumors. Cancers (Basel) 2020; 12:cancers12092644. [PMID: 32947928 PMCID: PMC7564217 DOI: 10.3390/cancers12092644] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Nowadays, humans still die of lung cancer (LC), a disease mainly related to cigarette smoking (CS). Smokers also develop chronic bronchitis, namely chronic obstructive pulmonary disease (COPD). Environmental factors and a natural predisposition from the patients’ sides may render them more prone to develop tumors derived from CS. Thus, a great number of patients may suffer from chronic bronchitis and LC simultaneously. Chronic respiratory diseases are also important risks factors for LC. The immune system, among other biological mechanisms, protect our cells from infections and cancer development. Several immune structures and cells may be altered in the tumors of patients with COPD as opposed to lung tumors of patients with no underlying respiratory disease. A total of 133 patients with LC participated in the study: 93 with underlying COPD. Several structures (tertiary lymphoid structures, TLS) and T and B lymphocytes were analyzed in the lung tumor and non-tumor areas (specimens obtained during surgical extirpation of the tumors). We found that in LC patients with COPD, compared to those without it, fewer numbers of TLSs and B cells were detected, and those patients died significantly earlier. These results have implications in the diagnosis and treatment options of lung tumors in patients with underlying respiratory diseases. Abstract Immune profile of B and T cells and tertiary lymphoid structures (TLSs) may differ in tumors of lung cancer (LC) patients with/without chronic obstructive pulmonary disease (COPD), and may also influence patient survival. We sought to analyze: (1) TLSs, germinal centers (GCs), B and T cells, and (2) associations of the immune biomarkers with the patients’ 10-year overall survival (OS). TLSs (numbers and area), B [cluster of differentiation (CD) 20], and T (CD3), and GCs cells were identified in both tumor and non-tumor specimens (thoracotomy) from 90 LC-COPD patients and 43 LC-only patients. Ten-year OS was analyzed in the patients. Immune profile in tumors of LC-COPD versus LC: TLS numbers and areas significantly decreased in tumors of LC-COPD compared to LC patients. No significant differences were observed in tumors between LC-COPD and LC patients for B or T cells. Immune profile in tumors versus non-tumor specimens: TLS areas and B cells significantly increased, T cells significantly decreased in tumors of both LC and LC-COPD patients. Survival: in LC-COPD patients: greater area of TLSs and proportion of B cells were associated with longer survival rates. The immune tumor microenvironment differs in patients with underlying COPD and these different phenotypes may eventually impact the response to immunotherapy in patients with LC.
Collapse
|
4
|
Edwards MR, Strong K, Cameron A, Walton RP, Jackson DJ, Johnston SL. Viral infections in allergy and immunology: How allergic inflammation influences viral infections and illness. J Allergy Clin Immunol 2017; 140:909-920. [PMID: 28987220 PMCID: PMC7173222 DOI: 10.1016/j.jaci.2017.07.025] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Viral respiratory tract infections are associated with asthma inception in early life and asthma exacerbations in older children and adults. Although how viruses influence asthma inception is poorly understood, much research has focused on the host response to respiratory viruses and how viruses can promote; or how the host response is affected by subsequent allergen sensitization and exposure. This review focuses on the innate interferon-mediated host response to respiratory viruses and discusses and summarizes the available evidence that this response is impaired or suboptimal. In addition, the ability of respiratory viruses to act in a synergistic or additive manner with TH2 pathways will be discussed. In this review we argue that these 2 outcomes are likely linked and discuss the available evidence that shows reciprocal negative regulation between innate interferons and TH2 mediators. With the renewed interest in anti-TH2 biologics, we propose a rationale for why they are particularly successful in controlling asthma exacerbations and suggest ways in which future clinical studies could be used to find direct evidence for this hypothesis.
Collapse
Affiliation(s)
- Michael R Edwards
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom.
| | - Katherine Strong
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| | - Aoife Cameron
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| | - Ross P Walton
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| | - David J Jackson
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom; Guy's & St Thomas's Hospital London, London, United Kingdom
| | - Sebastian L Johnston
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
5
|
Chatterjee S, Luthra P, Esaulova E, Agapov E, Yen BC, Borek DM, Edwards MR, Mittal A, Jordan DS, Ramanan P, Moore ML, Pappu RV, Holtzman MJ, Artyomov MN, Basler CF, Amarasinghe GK, Leung DW. Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses. Nat Microbiol 2017; 2:17101. [PMID: 28665409 DOI: 10.1038/nmicrobiol.2017.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/22/2017] [Indexed: 12/20/2022]
Abstract
Human respiratory syncytial virus (hRSV) is a major cause of morbidity and mortality in the paediatric, elderly and immune-compromised populations1,2. A gap in our understanding of hRSV disease pathology is the interplay between virally encoded immune antagonists and host components that limit hRSV replication. hRSV encodes for non-structural (NS) proteins that are important immune antagonists3-6; however, the role of these proteins in viral pathogenesis is incompletely understood. Here, we report the crystal structure of hRSV NS1 protein, which suggests that NS1 is a structural paralogue of hRSV matrix (M) protein. Comparative analysis of the shared structural fold with M revealed regions unique to NS1. Studies on NS1 wild type or mutant alone or in recombinant RSVs demonstrate that structural regions unique to NS1 contribute to modulation of host responses, including inhibition of type I interferon responses, suppression of dendritic cell maturation and promotion of inflammatory responses. Transcriptional profiles of A549 cells infected with recombinant RSVs show significant differences in multiple host pathways, suggesting that NS1 may have a greater role in regulating host responses than previously appreciated. These results provide a framework to target NS1 for therapeutic development to limit hRSV-associated morbidity and mortality.
Collapse
Affiliation(s)
- Srirupa Chatterjee
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Priya Luthra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Computer Technologies Department, ITMO University, Saint Petersburg 197101, Russia
| | - Eugene Agapov
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Benjamin C Yen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dominika M Borek
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Texas 75390, USA
| | - Megan R Edwards
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Anuradha Mittal
- Department of Biomedical Engineering, Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - David S Jordan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Parameshwar Ramanan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Martin L Moore
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Michael J Holtzman
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| |
Collapse
|
6
|
Stebbins KJ, Broadhead AR, Musiyenko A, Barik S, Scott JM, Truong YP, Stearns BA, Hutchinson JH, Prasit P, Evans JF, Lorrain DS. DP2 (CRTh2) antagonism reduces ocular inflammation induced by allergen challenge and respiratory syncytial virus. Int Arch Allergy Immunol 2011; 157:259-68. [PMID: 22042170 DOI: 10.1159/000328769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 04/20/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Allergic conjunctivitis is characterized by itchy, watery and swollen eyes which occur in response to exposure to seasonal or environmental allergens. The early phase reaction of allergic conjunctivitis is primarily mediated by mast cell degranulation while the late phase reaction is driven by Th2 cells and eosinophils. Prostaglandin D(2) (PGD(2)), released from mast cells, is present in allergic conjunctival tears and may elicit classical allergic responses via interaction with the high-affinity DP2 receptor (chemoattractant receptor-homologous molecule expressed on Th2 cells, CRTh2). Furthermore, antagonism of this receptor is well known to inhibit eosinophil chemotaxis, basophil activation and Th2 cytokine production. PGD(2), therefore, may be involved in both early and late phase reactions in response to allergen challenge. METHODS Thus, we explored whether our novel and selective DP2 antagonist AM156 would be efficacious in animal models of allergic conjunctivitis. Furthermore, as respiratory syncytial virus (RSV) has been implicated in the pathogenesis of allergic conjunctivitis, we examined the effects of DP2 antagonism in a murine model of RSV ocular infection. RESULTS Utilizing a guinea pig ovalbumin model and a murine ragweed model we demonstrated that AM156 reduces redness, discharge and swelling in response to allergen challenge. These effects were equal to or greater than those of current clinical treatment options for allergic conjunctivitis including topical corticosteroids and a dual-mechanism antihistamine and decongestant. AM156 significantly reduced RSV-induced ocular inflammation and IL-4 production. CONCLUSION These results suggest that a topical DP2 antagonist such as AM156 may represent a novel therapeutic for allergic conjunctivitis.
Collapse
|
7
|
Becker Y. Past, present and future of RSV and PIV vaccines and anti-RSV antibodies for the protection of humans against RSV. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.8.941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Becker Y. Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy--a review. Virus Genes 2006; 33:235-52. [PMID: 16972040 DOI: 10.1007/s11262-006-0064-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 05/28/2006] [Indexed: 11/26/2022]
Abstract
Infection of infants in their first year of life, children and elderly people with the respiratory syncytial virus (RSV) endangers the life of the patient. An attempt to develop a formalin-inactivated RSV (FI-RSV) vaccine during the 1960s resulted in an aggravated infection in immunized children, leading to hospitalization, while infection of non-immunized children produced much milder symptoms. The reason for this remained an enigma, one which was gradually solved over the last decade by many researchers who studied the molecular biology of RSV infection of respiratory ciliary cells. Clinical studies of RSV-infected patients indicated increased levels of Th2 cytokines and IgE in the patients' sera, suggesting that an allergy-like condition developed during infection. The biomarkers of allergy caused by endogenous or environmental allergens include a marked increase of the Th2 cytokine IL-4 and IgE non-neutralizing antibodies to the allergen. The way allergens trigger allergy was deciphered recently, and will be discussed later. Studies of RSV infection led to the suggestion that RSV patients suffer from allergy prior to RSV infection, a concept that was later abandoned. Studies on HIV-1 [Y. Becker, Virus Genes 28, 319-331 (2005)] research led me to the hypothesis that since HIV-1 infection induces a marked increase of IL-4 and IgE in serum, an allergy-like condition, the AIDS stage is the result of an allergen motif that is embedded in the shed viral gp120 molecules. It is hypothesized that the viral-soluble G glycoprotein (sG) contains a T cell superantigen (Tsag) that is capable of binding to the V(H)3 domain of IgE/FcepsilonRI(+) hematopoietic cells, basophils, mast cells and monocytes, similar to the case of allergens, and that this aggregation causes these innate system cells to degranulate and release large amounts of Th2 cytokines (IL-4, IL-5, IL-10, IL-13) into the blood. The way these Th2 cytokines skew the Th1/Th2 balance toward Th2 > Th1 will be discussed. The aim of the present review is to base RSV pathogenicity on the numerous very good analyses of the virus genes and to suggest a therapeutic approach to treatment that is directed at preventing the inhibitory effects of Th2 cytokines on the adaptive immune system of the patients, instead of inhibiting RSV replication by antivirals. The review of the molecular research on the role of the viral fusion (F) and attachment (G) glycoproteins of RSV provided information on their role in the virus infection: early in infection the F glycoprotein induces Th1 cells to release the Th1 cytokines IL-2, IL-12 and IFN-gamma to activate precursors CTLs (pCTLs) to become anti-RSV CTLs. The G and sG glycoproteins attach to FKNR1(+) ciliary respiratory epithelial cells as well as directly to eosinophils to the lungs. The sG T cell antigen can also induce the release of large amounts of Th2 cytokines from CD4(+) T cells and from FCepsilonRI(+) mast cells, basophils and monocytes. By comparison to HIV-1 gp120 it is possible to show that in the G and sG proteins the T cell antigen resembles the CD4(+) T cell superantigen (=allergen) domain of HIV-1 gp120 which aggregates with IgE/FCepsilonRI(+) hematopoietic cells. The increased IL-4 level in the serum inhibits the adaptive immune response: IL-4Ralpha(+) Th1 cells stop Th1 cytokine synthesis and IL-4Ralpha(+) B cells stop the synthesis of antiviral IgG and IgA and switch to IgE synthesis. In addition, the hematopoietic cells release histamine and prostaglandin which induce wheezing. The gradual increase of sG molecules creates a gradient of fractalkine (FKN) which directs IL-5-activated eosinophils to the lungs of the patient.
Collapse
Affiliation(s)
- Yechiel Becker
- Department of Molecular Virology Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|