1
|
Abdelwhab EM, Veits J, Mettenleiter TC. Biological fitness and natural selection of amantadine resistant variants of avian influenza H5N1 viruses. Virus Res 2016; 228:109-113. [PMID: 27914930 DOI: 10.1016/j.virusres.2016.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/19/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Outbreaks caused by the highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry in several countries and posed a significant pandemic threat. In addition to culling of infected poultry and vaccination, amantadine has been applied in poultry in some countries to control the spread of the virus. The prevalence of the amantadine resistance marker at position 31 (Ser31Asn) of the M2 protein increased over time. However, little is known about the biological fitness and selection of H5N1 amantadine resistant strains over their sensitive counterparts. Here, using reverse genetics we investigated the biological impact of Ser31Asn in M2 commonly seen in viruses in clade 2.2.1.1 in farmed poultry in Egypt. Findings of the current study indicated that the resistance to amantadine conferred by Asn31 evolved rapidly after the application of amantadine in commercial poultry. Both the resistant and sensitive strains replicated at similar levels in avian cell culture. Asn31 increased virus entry into the cells and cell-to-cell spread and was genetically stable for several passages in cell culture. Moreover, upon co-infection of cell culture resistant strains dominated sensitive viruses even in the absence of selection by amantadine. Together, rapid emergence, stability and domination of amantadine-resistant variants over sensitive strains limit the efficacy of amantadine in poultry.
Collapse
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt.
| | - Jutta Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Liu Q, Zhou YH, Ye F, Yang ZQ. Antivirals for Respiratory Viral Infections: Problems and Prospects. Semin Respir Crit Care Med 2016; 37:640-6. [PMID: 27486742 PMCID: PMC7171711 DOI: 10.1055/s-0036-1584803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past two decades, several newly emerging and reemerging viral respiratory pathogens including several influenza viruses (avian influenza and pandemic influenza), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV), have continued to challenge medical and public health systems. Thereafter, the development of cost-effective, broad-spectrum antiviral agents is the urgent mission of both virologists and pharmacologists. Current antiviral developments have focused targets on viral entry, replication, release, and intercellular pathways essential for viral life cycle. Here, we review the current literature on challenges and prospects in the development of these antivirals.
Collapse
Affiliation(s)
- Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Yuan-Hong Zhou
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Feng Ye
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, China
| | - Zhan-Qiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Liu Q, Liu DY, Yang ZQ. Characteristics of human infection with avian influenza viruses and development of new antiviral agents. Acta Pharmacol Sin 2013; 34:1257-69. [PMID: 24096642 PMCID: PMC3791557 DOI: 10.1038/aps.2013.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/01/2013] [Indexed: 12/21/2022] Open
Abstract
Since 1997, several epizootic avian influenza viruses (AIVs) have been transmitted to humans, causing diseases and even deaths. The recent emergence of severe human infections with AIV (H7N9) in China has raised concerns about efficient interpersonal viral transmission, polygenic traits in viral pathogenicity and the management of newly emerging strains. The symptoms associated with viral infection are different in various AI strains: H5N1 and newly emerged H7N9 induce severe pneumonia and related complications in patients, while some H7 and H9 subtypes cause only conjunctivitis or mild respiratory symptoms. The virulence and tissue tropism of viruses as well as the host responses contribute to the pathogenesis of human AIV infection. Several preventive and therapeutic approaches have been proposed to combat AIV infection, including antiviral drugs such as M2 inhibitors, neuraminidase inhibitors, RNA polymerase inhibitors, attachment inhibitors and signal-transduction inhibitors etc. In this article, we summarize the recent progress in researches on the epidemiology, clinical features, pathogenicity determinants, and available or potential antivirals of AIV.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Virology/Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430071, China
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang 443000, China
| | - Dong-ying Liu
- State Key Laboratory of Virology/Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430071, China
- Department of Microbiology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Zhan-qiu Yang
- State Key Laboratory of Virology/Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Insight into alternative approaches for control of avian influenza in poultry, with emphasis on highly pathogenic H5N1. Viruses 2012. [PMID: 23202521 PMCID: PMC3509689 DOI: 10.3390/v4113179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry.
Collapse
|
5
|
Vittecoq M, Grandhomme V, Champagnon J, Guillemain M, Crescenzo-Chaigne B, Renaud F, Thomas F, Gauthier-Clerc M, van der Werf S. High influenza a virus infection rates in Mallards bred for hunting in the Camargue, South of France. PLoS One 2012; 7:e43974. [PMID: 22952832 PMCID: PMC3428329 DOI: 10.1371/journal.pone.0043974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
During the last decade, the role of wildlife in emerging pathogen transmission to domestic animals has often been pointed out. Conversely, far less attention has been paid to pathogen transmission from domestic animals to wildlife. Here, we focus on the case of game restocking, which implies the release of millions of animals worldwide each year. We conducted a 2-year study in the Camargue (Southern France) to investigate the influence of hand-reared Mallard releases on avian influenza virus dynamics in surrounding wildlife. We sampled Mallards (cloacal swabs) from several game duck facilities in 2009 and 2010 before their release. A very high (99%) infection rate caused by an H10N7 strain was detected in the game bird facility we sampled in 2009. We did not detect this strain in shot ducks we sampled, neither during the 2008/2009 nor the 2009/2010 hunting seasons. In 2010 infection rates ranged from 0 to 24% in hand-reared ducks. The 2009 H10N7 strain was fully sequenced. It results from multiple reassortment events between Eurasian low pathogenic strains. Interestingly, H10N7 strains had previously caused human infections in Egypt and Australia. The H10 and N7 segments we sequenced were clearly distinct from the Australian ones but they belonged to the same large cluster as the Egyptian ones. We did not observe any mutation linked to increased virulence, transmission to mammals, or antiviral resistance in the H10N7 strain we identified. Our results indicate that the potential role of hand-reared Mallards in influenza virus epizootics must be taken into account given the likely risk of viral exchange between game bird facilities and wild habitats, owing to duck rearing conditions. Measures implemented to limit transmission from wildlife to domestic animals as well as measures to control transmission from domestic animals to wild ones need to be equally reinforced.
Collapse
|
6
|
Arafa AS, Hagag N, Erfan A, Mady W, El-Husseiny M, Adel A, Nasef S. Complete genome characterization of avian influenza virus subtype H9N2 from a commercial quail flock in Egypt. Virus Genes 2012; 45:283-94. [DOI: 10.1007/s11262-012-0775-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
|
7
|
Bi J, Deng G, Dong J, Kong F, Li X, Xu Q, Zhang M, Zhao L, Qiao J. Phylogenetic and molecular characterization of H9N2 influenza isolates from chickens in Northern China from 2007-2009. PLoS One 2010; 5. [PMID: 20927364 PMCID: PMC2947496 DOI: 10.1371/journal.pone.0013063] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 09/05/2010] [Indexed: 11/18/2022] Open
Abstract
The repeated transmission to pigs and humans, and the long-term endemicity in terrestrial poultry of H9N2 viruses in China lend urgency to the study of their ecology and pathogenicity. In the present paper, we reported an H9N2 virus sublineage isolated from chickens in northern China from 2007 to 2009 has high lethality for mice. Phylogenetic analysis of the full genome indicated that six representative H9N2 isolates shared high homology to each other, and they clustered in the same sublineage with other H9N2 viruses isolated recently in northern China. The isolates were double-reassortant viruses containing M genes similar to A/Quail/Hong Kong/G1/97 (H9N2) and the other seven gene segments from A/Chicken/Shanghai/F/98 (H9N2). These six isolates were capable of replicating in the lungs of infected chickens without producing observable clinical signs of disease or death. However, they were highly lethal to mice with mortality rates as high as 100% (14/14) without prior adaptation. The affected mice exhibited severe respiratory syndromes and diffuse lung injury. The H9N2 viruses could be detected in multiple organs of the infected mice, including hearts, livers, spleens, lungs and kidneys. Our findings demonstrated that H9N2 viruses isolated from the chickens in northern China have established a stable sublineage with enhanced pathogenicity to mice, suggesting that urgent attention will need to be paid to the transmission of H9N2 viruses from chickens to mammals.
Collapse
Affiliation(s)
- Jianmin Bi
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Guangcun Deng
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jun Dong
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Fuli Kong
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xuezhu Li
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Qiang Xu
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Miaojie Zhang
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Lihong Zhao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- * E-mail: (LZ); (JQ)
| | - Jian Qiao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- * E-mail: (LZ); (JQ)
| |
Collapse
|
8
|
Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and eastern China. Virus Res 2010; 151:26-32. [PMID: 20347894 DOI: 10.1016/j.virusres.2010.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/23/2022]
Abstract
According to our previous study of the M genes of H9N2 avian influenza viruses (AIV) in infected chickens, A/Quail/Hong Kong/G1/97 (G1 97)-like M genes newly emerged in northern and eastern China in addition to the existing A/chicken/Hong Kong/Y280/97 (Y280)-like lineage M genes. To systematically track the genesis and evolution of H9N2 viruses in this region, whole genome sequences of seventeen H9N2 isolates were obtained and their phylogenetic properties were determined. Phylogenetic analysis revealed several newly emerged lineages of gene segments in addition to the Y280-like and A/chicken/Shanghai/F/98(F 98)-like lineages, which are prevailing in northern and eastern China according to previous reports. Reassortments among these gene segments generated five novel genotypes of H9N2 viruses that have not been reported before in China. The emerging genotypes of H9N2 viruses in this region indicate that H9N2 virus genes undergo active evolution, particularly their internal genes, which raises concern for their likely contribution to gene reassortment and production of AIVs with new properties. Our study provides valuable insight into the prevalence of H9N2 viruses in northern and eastern China and demonstrates the need of long-term monitoring of the evolution of H9N2 AIV.
Collapse
|