1
|
Zheng H, Zhao H, Xiong H, Awais MM, Zeng S, Sun J. Impact of the Transboundary Interference Inhibitor on RNAi and the Baculovirus Expression System in Insect Cells. INSECTS 2024; 15:375. [PMID: 38921090 PMCID: PMC11203448 DOI: 10.3390/insects15060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
RNA interference inhibitors were initially discovered in plant viruses, representing a unique mechanism employed by these viruses to counteract host RNA interference. This mechanism has found extensive applications in plant disease resistance breeding and other fields; however, the impact of such interference inhibitors on insect cell RNA interference remains largely unknown. In this study, we screened three distinct interference inhibitors from plant and mammal viruses that act through different mechanisms and systematically investigated their effects on the insect cell cycle and baculovirus infection period at various time intervals. Our findings demonstrated that the viral suppressors of RNA silencing (VSRs) derived from plant and mammal viruses significantly attenuated the RNA interference effect in insect cells, as evidenced by reduced apoptosis rates, altered gene regulation patterns in cells, enhanced expression of exogenous proteins, and improved production efficiency of recombinant virus progeny. Further investigations revealed that the early expression of VSRs yielded superior results compared with late expression during RNA interference processes. Additionally, our results indicated that dsRNA-binding inhibition exhibited more pronounced effects than other modes of action employed by these interference inhibitors. The outcomes presented herein provide novel insights into enhancing defense mechanisms within insect cells using plant and mammal single-stranded RNA virus-derived interference inhibitors and have potential implications for expanding the scope of transformation within insect cell expression systems.
Collapse
Affiliation(s)
- Hao Zheng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| | - Hengfeng Zhao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| | - Haifan Xiong
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| | - Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| | - Songrong Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (H.Z.); (H.X.); (M.M.A.)
| |
Collapse
|
2
|
Kumar BKP, Beaubiat S, Yadav CB, Eshed R, Arazi T, Sherman A, Bouché N. Genome wide inherited modifications of the tomato epigenome by trans-activated bacterial CG methyltransferase. Cell Mol Life Sci 2024; 81:222. [PMID: 38767725 PMCID: PMC11106227 DOI: 10.1007/s00018-024-05255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.
Collapse
Affiliation(s)
- Bapatla Kesava Pavan Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Molecular Biology, Acrannolife Genomics Private Limited, Chennai, Tamilnadu, 600035, India
| | - Sébastien Beaubiat
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Chandra Bhan Yadav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Department of Genetics, Genomics, and Breeding, NIAB-EMR, East Malling, East Malling, ME19 6BJ, UK
| | - Ravit Eshed
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel.
| | - Nicolas Bouché
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
3
|
Vaisman M, Hak H, Arazi T, Spiegelman Z. The Impact of Tobamovirus Infection on Root Development Involves Induction of Auxin Response Factor 10a in Tomato. PLANT & CELL PHYSIOLOGY 2023; 63:1980-1993. [PMID: 34977939 DOI: 10.1093/pcp/pcab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Plant viruses cause systemic diseases that severely impair plant growth and development. While the accumulation of viruses in the root system has long been established, little is known as to how viruses affect root architecture. Here, we examined how the emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), alters root development in tomato. We found that ToBRFV and tobacco mosaic virus both invaded root systems during the first week of infection. ToBRFV infection of tomato plants resulted in a significant decrease in root biomass and elongation and root-to-shoot ratio and a marked suppression of root branching. Mutation in RNA-dependent RNA polymerase 6 increased the susceptibility of tomato plants to ToBRFV, resulting in severe reduction of various root growth parameters including root branching. Viral root symptoms were associated with the accumulation of auxin response factor 10a (SlARF10a) transcript, a homolog of Arabidopsis ARF10, a known suppressor of lateral root development. Interestingly, loss-of-function mutation in SlARF10a moderated the effect of ToBRFV on root branching. In contrast, downregulation of sly-miR160a, which targets SlARF10a, was associated with constitutive suppression root branching independent of viral infection. In addition, overexpression of a microRNA-insensitive mutant of SlARF10a mimicked the effect of ToBRFV on root development, suggesting a specific role for SlARF10a in ToBRFV-mediated suppression of root branching. Taken together, our results provide new insights into the impact of tobamoviruses on root development and the role of ARF10a in the suppression of root branching in tomato.
Collapse
Affiliation(s)
- Michael Vaisman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, PO Box 12, Rehovot 761001, Israel
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Tzahi Arazi
- Plant Sciences Institute, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Li Q, Shen H, Yuan S, Dai X, Yang C. miRNAs and lncRNAs in tomato: Roles in biotic and abiotic stress responses. FRONTIERS IN PLANT SCIENCE 2023; 13:1094459. [PMID: 36714724 PMCID: PMC9875070 DOI: 10.3389/fpls.2022.1094459] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Plants are continuously exposed to various biotic and abiotic stresses in the natural environment. To cope with these stresses, they have evolved a multitude of defenses mechanisms. With the rapid development of genome sequencing technologies, a large number of non-coding RNA (ncRNAs) have been identified in tomato, like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Recently, more and more evidence indicates that many ncRNAs are involved in plant response to biotic and abiotic stresses in tomato. In this review, we summarize recent updates on the regulatory roles of ncRNAs in tomato abiotic/biotic responses, including abiotic (high temperature, drought, cold, salinization, etc.) and biotic (bacteria, fungi, viruses, insects, etc.) stresses. Understanding the molecular mechanisms mediated by ncRNAs in response to these stresses will help us to clarify the future directions for ncRNA research and resistance breeding in tomato.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Heng Shen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shoujuan Yuan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xigang Dai
- School of Life Sciences, Jianghan University/Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Wuhan, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Katsarou K, Mitta E, Bardani E, Oulas A, Dadami E, Kalantidis K. DCL-suppressed Nicotiana benthamiana plants: valuable tools in research and biotechnology. MOLECULAR PLANT PATHOLOGY 2019; 20:432-446. [PMID: 30343523 PMCID: PMC6637889 DOI: 10.1111/mpp.12761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA silencing is a universal mechanism involved in development, epigenetic modifications and responses to biotic and abiotic stresses. The major components of this mechanism are Dicer-like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) proteins. Understanding the role of each component is of great scientific and agronomic importance. Plants, including Nicotiana benthamiana, an important plant model, usually possess four DCL proteins, each of which has a specific role, namely being responsible for the production of an exclusive small RNA population. Here, we used RNA interference (RNAi) technology to target DCL proteins and produced single and combinatorial mutants for DCL. We analysed the phenotype for each DCL knockdown plant, together with the small RNA profile, by next-generation sequencing (NGS). We also investigated transgene expression, as well as viral infections, and were able to show that DCL suppression results in distinct developmental defects, changes in small RNA populations, increases in transgene expression and, finally, higher susceptibility in certain RNA viruses. Therefore, these plants are excellent tools for the following: (i) to study the role of DCL enzymes; (ii) to overexpress proteins of interest; and (iii) to understand the complex relationship between the plant silencing mechanism and biotic or abiotic stresses.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Eleni Mitta
- Department of BiologyUniversity of CreteHeraklionGreece
| | | | - Anastasis Oulas
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Present address:
Bioinformatics Group, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Elena Dadami
- Department of BiologyUniversity of CreteHeraklionGreece
- Present address:
RLP AgroScience, AlPlantaNeustadtGermany
| | - Kriton Kalantidis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Department of BiologyUniversity of CreteHeraklionGreece
| |
Collapse
|
6
|
Seo JK, Kim MK, Kwak HR, Choi HS, Nam M, Choe J, Choi B, Han SJ, Kang JH, Jung C. Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology 2018; 516:1-20. [PMID: 29316505 DOI: 10.1016/j.virol.2018.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/06/2017] [Accepted: 01/02/2018] [Indexed: 01/26/2023]
Abstract
The viral infection of plants may cause various physiological symptoms associated with the reprogramming of plant gene expression. However, the molecular mechanisms and associated genes underlying disease symptom development in plants infected with viruses are largely unknown. In this study, we employed RNA sequencing for in-depth molecular characterization of the transcriptional changes associated with the development of distinct symptoms induced by tomato chlorosis virus (ToCV) and tomato yellow leaf curl virus (TYLCV) in tomato. Comparative analysis of differentially expressed genes revealed that ToCV and TYLCV induced distinct transcriptional changes in tomato and resulted in the identification of important genes responsible for the development of symptoms of ToCV (i.e., chlorosis and anthocyanin accumulation) and TYLCV (i.e., yellowing, stunted growth, and leaf curl). Our comprehensive transcriptome analysis can provide molecular strategies to reduce the severity of disease symptoms as well as new insights for the development of virus-resistant crops.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Mi-Kyeong Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Moon Nam
- SEEDERS Inc., Daejeon 34015, Republic of Korea
| | | | - Boram Choi
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Soo-Jung Han
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Jin-Ho Kang
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
7
|
Wieczorek P, Obrępalska-Stęplowska A. Suppress to Survive-Implication of Plant Viruses in PTGS. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:335-346. [PMID: 25999662 PMCID: PMC4432016 DOI: 10.1007/s11105-014-0755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the presence of double-stranded RNAs (dsRNAs) in planta. The sequence-specific mechanism of silencing is based on RNase-mediated trimming of dsRNAs into translationally inactive short molecules. Viruses invading and replicating in host are also a source of dsRNAs and are recognized as such by cellular posttranscriptional silencing machinery leading to degradation of the pathogenic RNA. However, viruses are not totally defenseless. In parallel with evolving plant defense strategies, viruses have managed a wide range of multifunctional proteins that efficiently impede the posttranscriptional gene silencing. These viral counteracting factors are known as suppressors of RNA silencing. The aim of this review is to summarize the role and the mode of action of several functionally characterized RNA silencing suppressors encoded by RNA viruses directly involved in plant-pathogen interactions. Additionally, we point out that the widely diverse functions, structures, and modes of action of viral suppressors can be performed by different proteins, even in related viruses. All those adaptations have been evolved to achieve the same goal: to maximize the rate of viral genetic material replication by interrupting the evolutionary conserved plant defense mechanism of posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| |
Collapse
|
8
|
Kravchik M, Damodharan S, Stav R, Arazi T. Generation and characterization of a tomato DCL3-silencing mutant. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 221-222:81-89. [PMID: 24656338 DOI: 10.1016/j.plantsci.2014.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
DICER-like 3 (DCL3) is a major player in heterochromatic 24-nucleotide (nt) small RNA (sRNA) and long microRNA (lmiRNA) biogenesis, and higher plant DCL3 mutants have been characterized from Arabidopsis thaliana and rice. Here, a tomato DCL3 (SlDCL3) mutant was generated through the use of trans-activated artificial miRNA and characterized. Constitutive trans-activation knocked down SlDCL3 levels by ∼64%, resulting in dramatically decreased 24-nt sRNA levels and a significant increase in 21- and 22-nt sRNAs. The latter was correlated with specific upregulation of SlDCL4 and SlDCL2b, which function in the biogenesis of 21- and 22-nt sRNAs, respectively. Moreover, at the majority of sRNA-generating genomic loci, an almost complete overlap between small RNA signatures of control and silenced seedlings was observed, suggesting that the reductions in 24-nt sRNAs at these loci were compensated for by biogenesis of 21- and 22-nt sRNAs from the same double-stranded RNA substrates. In addition, bioinformatic analysis and reduced expression in SlDCL3-silenced seedlings identified four novel tomato lmiRNAs, two of which were found to be developmentally regulated. Taken together, these results establish the requirement of SlDCL3 for the biogenesis of 24-nt sRNAs and lmiRNAs in tomato and suggest SlDCL4 and SlDCL2b as surrogates for SlDCL3.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO BOX 6, Bet Dagan 50250, Israel
| | - Subha Damodharan
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO BOX 6, Bet Dagan 50250, Israel
| | - Ran Stav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO BOX 6, Bet Dagan 50250, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO BOX 6, Bet Dagan 50250, Israel.
| |
Collapse
|
9
|
Kravchik M, Sunkar R, Damodharan S, Stav R, Zohar M, Isaacson T, Arazi T. Global and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:725-39. [PMID: 24376253 PMCID: PMC3904720 DOI: 10.1093/jxb/ert428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DICER-like 1 (DCL1) is a major player in microRNA (miRNA) biogenesis and accordingly, its few known loss-of-function mutants are either lethal or display arrested development. Consequently, generation of dcl1 mutants by reverse genetics and functional analysis of DCL1 in late-developing organs are challenging. Here, these challenges were resolved through the unique use of trans-activated RNA interference. Global, as well as organ-specific tomato DCL1 (SlDCL1) silencing was induced by crossing the generated responder line (OP:SlDCL1IR) with the appropriate driver line. Constitutive trans-activation knocked down SlDCL1 levels by ~95%, resulting in severe abnormalities including post-germination growth arrest accompanied by decreased miRNA and 21-nucleotide small RNA levels, but prominently elevated levels of 22-nucleotide small RNAs. The increase in the 22-nucleotide small RNAs was correlated with specific up-regulation of SlDCL2b and SlDCL2d, which are probably involved in their biogenesis. Leaf- and flower-specific OP:SlDCL1IR trans-activation inhibited blade outgrowth, induced premature bud senescence and produced pale petals, respectively, emphasizing the importance of SlDCL1-dependent small RNAs in these processes. Together, these results establish OP:SlDCL1IR as an efficient tool for analysing processes regulated by SlDCL1-mediated gene regulation in tomato.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Ramanjulu Sunkar
- Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Subha Damodharan
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Ran Stav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Matat Zohar
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Tal Isaacson
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Hendelman A, Stav R, Zemach H, Arazi T. The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5497-507. [PMID: 24085581 PMCID: PMC3871814 DOI: 10.1093/jxb/ert324] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Being composed of several whorls of distinct floral organs, the flower is one of the most complex organs in the plant. As such, the formation and maintenance of boundaries that separate the meristem from the floral organ primordium and adjacent organs are critical for its normal development. In Arabidopsis, the miR164-regulated NAM genes play key roles in floral-boundary specification. By contrast, much less is known about floral-boundary establishment in the model crop tomato. It was found that the miR164-regulated NAM gene GOBLET is expressed in the floral meristem-organ boundaries and its loss-of-function mutant produces flowers with fused organs, indicating its requirement for tomato floral-boundary formation. It was found here that sly-miR164 targets the transcripts of three additional uncharacterized NAM genes in developing flowers. It is shown that, after floral-boundary initiation, the NAM gene Solyc03g115850 (SlNAM2) is expressed as stripes that mark the boundaries between sepals and between different floral whorls. Furthermore, ectopic accumulation of SlNAM2-encoding transcripts caused various growth-suppression and extraorgan phenotypes typically observed in plants over-expressing known boundary genes. Flower-specific silencing of sly-miR164-targeted NAM genes (AP1>>MIR164) caused defects in the separation of sepals and floral whorls indicating abnormal boundary specification. However, supplementing these NAM-deficient flowers with miR164-resistant SlNAM2 suppressed their fusion phenotypes and completely restored floral boundaries. Together, our results strongly suggest that SlNAM2 participates in the establishment of tomato flower whorl and sepal boundaries.
Collapse
Affiliation(s)
- Anat Hendelman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
- Department of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ran Stav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Danielson DC, Pezacki JP. Studying the RNA silencing pathway with the p19 protein. FEBS Lett 2013; 587:1198-205. [PMID: 23376479 DOI: 10.1016/j.febslet.2013.01.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 01/05/2023]
Abstract
The origins of the RNA silencing pathway are in defense against invading viruses and in response, viruses have evolved counter-measures to interfere with the host pathway. The p19 protein is expressed by tombusviruses as a suppressor of RNA silencing and functions to sequester small RNA duplexes, thereby preventing induction of the pathway. p19 exhibits size-specific and sequence-independent binding of its small RNA ligands, binding with high affinity to duplexes 20-22 nucleotides long. p19's binding specificity and its ability to sequester small RNAs has made it a unique protein-based tool for probing the molecular mechanisms of the highly complex RNA silencing pathway in a variety of systems. Furthermore, protein engineering of this 'molecular caliper' promises novel applications in biotechnology and medicine where small RNA molecules are of remarkable interest given their potent gene regulatory abilities.
Collapse
Affiliation(s)
- Dana C Danielson
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Canada K1H 8M5
| | | |
Collapse
|
12
|
Hendelman A, Kravchik M, Stav R, Zik M, Lugassi N, Arazi T. The developmental outcomes of P0-mediated ARGONAUTE destabilization in tomato. PLANTA 2013; 237:363-377. [PMID: 23080016 DOI: 10.1007/s00425-012-1778-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
The plant protein ARGONAUTE1 (AGO1) functions in multiple RNA-silencing pathways, including those of microRNAs, key regulators of growth and development. Genetic analysis of ago1 mutants with informative defects has provided valuable insights into AGO1's biological functions. Tomato encodes two AGO1 homologs (SlAGO1s), but mutants have not been described to date. To analyze SlAGO1s' involvement in development, we confirmed that both undergo decay in the presence of the Polerovirus silencing suppressor P0 and produce a transgenic responder line (OP:P0HA) that, upon transactivation, expresses P0 C-terminally fused to a hemagglutinin (HA) tag (P0HA) and destabilizes SlAGO1s at the site of expression. By crossing OP:P0HA with a battery of driver lines, constitutive as well as organ- and stage-specific SlAGO1 downregulation was induced in the F1 progeny. Activated plants exhibited various developmental phenotypes that partially overlapped with those of Arabidopsis ago1 mutants. Plants that constitutively expressed P0HA had reduced SlAGO1 levels and increased accumulation of miRNA targets, indicating compromised SlAGO1-mediated silencing. Consistent with this, they exhibited pleiotropic morphological defects and their growth was arrested post-germination. Transactivation of P0HA in young leaf and floral organ primordia dramatically modified corresponding organ morphology, including the radialization of leaflets, petals and anthers, suggesting that SlAGO1s' activities are required for normal lateral organ development and polarity. Overall, our results suggest that the OP:P0HA responder line can serve as a valuable tool to suppress SlAGO1 silencing pathways in tomato. The suppression of additional SlAGOs by P0HA and its contribution to the observed phenotypes awaits investigation.
Collapse
Affiliation(s)
- Anat Hendelman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO BOX 6, 50250 Bet Dagan, Israel
| | | | | | | | | | | |
Collapse
|
13
|
Garabagi F, Gilbert E, Loos A, McLean MD, Hall JC. Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1118-28. [PMID: 22984968 DOI: 10.1111/j.1467-7652.2012.00742.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 05/18/2023]
Abstract
To study how the P19 suppressor of gene-silencing protein can be used effectively for the production of therapeutic glycoproteins, the following factors were examined: the genetic elements used for expressing recombinant proteins; the effect of different P19 concentrations; compatibility of P19 with various Nicotiana tabacum cultivars for transgenic expression; the glycan profile of a recombinant therapeutic glycoprotein co-expressed with P19 in an RNAi-based glycomodified Nicotiana benthamiana expression host. The coding sequences for the heavy and light chains of trastuzumab were cloned into five plant expression vectors (102-106) containing different 5' and 3' UTRs, designated as vector sets 102-106 mAb. The P19 protein of Tomato bushy stunt virus (TBSV) was also cloned into vector 103, which contained the Cauliflower mosaic virus (CaMV) 35S promoter and 5'UTR together with the terminator region of the nopaline synthase gene of Agrobacterium. Transient expression of the antibody vectors resulted in different levels of trastuzumab accumulation, the highest being 105 and 106 mAb at about 1% of TSP. P19 increased the concentration of trastuzumab approximately 15-fold (to about 2.3% of TSP) when co-expressed with 103 mAb but did not affect antibody levels with vectors 102 and 106 mAb. When 103 mAb was expressed together with P19 in different N. tabacum cultivars, all except Little Crittenden showed a marked discolouring of the infiltrated areas of the leaf and decreased antibody expression. Co-expression of P19 also abolished antibody accumulation in crosses between N. tabacum cv. I-64 and Little Crittenden, indicating a dominant mode of inheritance for the observed P19-induced responses.
Collapse
Affiliation(s)
- Freydoun Garabagi
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
14
|
Rahman J, Karjee S, Mukherjee SK. MYMIV-AC2, a geminiviral RNAi suppressor protein, has potential to increase the transgene expression. Appl Biochem Biotechnol 2012; 167:758-75. [PMID: 22592775 DOI: 10.1007/s12010-012-9702-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Gene silencing is one of the limiting factors for transgene expression in plants. But the plant viruses have learnt to suppress gene silencing by encoding the protein(s), called RNA silencing suppressor(s) (RSS). Hence, these proteins could be used to overcome the limitation for transgene expression. The RNAi suppressors, namely HC-Pro and P19, have been shown to enhance the transgene expression but other RSS proteins have not been screened for similar role. Moreover, none of RSSs from the DNA viruses are known for enhancing the expression of transgenes. The Mungbean Yellow Mosaic India Virus (MYMIV) belonging to the genus Begomovirus within the family of Geminiviridae encodes an RSS called the AC2 protein. Here, we used AC2 to elevate the expression of the transgenes. Upon introduction of MYMIV-AC2 in the silenced GFP transgenic tobacco lines, by either genetic hybridisation or transgenesis, the GFP expression was enhanced several fold in F1 and T0 lines. The GFP-siRNA levels were much reduced in F1 and T0 lines compared with those of the initial parental silenced lines. The enhanced GFP expression was also observed at the cellular level. This approach was also successful in enhancing the expression of another transgene, namely topoisomeraseII.
Collapse
Affiliation(s)
- Jamilur Rahman
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
15
|
RNA silencing suppressor Pns11 of rice gall dwarf virus induces virus-like symptoms in transgenic rice. Arch Virol 2012; 157:1531-9. [DOI: 10.1007/s00705-012-1339-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/04/2012] [Indexed: 01/10/2023]
|
16
|
Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. PLANT MOLECULAR BIOLOGY 2012; 78:561-76. [PMID: 22287097 DOI: 10.1007/s11103-012-9883-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 01/12/2012] [Indexed: 05/04/2023]
Abstract
Auxin response factors (ARFs) are plant transcription factors that activate or repress the expression of auxin-responsive genes and accordingly, play key roles in auxin-mediated developmental processes. Here we identified and characterized the Solanum lycopersicum (tomato) ARF10 homolog (SlARF10), demonstrated that it is posttranscriptionally regulated by Sl-miR160, and investigated the significance of this regulation for tomato development. In wild-type tomato, SlARF10 is primarily expressed in the pericarp of mature and ripened fruit, showing an expression profile complementary to that of Sl-miR160. Constitutive expression of wild-type SlARF10 did not alter tomato development. However, transgenic tomato plants that constitutively expressed the Sl-miR160a-resistant version (mSlARF10) developed narrow leaflet blades, sepals and petals, and abnormally shaped fruit. During compound leaf development, mSlARF10 accumulation specifically inhibited leaflet blade outgrowth without affecting other auxin-driven processes such as leaflet initiation and lobe formation. Moreover, blade size was inversely correlated with mSlARF10 transcript levels, strongly implying that the SlARF10 protein, which was localized to the nucleus, can function as a transcriptional repressor of leaflet lamina outgrowth. Accordingly, known auxin-responsive genes, which promote cell growth, were downregulated in shoot apices that accumulated increased mSlARF10 levels. Taken together, we propose that repression of SlARF10 by Sl-miR160 is essential for auxin-mediated blade outgrowth and early fruit development.
Collapse
Affiliation(s)
- A Hendelman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 6, 50250 Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
17
|
Sculpting the maturation, softening and ethylene pathway: the influences of microRNAs on tomato fruits. BMC Genomics 2012; 13:7. [PMID: 22230737 PMCID: PMC3266637 DOI: 10.1186/1471-2164-13-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/09/2012] [Indexed: 11/24/2022] Open
Abstract
Background MicroRNAs (miRNAs), a ubiquitous class of short RNAs, play vital roles in physiological and biochemical processes in plants by mediating gene silencing at post-transcriptional (PTGS) level. Tomato is a model system to study molecular basis of fleshy fruit ripening and senescence, ethylene biosynthesis and signal transduction owing to its genetic and molecular tractability. To study the functions of miRNAs in tomato fruit ripening and senescence, and their possible roles in ethylene response, the next generation sequencing method was employed to identify miRNAs in tomato fruit. Bioinformatics and molecular biology approaches were combined to profile the miRNAs expression patterns at three different fruit ripening stages and by exogenous ethylene treatment. Results In addition to 7 novel miRNA families, 103 conserved miRNAs belonging to 24 families and 10 non-conserved miRNAs matching 9 families were identified in our libraries. The targets of many these miRNAs were predicted to be transcriptional factors. Other targets are known to play roles in the regulation of metabolic processes. Interestingly, some targets were predicted to be involved in fruit ripening and softening, such as Pectate Lyase, beta-galactosidase, while a few others were predicted to be involved in ethylene biosynthesis and signaling pathway, such as ACS, EIN2 and CTR1. The expression patterns of a number of such miRNAs at three ripening stages were confirmed by stem-loop RT-PCR, which showed a strong negative correlation with that of their targets. The regulation of exogenous ethylene on miRNAs expression profiles were analyzed simultaneously, and 3 down-regulated, 5 up-regulated miRNAs were found in this study. Conclusions A combination of high throughput sequencing and molecular biology approaches was used to explore the involvement of miRNAs during fruit ripening. Several miRNAs showed differential expression profiles during fruit ripening, and a number of miRNAs were influenced by ethylene treatment. The results suggest the importance of miRNAs in fruit ripening and ethylene response.
Collapse
|
18
|
MicroRNAs in tomato plants. SCIENCE CHINA-LIFE SCIENCES 2011; 54:599-605. [DOI: 10.1007/s11427-011-4188-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/22/2011] [Indexed: 11/26/2022]
|
19
|
Saleh O, Issman N, Seumel GI, Stav R, Samach A, Reski R, Frank W, Arazi T. MicroRNA534a control of BLADE-ON-PETIOLE 1 and 2 mediates juvenile-to-adult gametophyte transition in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:661-674. [PMID: 21235646 DOI: 10.1111/j.1365-313x.2010.04451.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Arabidopsis thaliana BLADE-ON-PETIOLE genes encode a pair of transcriptional coactivators that regulate lateral organ architecture by promoting cell differentiation in their proximal regions. To gain insight into the roles of BOP genes early in land plant evolution, we characterized the functions of Physcomitrella patens BOP1 and BOP2 and their negative regulator Pp-miR534a. We show that in ΔPpMIR534a mutants lacking mature Pp-miR534a, cleavage of PpBOP1/2 is abolished, leading to elevated PpBOP1/2 transcript levels. These loss-of-function mutants display an accelerated gametophore development thus correlating elevated levels of PpBOP1/2 with premature bud formation. This is further supported by our finding that exposure to cytokinin, which is known to induce bud formation on caulonema, downregulates PpMIR534a transcription and increases the accumulation of PpBOP1 in apical caulonema cells. Reporter gene fusions showed that PpMIR534a is ubiquitously expressed in protonema whereas PpBOP1/2 accumulation is restricted almost exclusively to potent caulonema apical cells and their side branch initials, but absent from differentiated cells. Together, our data propose that PpBOP1/2 act as positive regulators of protonema differentiation and that Pp-miR534a is required to control the timing of the juvenile-to-adult gametophyte transition by spatially restricting their expression to caulonema stem cells. As protonemata develop, increased cytokinin levels downregulate Pp-MIR534a transcription in these cells until a threshold level of PpBOP1/2 is reached that triggers cell differentiation and bud formation.
Collapse
Affiliation(s)
- Omar Saleh
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Buxdorf K, Hendelman A, Stav R, Lapidot M, Ori N, Arazi T. Identification and characterization of a novel miR159 target not related to MYB in tomato. PLANTA 2010; 232:1009-1022. [PMID: 20661587 DOI: 10.1007/s00425-010-1231-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 07/07/2010] [Indexed: 05/29/2023]
Abstract
MicroRNA 159 (miR159) is a highly conserved miRNA with roles in flowering under short days, anther development and seed germination via repression of GAMYB-like genes. In tomato, the function of miR159 (Sl-miR159) is currently unknown and target transcripts have not been experimentally validated. Here, we identified and characterized a new miR159 target gene (SGN-U567133) in Solanum lycopersicum (tomato) that is not related to MYB. SGN-U567133 is predominantly expressed in flowers and encodes a nuclear-localized protein that contains a unique NOZZLE-like domain at its N terminus. In tomato, SGN-U567133 represents a small gene family and orthologs have been identified in other plant species, all containing a conserved miR159 target site in their coding sequence. Accordingly, 5'-RACE cleavage assay supported miRNA-mediated cleavage of SGN-U567133 transcripts in vivo. Moreover, the SGN-U567133 transcript accumulated in P19-HA-expressing tomato leaves in which miRNA-mediated cleavage is inhibited. In addition, transgenic tomato plants expressing a miR159-resistant form of SGN-U567133 accumulated higher levels of the SGN-U567133 transcript and exhibited defects in leaf and flower development. Together, our results suggest that SGN-U567133 represents a novel class of miR159 targets in plants and raise the possibility that its post-transcriptional regulation by Sl-miR159 is essential for normal tomato development.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Southern
- Flowers/genetics
- Flowers/growth & development
- Flowers/metabolism
- Flowers/ultrastructure
- Gene Expression Regulation, Plant/genetics
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Solanum lycopersicum/metabolism
- Solanum lycopersicum/ultrastructure
- MicroRNAs/genetics
- MicroRNAs/physiology
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plant Leaves/metabolism
- Plant Proteins/genetics
- Plant Proteins/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/ultrastructure
- RNA, Plant/genetics
- RNA, Plant/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Kobi Buxdorf
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | |
Collapse
|