1
|
Belkina D, Karpova D, Porotikova E, Lifanov I, Vinogradova S. Grapevine Virome of the Don Ampelographic Collection in Russia Has Concealed Five Novel Viruses. Viruses 2023; 15:2429. [PMID: 38140672 PMCID: PMC10747563 DOI: 10.3390/v15122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, an analysis of the virome of 51 grapevines from the Don ampelographic collection named after Ya. I. Potapenko (Russia) was performed using high-throughput sequencing of total RNA. A total of 20 previously described grapevine viruses and 4 viroids were identified. The most detected were grapevine rupestris stem pitting-associated virus (98%), hop stunt viroid (98%), grapevine Pinot gris virus (96%), grapevine yellow speckle viroid 1 (94%), and grapevine fleck virus (GFkV, 80%). Among the economically significant viruses, the most present were grapevine leafroll-associated virus 3 (37%), grapevine virus A (24%), and grapevine leafroll-associated virus 1 (16%). For the first time in Russia, a grapevine-associated tymo-like virus (78%) was detected. After a bioinformatics analysis, 123 complete or nearly complete viral genomes and 64 complete viroid genomes were assembled. An analysis of the phylogenetic relationships with reported global isolates was performed. We discovered and characterized the genomes of five novel grapevine viruses: bipartite dsRNA grapevine alphapartitivirus (genus Alphapartitivirus, family Partitiviridae), bipartite (+) ssRNA grapevine secovirus (genus Fabavirus, family Secoviridae) and three (+) ssRNA grapevine umbra-like viruses 2, -3, -4 (which phylogenetically occupy an intermediate position between representatives of the genus Umbravirus and umbravirus-like associated RNAs).
Collapse
Affiliation(s)
- Daria Belkina
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Daria Karpova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Elena Porotikova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Ilya Lifanov
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Svetlana Vinogradova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| |
Collapse
|
2
|
Read DA, Thompson GD, Swanevelder DZH, Pietersen G. Metaviromic Characterization of Betaflexivirus Populations Associated with a Vitis cultivar Collection in South Africa. Viruses 2023; 15:1474. [PMID: 37515161 PMCID: PMC10385141 DOI: 10.3390/v15071474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
South Africa is associated with a centuries-old viticultural industry, accompanied by a diverse range of wine and table grape cultivars and an extensive history of pervasive introductions of vine material and associated viruses. The Vitis D2 collection in Stellenbosch represents the most comprehensive collection of Vitis species, hybrids, and cultivars in South Africa. We collected leaf petiole material from 229 accessions from this collection. Our metaviromic analyses revealed a total of 406 complete/near complete genomes of various betaflexiviruses. Among these, we identified the presence of grapevine rupestris stem pitting-associated virus and grapevine viruses A, B, E, F, H (GVH), I (GVI), and M (GVM). Notably, this study marks the first report of GVH, GVI, and GVM in South Africa, which were confirmed via RT-PCR. This research significantly contributes to our understanding of viral diversity and introductions in South African viticulture and emphasizes the need for vigilant monitoring and management of viral infections. Our findings lay the groundwork for strategies that mitigate the impact of viruses on South Africa's wine industry, which generates an annual revenue of approximately 500 million USD.
Collapse
Affiliation(s)
- David A Read
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Genevieve D Thompson
- Gene Vantage, 53 Kyalami Boulevard, Kyalami Business Park, Johannesburg 1684, South Africa
| | - Dirk Z H Swanevelder
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria 0110, South Africa
| | | |
Collapse
|
3
|
Reynard JS, Brodard J, Zufferey V, Rienth M, Gugerli P, Schumpp O, Blouin AG. Nuances of Responses to Two Sources of Grapevine Leafroll Disease on Pinot Noir Grown in the Field for 17 Years. Viruses 2022; 14:1333. [PMID: 35746804 PMCID: PMC9227476 DOI: 10.3390/v14061333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Grapevine leafroll disease (GLD) is one of the most economically damaging virus diseases in grapevine, with grapevine leafroll-associated virus 1 (GLRaV-1) and grapevine leafroll-associated virus 3 (GLRaV-3) as the main contributors. This study complements a previously published transcriptomic analysis and compared the impact of two different forms of GLD to a symptomless control treatment: a mildly symptomatic form infected with GLRaV-1 and a severe form with exceptionally early leafroll symptoms (up to six weeks before veraison) infected with GLRaV-1 and GLRaV-3. Vine physiology and fruit composition in 17-year-old Pinot noir vines were measured and a gradient of vigor, yield, and berry quality (sugar content and berry weight) was observed between treatments. Virome composition, confirmed by individual RT-PCR, was compared with biological indexing. Three divergent viromes were recovered, containing between four to seven viruses and two viroids. They included the first detection of grapevine asteroid mosaic-associated virus in Switzerland. This virus did not cause obvious symptoms on the indicators used in biological indexing. Moreover, the presence of grapevine virus B (GVB) did not cause the expected corky bark symptoms on the indicators, thus underlining the important limitations of the biological indexing. Transmission of GLRaV-3 alone or in combination with GVB by Planococcus comstocki mealybug did not reproduce the strong symptoms observed on the donor plant infected with a severe form of GLD. This result raises questions about the contribution of each virus to the symptomatology of the plant.
Collapse
Affiliation(s)
| | - Justine Brodard
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Vivian Zufferey
- Groupe Viticulture, Agroscope, 1009 Pully, Switzerland; (J.-S.R.); (V.Z.)
| | - Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, 1260 Nyon, Switzerland;
| | - Paul Gugerli
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Olivier Schumpp
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| |
Collapse
|
4
|
Shvets D, Porotikova E, Sandomirsky K, Vinogradova S. Virome of Grapevine Germplasm from the Anapa Ampelographic Collection (Russia). Viruses 2022; 14:1314. [PMID: 35746784 PMCID: PMC9230720 DOI: 10.3390/v14061314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine germplasm collections are unique repositories of grape cultivars; therefore, it is necessary to minimize their infection with pathogens, including viruses, and develop various programs to maintain them in a virus-free state. In our study, we examined the virome of the largest Russian grapevine germplasm collection, the Anapa Ampelographic Collection, using high-throughput sequencing of total RNAs. As a result of bioinformatics analysis and validation of its results by reverse transcription PCR (RT-PCR) and quantitative RT-PCR (RT-qPCR), we identified 20 viruses and 3 viroids in 47 libraries. All samples were infected with 2 to 12 viruses and viroids, including those that cause economically significant diseases: leafroll, fleck, and rugose wood complex. For the first time in Russia, we detected Grapevine virus B (GVB), Grapevine virus F (GVF), Grapevine asteroid mosaic-associated virus (GAMaV), Grapevine Red Globe virus (GRGV), Grapevine satellite virus (GV-Sat), Grapevine virga-like virus (GVLV), Grapevine-associated jivivirus 1 (GaJV-1) and Vitis cryptic virus (VCV). A new putative representative of the genus Umbravirus with the provisional name Grapevine umbra-like virus (GULV) was also identified in Russian grape samples.
Collapse
Affiliation(s)
| | | | | | - Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky, Prospect 33, 119071 Moscow, Russia; (D.S.); (E.P.); (K.S.)
| |
Collapse
|
5
|
Read DA, Thompson GD, Cordeur NL, Swanevelder D, Pietersen G. Genomic characterization of grapevine viruses N and O: novel vitiviruses from South Africa. Arch Virol 2022; 167:611-614. [PMID: 34988696 DOI: 10.1007/s00705-021-05333-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
Abstract
A survey was performed on a Vitis cultivar collection in Stellenbosch, South Africa. Metaviromes were generated for each cultivar, using an RNAtag-seq workflow. Analysis of assembled contigs indicated the presence of two putatively novel members of the genus Vitivirus, provisionally named "grapevine virus N" (GVN) and "grapevine virus O" (GVO). Comparisons of amino acid sequences showed that GVN and GVO are most closely related to grapevine virus G and grapevine virus E, respectively. The incidence of these novel viruses within the sampling site was low, with GVO and GVN associated with only five and two cultivars, respectively, of the 229 sampled.
Collapse
Affiliation(s)
- David A Read
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa. .,Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Genevieve D Thompson
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa.,Gene Vantage, 34 Monte Carlo Crescent, Kyalami Business Park, Johannesburg, 1684, South Africa
| | | | - Dirk Swanevelder
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa
| | - Gerhard Pietersen
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Orfanidou CG, Moraki K, Panailidou P, Lotos L, Katsiani A, Avgelis A, Katis NI, Maliogka VI. Prevalence and Genetic Diversity of Viruses Associated with Rugose Wood Complex in Greek Vineyards. PLANT DISEASE 2021; 105:3677-3685. [PMID: 34085849 DOI: 10.1094/pdis-02-21-0266-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rugose wood is one of the most important disease syndromes of grapevine, and it has been associated with at least three viruses: grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A (GVA), and grapevine virus B (GVB). All three viruses show a worldwide distribution pattern, and their genetic composition has been the focus of extensive research in past years. Despite their first record in Greece almost 20 years ago, there is a lack of knowledge on the distribution and genetic variability of their populations in Greek vineyards. In this context, we investigated the distribution of GRSPaV, GVA, and GVB in rootstocks, self-rooted vines, and grafted grapevine cultivars originating from different geographic regions that represent important viticultural areas of Greece. Three new reverse transcription-PCR assays were developed for the reliable detection of GRSPaV, GVA, and GVB. Our results indicated that GVA is the most prevalent in Greek vineyards, followed by GRSPaV and GVB. However, virus incidence differed among self-rooted and grafted grapevine cultivars or rootstocks tested. Selected isolates from each virus were further molecularly characterized to determine their phylogenetic relationships. All three viruses exhibited high nucleotide diversity, which was depicted in the constructed phylogenetic trees. Isolates from Greece were placed in various phylogroups, reinforcing the scenario of multiple introductions of GVA, GVB, and GRSPaV in Greece and highlighting the effect of different transmission modes in the evolutionary course of the three viruses.
Collapse
Affiliation(s)
- C G Orfanidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - K Moraki
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - P Panailidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - L Lotos
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - A Katsiani
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - A Avgelis
- Department of Agriculture, Hellenic Mediterranean University, 71004 Heraklion, Crete
| | - N I Katis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - V I Maliogka
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| |
Collapse
|
7
|
Chitarra W, Cuozzo D, Ferrandino A, Secchi F, Palmano S, Perrone I, Boccacci P, Pagliarani C, Gribaudo I, Mannini F, Gambino G. Dissecting interplays between Vitis vinifera L. and grapevine virus B (GVB) under field conditions. MOLECULAR PLANT PATHOLOGY 2018; 19:2651-2666. [PMID: 30055094 PMCID: PMC6638183 DOI: 10.1111/mpp.12735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant virus infections are often difficult to characterize as they result from a complex molecular and physiological interplay between a pathogen and its host. In this study, the impact of the phloem-limited grapevine virus B (GVB) on the Vitis vinifera L. wine-red cultivar Albarossa was analysed under field conditions. Trials were carried out over two growing seasons by combining agronomic, molecular, biochemical and ecophysiological approaches. The data showed that GVB did not induce macroscopic symptoms on 'Albarossa', but affected the ecophysiological performances of vines in terms of assimilation rates, particularly at the end of the season, without compromising yield and vigour. In GVB-infected plants, the accumulation of soluble carbohydrates in the leaves and transcriptional changes in sugar- and photosynthetic-related genes seemed to trigger defence responses similar to those observed in plants infected by phytoplasmas, although to a lesser extent. In addition, GVB activated berry secondary metabolism. In particular, total anthocyanins and their acetylated forms accumulated at higher levels in GVB-infected than in GVB-free berries, consistent with the expression profiles of the related biosynthetic genes. These results contribute to improve our understanding of the multifaceted grapevine-virus interaction.
Collapse
Affiliation(s)
- Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)Via XVIII Aprile 26Conegliano31015Italy
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Francesca Secchi
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Irene Perrone
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Franco Mannini
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| |
Collapse
|
8
|
Beuve M, Hily JM, Alliaume A, Reinbold C, Le Maguet J, Candresse T, Herrbach E, Lemaire O. A complex virome unveiled by deep sequencing analysis of RNAs from a French Pinot Noir grapevine exhibiting strong leafroll symptoms. Arch Virol 2018; 163:2937-2946. [PMID: 30033497 DOI: 10.1007/s00705-018-3949-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/11/2018] [Indexed: 11/25/2022]
Abstract
We have characterized the virome of a grapevine Pinot Noir accession (P70) that displayed, over the year, very stable and strong leafroll symptoms. For this, we have used two extraction methods (dsRNA and total RNA) coupled with the high throughput sequencing (HTS) Illumina technique. While a great disparity in viral sequences were observed, both approaches gave similar results, revealing a very complex infection status. Five virus and viroid isolates [Grapevine leafroll-associated viruse-1 (GLRaV-1), Grapevine virus A (GVA), Grapevine rupestris stem pitting-associated virus (GRSPaV), Hop stunt viroid (HSVd) and Grapevine yellow speckle viroid 1 (GYSVd1)] were detected in P70 with a grand total of eleven variants being identified and de novo assembled. A comparison between both extraction methods regarding their power to detect viruses and the ease of genome assembly is also provided.
Collapse
Affiliation(s)
- Monique Beuve
- SVQV, Université de Strasbourg, 68000, Colmar, France
| | | | | | | | - Jean Le Maguet
- SVQV, Université de Strasbourg, 68000, Colmar, France
- Institut Français des Productions Cidricoles (IFPC), 61500, Sées, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Villenave d'Ornon Cedex, France
| | | | | |
Collapse
|
9
|
Fonseca F, Duarte V, Teixeira Santos M, Brazão J, Eiras-Dias E. First molecular characterization of grapevine virus B (GVB) in Portuguese grapevine cultivars and improvement of the RT-PCR detection assay. Arch Virol 2016; 161:3535-3540. [PMID: 27604120 DOI: 10.1007/s00705-016-3024-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/20/2016] [Indexed: 11/28/2022]
Abstract
This work describes the first molecular characterization of grapevine virus B (GVB) in Portuguese grapevine cultivars. During a routine screening of 44 accessions in the National Collection of Grapevine Varieties (CAN PRT051), 17 were found infected with GVB in DAS-ELISA assays with commercial antibodies. However, only six of the corresponding isolates were successfully amplified using primer pairs described in the literature. The sequence variants (ORF4-3'UTR, 1147 nt) retrieved from these isolates segregated into two phylogenetic groups, which included sequences from complete genomes available in GenBank. The highly discrepant results obtained using serological and RT-PCR-based diagnostic tools led to the design of a primer pair for detection of GVB, which allowed the amplification of a 606-bp GVB-specific fragment from all DAS-ELISA-positive isolates and also revealed the existence of false negatives in the serological testing.
Collapse
Affiliation(s)
- Filomena Fonseca
- CIMA, Universidade do Algarve, Campus de Gambelas, edifício 7, 8005-139, Faro, Portugal.
| | - Vilma Duarte
- CIMA, Universidade do Algarve, Campus de Gambelas, edifício 7, 8005-139, Faro, Portugal
| | | | - João Brazão
- INIAV, Quinta da Almoínha, 2565-191, Dois Portos, Portugal
| | | |
Collapse
|
10
|
Goszczynski DE. Brief report of the construction of infectious DNA clones of South African genetic variants of grapevine virus A and grapevine virus B. SPRINGERPLUS 2015; 4:739. [PMID: 26640751 PMCID: PMC4661162 DOI: 10.1186/s40064-015-1517-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 11/27/2022]
Abstract
Background Recent research results strongly suggest that certain genetic variants of grapevine virus A (GVA) and grapevine virus B (GVB), two members of the Vitivirus genus of the family Betaflexiviridae, are the cause of Shiraz disease and corky bark disease of grapevines in South Africa, respectively. To investigate this hypothesis, work was undertaken to construct DNA clones of these viruses. Findings and conclusions Biologically viable and stable DNA clones of genetic variants of GVA and GVB B from South Africa were constructed. The clones share 76.3, 73.2 and 85.2, 77.6 % nt sequence similarity with corresponding clones constructed in Italy and Israel. The results suggest that a derivative of a mini binary vector pCB302 is superior to pCAMBIA1305.1 for the construction of infectious and stable DNA clones of vitiviruses. Successful construction of such DNA clones of GVA and GVB reported in this study is a clear step towards fulfilling Koch’s 3rd postulate in investigating the aetiology of Shiraz disease and corky bark disease.
Collapse
Affiliation(s)
- D E Goszczynski
- Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Queenswood, Pretoria, 0121 South Africa
| |
Collapse
|
11
|
Kumar S, Singh L, Ferretti L, Barba M, Zaidi AA, Hallan V. Evidence of Grapevine leafroll associated virus-1-3, Grapevine fleck virus and Grapevine virus B Occurring in Himachal Pradesh, India. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:66-9. [PMID: 24426260 PMCID: PMC3650186 DOI: 10.1007/s13337-013-0129-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/29/2013] [Indexed: 11/30/2022]
Abstract
During a survey conducted in the grapevine orchards of Himachal Pradesh, variety of symptoms ranging from leaf yellowing, vein greening, reduced leaf size, downward rolling/cup shaped leaves to reduced fruit bearing were observed. Symptomatic leaf samples were collected and analyzed by serological (DAS-ELISA) and molecular methods (RT-PCR, PCR) for viruses and phytoplasma known worldwide on grapevine. DAS-ELISA was used for detection of Grapevine leafroll associated virus 1, 2 and 3 (GLRaV-1, 2 & 3), Grapevine virus A (GVA), Grapevine fan leaf virus (GFLV), Grapevine fleck virus (GFkV) and successfully detected GLRaV-1 & 3 and GFkV. All these samples were complemented with RT- PCR along with GVb and phytoplasma (additional to ELISA) using specific primers. Specific amplification in RT-PCR for GLRaV-1 (~232 bp), GLRaV-3 (~300 bp), GFkV (~179 bp) and GVB (~440 bp) confirmed the presence of these pathogens. Overall, ELISA and RT-PCR results confirmed the presence GLRaV-3 (66.7 %), GLRaV-1& GFkV (50 %), and Grapevine virus B (GVB) (12.5 %) in symptomatic plants. None of the samples were found positive for GFLV, GLRaV-2 and phytoplasma. Mixed infection was common and none of the plants were found virus free. To the best of our knowledge this is the first report of detection of GFkV and GVB in India.
Collapse
Affiliation(s)
- Surender Kumar
- />Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh India
| | - Lakhmir Singh
- />Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh India
| | - Luca Ferretti
- />C.R.A.—Centro di Ricerca per la Patologia Vegetale, Via C. G. Bertero, 22, 00156 Rome, Italy
| | - Marina Barba
- />C.R.A.—Centro di Ricerca per la Patologia Vegetale, Via C. G. Bertero, 22, 00156 Rome, Italy
| | - Aijaz A. Zaidi
- />Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh India
| | - Vipin Hallan
- />Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh India
| |
Collapse
|