1
|
Bhat S, Ansari MI, Kattoor JJ, Sircar S, Dar PS, Deol P, Vinodh Kumar OR, Thomas P, Ghosh S, El Zowalaty ME, Malik YS. Emerging porcine Enterovirus G infections, epidemiological, complete genome sequencing, evolutionary and risk factor analysis in India. Virology 2024; 590:109906. [PMID: 38096748 DOI: 10.1016/j.virol.2023.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024]
Abstract
The current study reports the in-depth analysis of the epidemiology, risk factors, and molecular characterization of a complete genome of Enterovirus G (EV-G) isolated from Indian pigs. We analysed several genes of EV-G isolates collected from various provinces in India, using phylogenetic analysis, recombination detection, SimPlot, and selection pressure analyses. Our analysis of 534 porcine faecal samples revealed that 11.61% (62/534) of the samples were positive for EV-G. While the G6 genotype was the most predominant, our findings showed that Indian EV-G strains also clustered with EV-G types G1, G6, G8, and G9. Furthermore, Indian EV-G strains exhibited the highest nucleotide similarity with Vietnamese (81.3%) and Chinese EV-G isolates (80.3%). Moreover, we identified a recombinant Indian EV-G strain with a putative origin from a Japanese isolate and South Korean EV-G isolate. In summary, our findings provide significant insights into the epidemiology, genetic diversity, and evolution of EV-G in India.
Collapse
Affiliation(s)
- Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Biosciences, Integral University Lucknow, India
| | - Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Comparative Pathobiology, Animal Disease Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907, USA
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Parvaiz Sikander Dar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pallavi Deol
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Institute for Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - O R Vinodh Kumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine,Basseterre P.O. 334, Saint Kitts and Nevis, West Indies
| | - Mohamed E El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, India.
| |
Collapse
|
2
|
Yang Y, Abi K, Li Y, Yang C, Yang F. First detection and molecular characteristics of bopivirus from goats in China. Front Vet Sci 2022; 9:1033011. [PMID: 36532341 PMCID: PMC9753977 DOI: 10.3389/fvets.2022.1033011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 10/13/2023] Open
Abstract
A metavirome analysis was performed and detected bopivirus in the diarrhoeal fecal samples of goats in China. A total of 136 fecal samples were collected from yeanlings between the dates of June 2021 and January 2022 in Sichuan province, China. Moreover, "Bopivirus B" strains were detected by a specific RT-PCR targeting the 3D gene of the virus. The results showed that the overall detection rate of "Bopivirus B" was 19.12% (26/136). Additionally, there was a higher detection rate (24.05%, 19/79) in the fecal samples collected from yeanlings with diarrhea compared to those from asymptomatic animals (12.28%, 7/57). In these samples, no other common diarrhea-causing pathogens were detected except for three enteric viruses, namely caprine enterovirus, caprine kobuvirus and caprine hunnivirus (with detection rates of 13.97, 13.97, and 8.82%, respectively). Subsequently, full-length VP4, VP2, VP3, and VP1 genes from "Bopivirus B"-positive samples were amplified, cloned, sequenced, and analyzed. The phylogenetic analysis performed on the VP1 genes revealed that the identified bopivirus belonged to genotype B1 (seven strains) and B2 (three strains) and presented a high genetic diversity. Furthermore, a complete genome sequence of a "Bopivirus B" strain (SWUN/B1/2022) was obtained using PCR from fecal sample of a diarrhoeal yeanling. The complete genome was 7,309 nucleotides in length with a standard picornavirus genome organization, and shares 93.10% and 91.10% nucleotide similarity with bopivirus B1 genotype strain ovine/TB14/2010-HUN and bopivirus B2 genotype strain goat/AGK16/2020-HUN, respectively. According to the species classification criteria put forward by the International Committee on Taxonomy of Viruses and VP1 genotype, the strain SWUN/B1/2022 belongs to the bopivirus B1. This strain has unique amino acid substitutions in the VP4, VP2, VP3, and VP1 genes. Moreover, genomic recombination analysis revealed that this strain may be a minor parental strain of bopivirus B1 ovine/TB14/2010-HUN. Evolutionary analysis based on the 2C and 3CD genes revealed that the new bopivirus B1 strain SWUN/B1/2022 presents a unique evolutionary pattern. This study provided evidence to suggest that "Bopivirus B" is circulating with substantial genetic diversity in goats in China at present, and the mixed infection of "Bopivirus B" with other enteric viruses should be considered to be a composite factor in the occurrence of viral diarrhea in goats.
Collapse
Affiliation(s)
- Youwen Yang
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Kehamo Abi
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yanmin Li
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Chen Yang
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Falong Yang
- Department of Veterinary Medicine, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| |
Collapse
|
3
|
Li Y, Liang J, Wu S, Yan Z, Zhang W. Complete genomic sequence analysis and intestinal tissue localization of a porcine Kobuvirus variant in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 104:105362. [PMID: 36084837 DOI: 10.1016/j.meegid.2022.105362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Porcine kobuvirus (PKV) infection is very common in both healthy pigs and diarrhea pigs throughout the world. However, there is no proof that it causes diarrhea, and little is known about its role in diarrhea. There are only a few reports concerning porcine kobuvirus separation at present, which makes investigating its invasion and pathogenesis mechanisms difficult. This study sequenced the entire genome of a porcine kobuvirus strain termed "Wuhan2020" after it was isolated from intestinal tissue samples of healthy piglets. The analysis results revealed that it shared the most resemblance with the WUH1 strain (89.5%) and belonged to the same evolutionary branch as the Hungarian strain S-1-SUN. The PKV was located using the in situ hybridization (ISH) approach, which revealed that it was colonized in intestinal villus epithelial cells and lymphocytes in the Peyer's patch. In general, we analyzed the genetic evolution of PKV, discovered PKV susceptible cells and determined PKV localization in the intestine of infected pigs, providing a reference for future research.
Collapse
Affiliation(s)
- Yang Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jixiang Liang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Simin Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Zhishan Yan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
4
|
Werid GM, Ibrahim YM, Chen H, Fu L, Wang Y. Molecular Detection and Genetic Characterization of Potential Zoonotic Swine Enteric Viruses in Northern China. Pathogens 2022; 11:pathogens11040417. [PMID: 35456092 PMCID: PMC9031704 DOI: 10.3390/pathogens11040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Despite significant economic and public health implications, swine enteric viruses that do not manifest clinical symptoms are often overlooked, and data on their epidemiology and pathogenesis are still scarce. Here, an epidemiological study was carried out by using reverse transcription-polymerase chain reaction (RT-PCR) and sequence analysis in order to better understand the distribution and genetic diversity of porcine astrovirus (PAstV), porcine encephalomyocarditis virus (EMCV), porcine kobuvirus (PKV), and porcine sapovirus (PSaV) in healthy pigs reared under specific pathogen-free (SPF) or conventional farms. PKV was the most prevalent virus (51.1%, 247/483), followed by PAstV (35.4%, 171/483), then PSaV (18.4%, 89/483), and EMCV (8.7%, 42/483). Overall, at least one viral agent was detected in 300 out of 483 samples. Out of the 300 samples, 54.0% (162/300), 13.0% (39/300), or 1.0% (3/300) were found coinfected by two, three, or four viruses, respectively. To our knowledge, this is the first report of EMCV detection from porcine fecal samples in China. Phylogenetic analysis revealed genetically diverse strains of PAstV, PKV, and PSaV circulating in conventional and SPF farms. Detection of swine enteric viruses with a high coinfection rate in healthy pigs highlights the importance of continuous viral surveillance to minimize future economic and public health risks.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
| | - Yassein M. Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing 408599, China
- Correspondence: (L.F.); (Y.W.)
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
- Chongqing Academy of Animal Science, Chongqing 408599, China
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Correspondence: (L.F.); (Y.W.)
| |
Collapse
|
5
|
Abi KM, Yu Z, Jing ZZ, Tang C. Identification of a novel Aichivirus D in sheep. INFECTION GENETICS AND EVOLUTION 2021; 91:104810. [PMID: 33741511 DOI: 10.1016/j.meegid.2021.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
A novel kobuvirus was found in diarrheal fecal samples of Tibetan sheep using a viral metagenomics approach, and a full kobuvirus genome was successfully obtained by RT-PCR from a diarrheal fecal sample. The full genomic sequence was 8485 nucleotides (nt) in length with a standard picornavirus genome organization. The novel genome shares 62.9% and 77.8% nt homology with Aichivirus D1 genotype strain 1-22-KoV, and Aichivirus D2 genotype strain 2-44-KoV, respectively. According to the species classification criteria of the International Committee on Taxonomy of Viruses (ICTV), the new kobuvirus belongs to Aichivirus species D. Interestingly, compared with 2 known Aichivirus D genotype strains, the novel Aichivirus D has unique amino acid substitutions in the 5'untranslated region (-UTR), VP0, VP3, and VP1, with a recombination event in the 2C region.These characteristics make the novel Aichivirus D cluster into an independent branch in the phylogenetic tree, suggesting that strain may represent a novel genotype in Aichivirus D. Moreover, the novel Aichivirus D was detected in 9.2% (18/195) of the sheep diarrheal fecal samples from 4 farms in 3 counties of the Qinghai Tibet Plateau in China. In addition, full-length VP0, VP3, and VP1 genes were successfully obtained from 12 samples from 4 farms, and phylogenetic analysis based on these genes revealed a unique evolutionary pattern for this novel Aichivirus D strain. This study identified a novel Aichivirus D that is circulating in sheep in Qinghai Tibet Plateau in China and these findings provide a better understanding of the epidemiologic and genetic evolution of kobuviruses.
Collapse
Affiliation(s)
- Keha-Mo Abi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Zhonghua Yu
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Hongyuan 624400, PR China
| | - Zhi Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
6
|
Sobhy NM, Armién AG, Wünschmann A, Muldoon D, Goyal SM, Mor SK. Detection and molecular characterization of kobuvirus from diarrheic goats in Minnesota. J Vet Diagn Invest 2020; 32:873-879. [PMID: 33140709 DOI: 10.1177/1040638720949475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kobuvirus infections are common among humans, rodents, carnivores, pigs, and ruminants. We report herein the complete genome sequence of a novel caprine kobuvirus (MN604700) from diarrheic kids in Minnesota. Whole-genome sequencing revealed a kobuvirus genome of 8,139 nt with a single ORF region encoding a polyprotein of 2,480 amino acids. Further analysis revealed nt substitutions along the genome compared with that of the caprine kobuvirus reference strain, with 93% identity. Phylogenetic analysis indicated that the clade of the caprine kobuvirus was most closely related to porcine kobuviruses rather than bovine or ovine kobuviruses. Using primers designed from this genome, caprine kobuvirus was identified in the stools of other goats. Sanger sequencing of PCR products indicated 3D and VP1 gene nucleotides of this latter strain were 95% and 91% identical with those of MN604700, respectively. There were 35 and 101 nt substitutions in 3D and VP1 genes, respectively. Findings of kobuvirus over a 2-y period may indicate an endemic state, which needs further research. In addition, screening for kobuviruses over large geographic areas is needed to identify the evolutionary connections among different strains.
Collapse
Affiliation(s)
- Nader M Sobhy
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN.,Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Aníbal G Armién
- California Animal Health and Food Safety Laboratory System, University of California-Davis, Davis, CA
| | - Arno Wünschmann
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Dean Muldoon
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Sagar M Goyal
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Sunil K Mor
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| |
Collapse
|
7
|
Zhai SL, Zhang H, Lin T, Chen SN, Zhou X, Chen QL, Lv DH, Wen XH, Zhou XR, Jia CL, Wei WK. A novel porcine kobuvirus emerged in piglets with severe diarrhoea in China. Transbound Emerg Dis 2017; 64:1030-1036. [DOI: 10.1111/tbed.12663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- S.-L. Zhai
- Guangdong Key Laboratory of Animal Disease Prevention; Animal Disease Diagnostic Center; Institute of Animal Health; Guangdong Academy of Agricultural Sciences; Guangzhou China
| | - H. Zhang
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - T. Lin
- Department of Chemistry and Biochemistry; South Dakota State University; Brookings SD USA
| | - S.-N. Chen
- Department of Chemistry and Biochemistry; South Dakota State University; Brookings SD USA
| | - X. Zhou
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Q.-L. Chen
- Guangdong Key Laboratory of Animal Disease Prevention; Animal Disease Diagnostic Center; Institute of Animal Health; Guangdong Academy of Agricultural Sciences; Guangzhou China
| | - D.-H. Lv
- Guangdong Key Laboratory of Animal Disease Prevention; Animal Disease Diagnostic Center; Institute of Animal Health; Guangdong Academy of Agricultural Sciences; Guangzhou China
| | - X.-H. Wen
- Guangdong Key Laboratory of Animal Disease Prevention; Animal Disease Diagnostic Center; Institute of Animal Health; Guangdong Academy of Agricultural Sciences; Guangzhou China
| | - X.-R. Zhou
- Guangdong Key Laboratory of Animal Disease Prevention; Animal Disease Diagnostic Center; Institute of Animal Health; Guangdong Academy of Agricultural Sciences; Guangzhou China
| | - C.-L. Jia
- Guangdong Key Laboratory of Animal Disease Prevention; Animal Disease Diagnostic Center; Institute of Animal Health; Guangdong Academy of Agricultural Sciences; Guangzhou China
| | - W.-K. Wei
- Guangdong Key Laboratory of Animal Disease Prevention; Animal Disease Diagnostic Center; Institute of Animal Health; Guangdong Academy of Agricultural Sciences; Guangzhou China
| |
Collapse
|
8
|
Complete genome analysis of porcine kobuviruses from the feces of pigs in Japan. Virus Genes 2017; 53:593-602. [PMID: 28484931 DOI: 10.1007/s11262-017-1464-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Porcine kobuviruses (PoKoVs) are ubiquitously distributed in pig populations worldwide and are thought to be enteric viruses in swine. Although PoKoVs have been detected in pigs in Japan, no complete genome data for Japanese PoKoVs are available. In the present study, 24 nearly complete or complete sequences of the PoKoV genome obtained from 10 diarrheic feces and 14 non-diarrheic feces of Japanese pigs were analyzed using a metagenomics approach. Japanese PoKoVs shared 85.2-100% identity with the complete coding nucleotide (nt) sequences and the closest relationship of 85.1-98.3% with PoKoVs from other countries. Twenty of 24 Japanese PoKoVs carried a deletion of 90 nt in the 2B coding region. Phylogenetic tree analyses revealed that PoKoVs were not grouped according to their geographical region of origin and the phylogenetic trees of the L, P1, P2, and P3 genetic regions showed topologies different from each other. Similarity plot analysis using strains from a single farm revealed partially different similarity patterns among strains from identical farm origins, suggesting that recombination events had occurred. These results indicate that various PoKoV strains are prevalent and not restricted geographically on pig farms worldwide and the coexistence of multiple strains leads to recombination events of PoKoVs and contributes to the genetic diversity and evolution of PoKoVs.
Collapse
|
9
|
Detection and molecular characterization of porcine kobuvirus in piglets in 2009-2013 in northern Thailand. Trop Anim Health Prod 2017; 49:1077-1080. [PMID: 28466239 DOI: 10.1007/s11250-017-1298-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
A total of 636 fecal samples collected from piglets with and without diarrhea during 2009 to 2013 were tested for porcine kobuvirus by RT-PCR. From a total of 528 fecal samples collected from piglets with diarrhea and 108 from healthy controls, 505 (95.6%) and 104 (96.3%) were positive for porcine kobuvirus, respectively. The detection rates of porcine kobuvirus were remarkable equally high in both diarrheic and healthy piglets. Phylogenetic analysis revealed that porcine kobuvirus strains detected in both symptomatic and asymptomatic piglets were genetically closely related to each other and also to other porcine kobuviruses reported worldwide. It was interesting to point out that one of the porcine kobuvirus strains isolated from piglet in our study was similar to a porcine-like bovine kobuvirus reference strain isolated previously in South Korea. This finding provided the evidence to support the interspecies transmission of kobuviruses between cattle and swine.
Collapse
|
10
|
Amimo JO, El Zowalaty ME, Githae D, Wamalwa M, Djikeng A, Nasrallah GK. Metagenomic analysis demonstrates the diversity of the fecal virome in asymptomatic pigs in East Africa. Arch Virol 2016; 161:887-97. [PMID: 26965436 DOI: 10.1007/s00705-016-2819-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/03/2016] [Indexed: 01/01/2023]
Abstract
Pigs harbor a variety of viruses that are closely related to human viruses and are suspected to have zoonotic potential. Little is known about the presence of viruses in smallholder farms where pigs are in close contact with humans and wildlife. This study provides insight into viral communities and the prevalence and characteristics of enteric viral co-infections in smallholder pigs in East Africa. Sequence-independent amplification and high-throughput sequencing were applied to the metagenomics analysis of viruses in feces collected from asymptomatic pigs. A total of 47,213 de novo-assembled contigs were constructed and compared with sequences from the GenBank database. Blastx search results revealed that 1039 contigs (>200 nt) were related to viral sequences in the GenBank database. Of the 1039 contigs, 612 were not assigned to any viral taxa because they had little similarity to known viral genomic or protein sequences, while 427 contigs had a high level of sequence similarity to known viruses and were assigned to viral taxa. The most frequent contigs related to mammalian viruses resembling members of the viral genera Astrovirus, Rotavirus, Bocavirus, Circovirus, and Kobuvirus. Other less abundant contigs were related to members of the genera Sapelovirus, Pasivirus, Posavirus, Teschovirus and Picobirnavirus. This is the first report on the diversity of the fecal virome of pig populations in East Africa. The findings of the present study help to elucidate the etiology of diarrheal diseases in pigs and identify potential zoonotic and emerging viruses in the region. Further investigations are required to compare the incidence of these viruses in healthy and diseased pigs in order to better elucidate their pathogenic role.
Collapse
Affiliation(s)
- Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O Box 29053, Nairobi, 00625, Kenya. .,Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya.
| | | | - Dedan Githae
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya
| | - Mark Wamalwa
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya
| | - Apollinaire Djikeng
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar. .,Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
11
|
Lu L, Van Dung N, Bryant JE, Carrique-Mas J, Van Cuong N, Anh PH, Rabaa MA, Baker S, Simmonds P, Woolhouse ME. Evolution and phylogeographic dissemination of endemic porcine picornaviruses in Vietnam. Virus Evol 2016; 2:vew001. [PMID: 27774295 PMCID: PMC4989877 DOI: 10.1093/ve/vew001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the Picornaviridae are important and often zoonotic viruses responsible for a variety of human and animal diseases. However, the evolution and spatial dissemination of different picornaviruses circulating in domestic animals are not well studied. We examined the rate of evolution and time of origin of porcine enterovirus G (EV-G) and porcine kobuvirus species C lineages (PKV-C) circulating in pig farms in Vietnam and from other countries. We further explored the spatiotemporal spread of EV-G and PKV-C in Southwest Vietnam using phylogeographic models. Multiple types of EV-G are co-circulating in Vietnam. The two dominant EV-G types among isolates from Vietnam (G1 and G6) showed strong phylogenetic clustering. Three clades of PKV-C (PKV-C1-3) represent more recent introductions into Vietnam; PKV-C2 is closely related to PKV-C from Southwest China, indicating possible cross-border dissemination. In addition, high virus lineage migration rates were estimated within four districts in Dong Thap province in Vietnam for both EV-G types (G1, G6) and all PKV-C (C1-3) clades. We found that Chau Thanh district is a primary source of both EV-G and PKV-C clades, consistent with extensive pig trading in and out of the district. Understanding the evolution and spatial dissemination of endemic picornaviruses in pigs may inform future strategies for the surveillance and control of picornaviruses.
Collapse
Affiliation(s)
- Lu Lu
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Nguyen Van Dung
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam,; Nuffield Department of Medicine, Oxford University, Old Rd, Oxford OX3 7LF, UK and
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Pham Honh Anh
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam,; Nuffield Department of Medicine, Oxford University, Old Rd, Oxford OX3 7LF, UK and; The London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK,; Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Mark E Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
12
|
Van Dung N, Anh PH, Van Cuong N, Hoa NT, Carrique-Mas J, Hien VB, Sharp C, Rabaa M, Berto A, Campbell J, Baker S, Farrar J, Woolhouse ME, Bryant JE, Simmonds P. Large-scale screening and characterization of enteroviruses and kobuviruses infecting pigs in Vietnam. J Gen Virol 2015; 97:378-388. [PMID: 26653281 DOI: 10.1099/jgv.0.000366] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A recent survey of pigs in Dong Thap province, Vietnam identified a high frequency of enterovirus species G (EV-G) infection (144/198; 72.7%). Amongst these was a plethora of EV-G types (EV-G1, EV-G6 and four new types EV-G8-EV-G11). To better characterize the genetic diversity of EV-G and investigate the possible existence of further circulating types, we performed a larger-scale study on 484 pig and 45 farm-bred boar faecal samples collected in 2012 and 2014, respectively. All samples from the previous and current studies were also screened for kobuviruses. The overall EV infection frequency remained extremely high (395/484; 81.6%), but with comparable detection rates and viral loads between healthy and diarrhoeic pigs; this contrasted with less frequent detection of EV-G in boars (4/45; 8.9%). EV was most frequently detected in pigs ≤ 14 weeks old (∼ 95%) and declined in older pigs. Infections with EV-G1 and EV-G6 were most frequent, whilst less commonly detected types included EV-G3, EV-G4 and EV-G8-EV-G11, and five new types (EV-G12-EV-G16). In contrast, kobuvirus infection frequency was significantly higher in diarrhoeic pigs (40.9 versus 27.6%; P = 0.01). Kobuviruses also showed contrasting epizootiologies and age associations; a higher prevalence was found in boars (42%) compared with domestic pigs (29%), with the highest infection frequency amongst pigs >52 weeks old. Although genetically diverse, all kobuviruses identified belonged to the species Aichivirus C. In summary, this study confirms infection with EV-G was endemic in Vietnamese domestic pigs and exhibits high genetic diversity and extensive inter-type recombination.
Collapse
Affiliation(s)
- Nguyen Van Dung
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Pham Hong Anh
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Vo Be Hien
- Subdepartment of Animal Health, Dong Thap Province, Vietnam
| | - C Sharp
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - M Rabaa
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - A Berto
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - James Campbell
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, UK.,London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Mark E Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Peter Simmonds
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK.,Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
13
|
Liu P, Li P, Lyu W, Li X, Li S, Yang F, Huang J, Xu Z, Zhu L. Epidemiological study and variation analysis of the porcine kobuvirus 3D gene in Sichuan province, China. Virol Sin 2015; 30:460-3. [PMID: 26637336 DOI: 10.1007/s12250-015-3632-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Pengjuan Liu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Ping Li
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Wenting Lyu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Xinqiong Li
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Song Li
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Fan Yang
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Jianbo Huang
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Ling Zhu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China.
| |
Collapse
|
14
|
Jin WJ, Yang Z, Zhao ZP, Wang WY, Yang J, Qin AJ, Yang HC. Genetic characterization of porcine kobuvirus variants identified from healthy piglets in China. INFECTION GENETICS AND EVOLUTION 2015; 35:89-95. [PMID: 26238210 DOI: 10.1016/j.meegid.2015.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/20/2023]
Abstract
In this study, two porcine kobuvirus strains, JS-01-CHN and JS-02a-CHN were detected from piglets with diarrhea and asymptomatic, respectively. The sequences of the two strains were analyzed using a bioinformatics software package. The full-length genome of JS-02a-CHN, was detected in healthy piglets was 8121 nucleotides (nt) long excluding the poly(A) tail. There was a 30 amino acid deletion in the 2B-coding region of JS-02a-CHN. We are the first to report a 30 amino acid deletion in porcine kobuvirus from asymptomatic piglets, indicating that porcine kobuvirus may have evolved differently based on geography and host differences. Fecal samples were obtained from pigs with diarrhea (n=91) and healthy (n=126) pigs and analyzed using RT-PCR. Of these, 64.8% (59/91) of diarrheic piglets and 19.8% (25/126) of healthy piglets were positive for PKV using VP1 specific primers. Twenty-eight (28) virus positive samples were randomly selected and the VP1 gene was analyzed. Phylogenetic analysis indicated that the 15 strains isolated from pigs with diarrhea clustered into different branches, while the VP1 sequences from clinically healthy pigs clustered into a single large group. These results indicate that the VP1 gene is diverse in pigs with diarrhea but conserved in healthy pigs in the Jiangsu Province.
Collapse
Affiliation(s)
- Wen-Jie Jin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Zhen Yang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Zhen-Peng Zhao
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Wan-Yi Wang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Juan Yang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Ai-Jian Qin
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Han-Chun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
15
|
Genetic characterization of porcine kobuvirus and detection of coinfecting pathogens in diarrheic pigs in Jiangsu Province, China. Arch Virol 2014; 159:3407-12. [PMID: 25119679 DOI: 10.1007/s00705-014-2204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023]
Abstract
In this study, 396 samples from diarrheic pigs on 46 pig farms in Jiangsu Province, China, were analyzed by RT-PCR. One-hundred eighty-one pigs from 37 farms tested positive for porcine kobuvirus (PKV). Phylogenetic analysis of the 3D gene from 19 isolates showed sequence homology of 88.0 %-100 % and 69.4 %-100 % for nucleotides and amino acids, respectively, while similarity to isolates of other kobuviruses was 69.6 %-78.8 % and 27.8 %-56.9 %, respectively. One-hundred eighty-five samples contained two or more pathogens, and 31/68 PKV-positive samples tested positive for other diarrheic pathogens, confirming the existence of PKV infection and coinfection.
Collapse
|
16
|
Li X, Zhou Y, Ji H, Xu Z, Zhu L. One-step reverse transcription-loop-mediated isothermal amplification assay for sensitive and rapid detection of porcine kobuvirus. J Virol Methods 2014; 207:1-5. [PMID: 24972366 DOI: 10.1016/j.jviromet.2014.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/09/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Porcine kobuvirus (PKoV) is associated with swine gastroenteritis, but its pathogenesis is uncertain. In this study, a rapid one-step reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method for the detection of PKoV is developed. A set of four primers specific to six regions within the PKoV 3D gene was designed for the RT-LAMP assay using total RNA extracted from PKoV-infected tissues. The reaction temperature and time for this assay were optimized. Compared with reverse-transcription PCR, RT-LAMP was able to detect PKoV at a 100-fold lower dilution. No cross-reaction was observed with other similar viruses, indicating that the assay is highly specific for PKoV. To investigate the prevalence of PKoV in symptomatic pigs in Sichuan province, the newly developed method was used to detect PKoV in a panel of clinical specimens, yielding a positive rate of 86.7% (144/166) in piglets. The results showed that the RT-LAMP assay is highly feasible in clinical settings. The data confirm that the RT-LAMP assay is rapid, simple and cost-effective and is particularly suitable for simple diagnosis of PKoV both in the field and in the laboratory.
Collapse
Affiliation(s)
- Xinqiong Li
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Yuanchen Zhou
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Hongwei Ji
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China; Key Laboratory of Animal Disease and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Ling Zhu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China; Key Laboratory of Animal Disease and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
17
|
Molecular characterization and sequence analysis of the 2B region of Aichivirus C strains in Japan and Thailand. INFECTION GENETICS AND EVOLUTION 2014; 26:89-94. [PMID: 24837671 DOI: 10.1016/j.meegid.2014.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 11/20/2022]
Abstract
Aichivirus C is the third species in the genus Kobuvirus, family Picornaviridae, and the virus is circulating in pigs worldwide. Aichivirus A in humans and Aichivirus B in cows have been shown to associate with diarrheal diseases, however, the pathogenesis of Aichivirus C has not been demonstrated clearly. In this study, the full genome nucleotide sequence of the Thai strain, CMP06/2007/THA collected from stool sample of a diarrheal piglet was analyzed and identified as a variant type with a 90-nt deletion in the 2B-coding region. In addition, molecular characterization of nucleotide sequences of the 2B-coding region of Aichivirus C strains from six diarrheal and six healthy piglets in Thailand, and four strains from healthy pigs in Japan revealed that all of the strains in this study were variant types. These findings indicate that variant strains of Aichivirus C are circulating in Asian countries such as China, Thailand and Japan, and deletion of tandem repeat of 2B-region is unlikely to associate with the pathogenesis of the virus.
Collapse
|
18
|
Wang E, Yang B, Liu W, Liu J, Ma X, Lan X. Complete sequencing and phylogenetic analysis of porcine kobuvirus in domestic pigs in Northwest China. Arch Virol 2014; 159:2533-5. [PMID: 24777826 DOI: 10.1007/s00705-014-2087-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022]
Abstract
Porcine kobuvirus, a member of the genus Kobuvirus that is associated with diarrhea, has been reported in many countries. We determined the complete genome sequence and investigated the genetic evolution of the kobuvirus strain swKoV CH441, which was detected in the highland of Gansu province in Northwest China. The viral genome is 8149 nucleotides (nt) long, including a 29-nt poly(A) tail of the 3' end, and is 90 nt shorter in the 2B coding region than those of other kobuvirus strains whose sequences are available in the GenBank database. Phylogenetic analysis showed that swKoV CH441 was most closely related to porcine kobuvirus CH/HNXX-4 but more distantly related to other strains, including the strains GS-1/2012/CH and GS-2/2012/CH, which were detected in Gansu province, indicating that porcine kobuvirus may have geographic and host differences in evolution.
Collapse
Affiliation(s)
- Enli Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | | | | | | | | | | |
Collapse
|
19
|
Khamrin P, Maneekarn N, Okitsu S, Ushijima H. Epidemiology of human and animal kobuviruses. Virusdisease 2014; 25:195-200. [PMID: 25674585 DOI: 10.1007/s13337-014-0200-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/31/2014] [Indexed: 11/28/2022] Open
Abstract
Kobuviruses are member of the family Picornaviridae. Initially, members in Kobuvirus genus were named according to the basis of their host species. The viruses found in humans called "Aichi virus", the viruses from cattle called "bovine kobuvirus", and the viruses isolated from pigs called "porcine kobuvirus". Currently, taxonomy of kobuviruses has been proposed and the virus species have been renamed. The "Aichi virus" has been renamed as "Aichivirus A", "bovine kobuvirus" has been renamed as "Aichivirus B", and "porcine kobuvirus" has been changed to "Aichivirus C". Among Aichivirus A, three distinct members, including Aichi virus 1 (Aichivirus in human), canine kobuvirus 1, and murine kobuvirus 1, have been described. Aichi virus 1 in human is globally distributed and has been identified at low incidence (0-3 %) in sporadic acute gastroenteritis cases. Aichi virus 1 has been reported to be associated with variety types of clinical illnesses including diarrhea, vomiting, fever, purulent conjunctivitis, and respiratory symptoms. The studies from Japan, Spain, Germany, and Tunisia demonstrated that high antibody prevalence against Aichi virus 1 were found in the populations. Aichivirus B or previously known as bovine kobuvirus was first reported in 2003. Since then, Aichivirus B has also been reported from several countries worldwide. An overall prevalence of Aichivirus B varies from 1 to 34.5 %, and the highest prevalence was found in cattle with diarrhea in Korea. Aichivirus C or porcine kobuvirus is widely distributed in pigs. Aichivirus C has been found in both diarrhea and healthy pigs and the positive rate of this virus varies from 3.9 up to 100 %. It was reported that Aichivirus C was found with high prevalence in wild boars in Hungary. The accumulated data of the biological, pathological, as well as epidemiological studies of kobuviruses are still limited. Comprehensive global investigations of the prevalence and diversity are required and will be helpful for providing further insight into pathogenicity, genetic heterogeneity, interspecies transmission, and global distribution of kobuviruses.
Collapse
Affiliation(s)
- Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai, 50200 Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai, 50200 Thailand
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Identification and characterization of porcine kobuvirus variant isolated from suckling piglet in Gansu province, China. Viruses 2013; 5:2548-60. [PMID: 24145960 PMCID: PMC3814603 DOI: 10.3390/v5102548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 01/28/2023] Open
Abstract
Kobuviruses comprise three species, the Aichivirus A, Aichivirus B, and Aichivirus C (porcine kobuvirus). Porcine kobuvirus is endemic to pig farms and is not restricted geographically but, rather, is distributed worldwide. The complete genomic sequences of four porcine kobuvirus strains isolated during a diarrhea outbreak in piglets in the Gansu province of China were determined. Two of these strains exhibited variations relative to the traditional strains. The potential 3C/3D cleavage sites of the variant strains were Q/C, which differed from the Q/S in the traditional porcine kobuvirus genome. A 90-nucleotide deletion in the 2B protein and a single nucleotide insertion in the 3′UTR were found in the variant strains. The VP1 regions of all four porcine kobuviruses in our study were highly variable (81%–86%). Ten common amino acid mutations were found specifically at certain positions within the VP1 region. Significant recombination sites were identified using SimPlot scans of whole genome sequences. Porcine kobuviruses were also detected in pig serum, indicating that the virus can escape the gastrointestinal tract and travel to the circulatory system. These findings suggest that mutations and recombination events may have contributed to the high level of genetic diversity of porcine kobuviruses and serve as a driving force in its evolution.
Collapse
|
21
|
Chen L, Zhu L, Zhou YC, Xu ZW, Guo WZ, Yang WY. Molecular and phylogenetic analysis of the porcine kobuvirus VP1 region using infected pigs from Sichuan Province, China. Virol J 2013; 10:281. [PMID: 24025093 PMCID: PMC3847588 DOI: 10.1186/1743-422x-10-281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/10/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Porcine kobuvirus (PKoV) is a member of the Kobuvirus genus within the Picornaviridae family. PKoV is distributed worldwide with high prevalence in clinically healthy pigs and those with diarrhea. METHODS Fecal and intestinal samples (n = 163) from pig farms in Sichuan Province, China were obtained to determine the presence of PKoV using reverse transcription polymerase chain reaction assays. Specific primers were used for the amplification of the gene encoding the PKoV VP1 protein sequence. Sequence and phylogenetic analyses were conducted to clarify evolutionary relationships with other PKoV strains. RESULTS Approximately 53% (87/163) of pigs tested positive for PKoV. PKoV was widespread in asymptomatic pigs and those with diarrhea. A high prevalence of PKoV was observed in pigs younger than 4 weeks and in pigs with diarrhea. Phylogenetic analysis of 36 PKoV VP1 protein sequences showed that Sichuan PKoV strains formed four distinct clusters. Two pigs with diarrhea were found to be co-infected with multiple PKoV strains. Sequence and phylogenetic analyses revealed diversity within the same host and between different hosts. Significant recombination breakpoints were observed between the CHN/SC/31-A1 and CHN/SC/31-A3 strains in the VP1 region, which were isolated from the same sample. CONCLUSION PKoV was endemic in Sichuan Province regardless of whether pigs were healthy or suffering from diarrhea. Based on our statistical analyses, we suggest that PKoV was the likely causative agent of high-mortality diarrhea in China from 2010. For the first time, we provide evidence for the co-existence of multiple PKoV strains in one pig, and possible recombination events in the VP1 region. Our findings provide further insights into the molecular properties of PKoV, along with its epidemiology.
Collapse
Affiliation(s)
- Lei Chen
- Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Ya'an 625014Sichuan province, P,R, China.
| | | | | | | | | | | |
Collapse
|
22
|
Ribeiro J, de Arruda Leme R, Alfieri AF, Alfieri AA. High frequency of Aichivirus C (porcine kobuvirus) infection in piglets from different geographic regions of Brazil. Trop Anim Health Prod 2013; 45:1757-62. [DOI: 10.1007/s11250-013-0428-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 01/26/2023]
|