1
|
Chen T, Kong D, Hu X, Gao Y, Lin S, Liao M, Fan H. Influenza H7N9 Virus Hemagglutinin with T169A Mutation Possesses Enhanced Thermostability and Provides Effective Immune Protection against Lethal H7N9 Virus Challenge in Chickens. Vaccines (Basel) 2023; 11:1318. [PMID: 37631886 PMCID: PMC10460070 DOI: 10.3390/vaccines11081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
H7N9 avian influenza virus (AIV) has caused huge losses in the poultry industry and impacted human public health security, and still poses a potential threat. Currently, immune prevention and control of avian influenza relies on traditional inactivated vaccines; however, they have some limitations and genetically engineered avian influenza subunit vaccines may be potential candidate vaccines. In this study, a T169A mutation in the HA protein derived from H7N9 AIV A/Chicken/Guangdong/16876 (H7N9-16876) was generated using the baculovirus expression system (BVES). The results showed that the mutant (HAm) had significantly increased thermostability compared with the wild-type HA protein (HA-WT). Importantly, immunizing chickens with HAm combined with ISA 71VG elicited higher cross-reactive hemagglutination inhibition (HI) antibody responses and cytokine (IFN-γ and IL-4) secretion. After a lethal challenge with heterologous H7N9 AIV, the vaccine conferred chickens with 100% (10/10) clinical protection and effectively inhibited viral shedding, with 90% (9/10) of the chickens showing no virus shedding. The thermostability of HAm may represent an advantage in practical vaccine manufacture and application. In general, the HAm generated in this study represents a promising subunit vaccine candidate for the prevention and control of H7N9 avian influenza.
Collapse
Affiliation(s)
- Taoran Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Dexin Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Xiaolong Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Shaorong Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| |
Collapse
|
2
|
Stepanova E, Krutikova E, Wong PF, Matyushenko V, Bazhenova E, Isakova-Sivak I, Rudenko L. Safety, Immunogenicity, and Protective Efficacy of a Chimeric A/B Live Attenuated Influenza Vaccine in a Mouse Model. Microorganisms 2021; 9:microorganisms9020259. [PMID: 33513862 PMCID: PMC7910998 DOI: 10.3390/microorganisms9020259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023] Open
Abstract
Influenza A and B viruses cause significant morbidity and mortality worldwide. Current influenza vaccines are composed of three or four strains: A/H1N1, A/H3N2, and B (Victoria and Yamagata lineages). It is of great interest if immunization against both type A and B influenza viruses can be combined in a single vaccine strain, thus reducing the cost of vaccine production and the possibility of strain interference within the multicomponent vaccine. In the current study, we developed an experimental live cold-adapted influenza intertype reassortant (influenza A and B) vaccine on the live attenuated influenza vaccine (LAIV) A/Leningrad/134/17/57 backbone. Hemagglutinin (HA) and neuraminidase (NA) functional domains were inherited from the influenza B/Brisbane/60/2008 strain, whereas their packaging signals were substituted with appropriate fragments of influenza A virus genes. The recombinant A/B virus efficiently replicated in eggs and Madin–Darby Canine Kidney (MDCK) cells under optimal conditions, temperature-sensitive phenotype was maintained, and its antigenic properties matched the influenza B parental virus. The chimeric vaccine was attenuated in mice: after intranasal immunization, viral replication was seen only in nasal turbinates but not in the lungs. Immunological studies demonstrated the induction of IgG antibody responses against the influenza A and B virus, whereas hemagglutination inhibition (HAI) and neutralizing antibodies were detected only against the influenza B virus, resulting in significant protection of immunized animals against influenza B virus challenge. IFNγ-secreting CD8 effector memory T cells (CD44+CD62L−) were detected in mouse splenocytes after stimulation with the specific influenza A peptide (NP366); however, the T-cell response was not sufficient to protect animals against infection with a high-dose mouse-adapted A/California/07/2009 (H1N1pdm09) virus, most probably due to the mismatch of key T-cell epitopes of the H1N1 virus and the LAIV backbone. Overall, generation of the chimeric A/B LAIV virus on a licensed LAIV backbone demonstrated prospects for the development of safe and efficacious vaccine candidates that afford combined protection against both type A and type B influenza viruses; however, further optimization of the T-cell epitope content within the LAIV backbone may be required.
Collapse
|
3
|
Wang Q, Sun Z, Li J, Qin T, Ma H, Chen S, Peng D, Liu X. Identification of a universal antigen epitope of influenza A virus using peptide microarray. BMC Vet Res 2021; 17:22. [PMID: 33413356 PMCID: PMC7792037 DOI: 10.1186/s12917-020-02725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hemagglutinin is a major surface protein in influenza A virus (IAV), and HA2 is relative conserved among different IAVs. It will be meaningful to identify broad-spectrum epitopes based on the HA2 protein. Results Overlapping peptides of the HA2 protein of the H5N1 IAV A/Mallard/Huadong/S/2005 were synthesized and loaded on modified silica gel film to form a microarray, and antisera against different subtypes of IAVs were used to screen universal epitopes. The selected epitope was further confirmed by western blotting using anti-peptide immune serum and viruses rescued with amino acid substitution. The results showed that 485-FYHKCDNECME-495 of the H5 14th peptide in HA2 had broad-spectrum binding activity with antisera against H1, H3, H4, H5, H6, H7, H8, H9, and H10 subtype IAV. Substitution of amino acids (K or D) in rescued viruses resulted in decreased serum binding, indicating that they were critical residues for serum binding activity. In Immune Epitope Database, some epitopes containing 14–4 peptide were confirmed as MHC-II-restricted CD4 T cell epitope and had effects on releasing IL-2 or IFN. Conclusion The identified epitope should be a novel universal target for detection and vaccine design and its ability to generate immune protection needs further exploration. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02725-5.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhihao Sun
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
4
|
Influenza A H1 and H3 Transmembrane Domains Interact Differently with Each Other and with Surrounding Membrane Lipids. Viruses 2020; 12:v12121461. [PMID: 33348831 PMCID: PMC7765950 DOI: 10.3390/v12121461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hemagglutinin (HA) is a class I viral membrane fusion protein, which is the most abundant transmembrane protein on the surface of influenza A virus (IAV) particles. HA plays a crucial role in the recognition of the host cell, fusion of the viral envelope and the host cell membrane, and is the major antigen in the immune response during the infection. Mature HA organizes in homotrimers consisting of a sequentially highly variable globular head and a relatively conserved stalk region. Every HA monomer comprises a hydrophilic ectodomain, a pre-transmembrane domain (pre-TMD), a hydrophobic transmembrane domain (TMD), and a cytoplasmic tail (CT). In recent years the effect of the pre-TMD and TMD on the structure and function of HA has drawn some attention. Using bioinformatic tools we analyzed all available full-length amino acid sequences of HA from 16 subtypes across various host species. We calculated several physico-chemical parameters of HA pre-TMDs and TMDs including accessible surface area (ASA), average hydrophobicity (Hav), and the hydrophobic moment (µH). Our data suggests that distinct differences in these parameters between the two major phylogenetic groups, represented by H1 and H3 subtypes, could have profound effects on protein–lipid interactions, trimer formation, and the overall HA ectodomain orientation and antigen exposure.
Collapse
|
5
|
Wu J, Wang Y, Wei Y, Xu Z, Tan X, Wu Z, Zheng J, Liu GD, Cao Y, Xue C. Disulfide isomerase ERp57 improves the stability and immunogenicity of H3N2 influenza virus hemagglutinin. Virol J 2020; 17:55. [PMID: 32316996 PMCID: PMC7175539 DOI: 10.1186/s12985-020-01325-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hemagglutinin (HA), as the surface immunogenic protein, is the most important component of influenza viruses. Previous studies showed that the stability of HA was significant for HA's immunogenicity, and many efforts have been made to stabilize the expressed HA proteins. METHODS In this study, the protein disulfide isomerases (PDIs) were investigated for the ability to improve the stability of HA protein. Two members of the PDIs family, PDI and ERp57, were over-expressed or down-expressed in 293 T cells. The expression of H3 HA and PDIs were investigated by real-time qPCR, western-blot, immunofluorescence assay, and flow cytometry. The stability of HA was investigated by western-blot under non-reducing condition. Moreover, BALB/c mice were immunized subcutaneously twice with the vaccine that contained HA proteins from the ERp57-overexpressed and conventional 293 T cells respectively to investigate the impact of ERp57 on the immunogenicity of H3N2 HA. RESULTS The percentage of the disulfide-bonded HA trimers increased significantly in the PDIs-overexpressed 293 T cells, and ERp57 was more valid to the stability of HA than PDI. The knockdown of ERp57 by small interfering RNA significantly decreased the percentage of the disulfide-bonded HA trimers. HA proteins from ERp57-overexpressed 293 T cells stimulated the mice to generate significantly higher HA-specific IgG against H1N1 and H3N2 viruses than those from the conventional cells. The mice receiving H3 HA from ERp57-overexpressed 293 T cells showed the better resistance against H1N1 viruses and the higher survival rate than the mice receiving H3 HA from the conventional cells. CONCLUSION ERp57 could improve the stability and immunogenicity of H3N2 HA.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China.,Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Yang Wang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Ying Wei
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Xin Tan
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhihui Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jing Zheng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12050 167th PL NE, Redmond, WA, 98052, USA
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Tsai CH, Wei SC, Jan JT, Liao LL, Chang CJ, Chao YC. Generation of Stable Influenza Virus Hemagglutinin through Structure-Guided Recombination. ACS Synth Biol 2019; 8:2472-2482. [PMID: 31565926 DOI: 10.1021/acssynbio.9b00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hemagglutinin (HA) is the major surface antigen of influenza virus and the most promising influenza vaccine immunogen. In 2013, the devastating H7N9 influenza virus was identified in China, which induced high mortality. The HA of this virus (H7) is relatively unstable, making it challenging to produce an effective vaccine. To improve the stability of HA protein from H7N9 influenza virus for better vaccine antigens without impairing immunogenicity, we recombined the HA from H7N9 (H7) with a more stable HA from H3N2 (H3) by structure-guided recombination, resulting in six chimeric HAs, FrA-FrF. Two of these chimeric HAs, FrB and FrC, exhibited proper hemagglutination activity and presented improved thermal stability compared to the original H7. Mice immunized with FrB and FrC elicited H7-specific antibodies comparable to those induced by parental H7, and the antisera collected from these immunized mice successfully inhibited H7N9 infection in a microneutralization assay. These results suggest that our structural-recombination approach can create stabilizing chimeric antigens while maintaining proper immunogenicity, which may not only benefit the construction of more stable HA vaccines to fight against H7N9 infection, but also facilitate effective vaccine improvements for other influenza viruses or infectious pathogens. In addition, this study also demonstrates the potential for better engineering of multimeric protein complexes like HA to achieve improved function, which are often immunologically or pharmaceutically important but difficult to modify.
Collapse
Affiliation(s)
- Chih-Hsuan Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Lin-Li Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Chia-Jung Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Yu-Chan Chao
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan, ROC
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, ROC
| |
Collapse
|
7
|
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Viruses 2019; 11:v11050405. [PMID: 31052339 PMCID: PMC6563292 DOI: 10.3390/v11050405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cong Xu
- Research Center of Agricultural of Dongguan City, Dongguan 523086, China.
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12,050 167th PL NE, Redmond, WA 98052, USA.
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
H7 virus-like particles assembled by hemagglutinin containing H3N2 transmembrane domain and M1 induce broad homologous and heterologous protection in mice. Vaccine 2018; 36:5030-5036. [PMID: 30037418 PMCID: PMC7115656 DOI: 10.1016/j.vaccine.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
H7 VLPs-WT and H7 VLPs-TM have similar morphological and cleavage characteristics. H7 VLPs-TM has more HA trimers and better resists thermal changes than H7 VLPs-WT. H7 VLPs-TM induces stronger Th1 immune response than H7 VLPs-WT. H7 VLPs-TM induces broad homologous and heterologous protection in mice.
Influenza A H7N9 virus has caused five outbreak waves of human infections in China since 2013 and posed a dual challenge to public health and poultry industry. There is an urgent need to develop an effective vaccine to reduce its pandemic potential. In the present study, we evaluated the biochemical characteristics and immunogenicity of two H7 virus-like particles (VLPs) composed of the matrix 1 (M1) and hemagglutinin of wild-type (HA-WT) or hemagglutinin of whose transmembrane domain replaced by that from H3N2 subtype (HA-TM). H7 VLPs-WT and H7 VLPs-TM could assemble and release into the supernatant of Sf9 cells and they had similar morphological characteristics. However, compared to H7 VLPs-WT, H7 VLPs-TM had more trimeric HA proteins and could better resist thermal changes. In mice H7 VLPs-TM induced higher titers of HI, IgG, IgG2a and IFN-γ, and provided better protection against homologous and heterologous H7N9 viruses (no matter belonging to Yangtze River Delta or Pearl River Delta) challenge with less weight loss and higher survival rate. In summary, H7 VLPs-TM represents a potential strategy for the development of H7N9 vaccines.
Collapse
|
9
|
Recombinant influenza H9N2 virus with a substitution of H3 hemagglutinin transmembrane domain showed enhanced immunogenicity in mice and chicken. Sci Rep 2017; 7:17923. [PMID: 29263359 PMCID: PMC5738434 DOI: 10.1038/s41598-017-18054-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022] Open
Abstract
In recent years, avian influenza virus H9N2 undergoing antigenic drift represents a threat to poultry farming as well as public health. Current vaccines are restricted to inactivated vaccine strains and their related variants. In this study, a recombinant H9N2 (H9N2-TM) strain with a replaced H3 hemagglutinin (HA) transmembrane (TM) domain was generated. Virus assembly and viral protein composition were not affected by the transmembrane domain replacement. Further, the recombinant TM-replaced H9N2-TM virus could provide better inter-clade protection in both mice and chickens against H9N2, suggesting that the H3-TM-replacement could be considered as a strategy to develop efficient subtype-specific H9N2 influenza vaccines.
Collapse
|
10
|
Kononova AA, Cheresiz SV, Chechushkov AV, Razumova YV, Pokrovskii AG. Comparative Study of Fusogenic Activity of H1 and H5 Subtypes Influenza Virus Hemagglutinins. Bull Exp Biol Med 2017; 164:85-89. [PMID: 29119400 DOI: 10.1007/s10517-017-3930-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 10/18/2022]
Abstract
Influenza virus hemagglutinins are surface proteins responsible for fusion of the viral and cellular membranes. Their capacity to mediate membrane fusion (fusogenic activity) is studied by various methods, including the syncytium formation and pseudovirus transduction methods. We constructed plasmids coding for genes of three H1 and one H5 hemagglutinins and compared their fusogenic activities. Hemagglutinin capacity to induce syncytium formation did not always correlate with the transduction activity of the respective pseudoviruses. Hemagglutinin H5 exhibited high fusogenic activity in studies by both methods, however, two of the studied H1 hemagglutinins induced the formation of syncytia, but did not mediate pseudovirus transduction. This could be due to different capsid sizes of influenza virus and vesicular stomatitis virus, which determines their different permeability through the fusion pore.
Collapse
Affiliation(s)
- A A Kononova
- Novosibirsk National Research State University, Novosibirsk, Russia.
| | - S V Cheresiz
- Novosibirsk National Research State University, Novosibirsk, Russia
| | - A V Chechushkov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - Yu V Razumova
- Novosibirsk National Research State University, Novosibirsk, Russia
| | - A G Pokrovskii
- Novosibirsk National Research State University, Novosibirsk, Russia
| |
Collapse
|
11
|
Wang Y, Zhang Y, Wu J, Lin Y, Wu Z, Wei Y, Wei X, Qin J, Xue C, Liu GD, Cao Y. Recombinant influenza H7 hemagglutinin containing CFLLC minidomain in the transmembrane domain showed enhanced cross-protection in mice. Virus Res 2017; 242:16-23. [PMID: 28912070 DOI: 10.1016/j.virusres.2017.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 01/20/2023]
Abstract
Since February 2013, H7N9 influenza virus, causing human infections with high mortality in China, has been a potential pandemic threat. The H7N9 viruses are found to diverge into distinct genotypes as other influenza viruses; thus a vaccine that can provide sufficient cross-protection against different genotypes of H7N9 viruses is urgently needed. Our previous studies demonstrated that the HA-based structural design approach by introducing a CFLLC minidomain into transmembrane domain (TM) of H1, H5 or H9 hemagglutinin (HA) proteins by replacing with H3 subtype HA TM could enhance their cross-protection. In this study, we used Sf9 insect cell expression system to express recombinant H7 HA proteins H7-53WT, in which HA gene was derived from H7N9-53 strain, and H7-53TM containing CFLLC minidomian by replacing its TM domain with H3 HA TM. We investigated whether introduction of CFLLC minidomain into H7 HA (H7-53TM) could increase its cross-reactivity and cross-protection against different genotypes of H7N9 viruses. The results showed that the H7-53TM either with or without squalene adjuvant induced increased HI antibodies, serum IgG antibodies, and IFN-γ production to a panel of 7 H7N9 viruses in mice. Vaccinated animals with H7-53TM alone showed complete protection against challenge with heterologous H7N9-MCX strain, while H7-53WT alone showed incomplete protection (80%). Furthermore, mice vaccinated with H7-53TM HA showed less body weight loss and less pulmonary lesions and inflammation after challenge with homologous or heterologous H7N9 viruses, comparing to H7-53WT. In summary, this study presents a better subunit vaccine candidate (H7-53TM) against potential H7N9 pandemic.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jialing Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhihui Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaona Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianru Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12050 167th PL NE, Redmond, WA 98052, USA
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice. Antiviral Res 2017; 143:97-105. [DOI: 10.1016/j.antiviral.2017.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 11/20/2022]
|
13
|
Kordyukova L. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides. Virus Res 2017; 227:183-199. [DOI: 10.1016/j.virusres.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
|
14
|
Improved stability of recombinant hemagglutinin using a formulation containing sodium thioglycolate. Vaccine 2015; 33:6011-6. [PMID: 26409814 DOI: 10.1016/j.vaccine.2015.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/05/2015] [Accepted: 09/11/2015] [Indexed: 11/22/2022]
Abstract
This study was designed to improve the stability of liquid formulations of recombinant influenza hemagglutinin (rHA) and to understand the mechanism of early loss of potency for rHA. The potency of rHA derived from several influenza strains was determined using single radial immunodiffusion (SRID), and the structure of the rHA was characterized using SDS-PAGE and dynamic light scattering. rHA formed disulfide cross-linked multimers, and potency decreased during extended storage. To reduce disulfide-mediated cross-linking and early potency loss, rHA was formulated with sodium thioglycolate (STG) and citrate. Addition of 80 mM STG and 55 mM sodium citrate inhibited disulfide-mediated cross-linking without affecting protein function for each rHA tested. The shelf life of the rHA formulation with STG-citrate, based on potency as determined by SRID, was extended as much as 20-fold, compared to a control formulation without STG-citrate. STG-citrate did not have a significant effect on the immunogenicity of H1 A/California/7/2009 rHA in mice.
Collapse
|
15
|
Holtz KM, Robinson PS, Matthews EE, Hashimoto Y, McPherson CE, Khramtsov N, Reifler MJ, Meghrous J, Rhodes DG, Cox MM, Srivastava IK. Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss. BMC Biotechnol 2014; 14:111. [PMID: 25540031 PMCID: PMC4320835 DOI: 10.1186/s12896-014-0111-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 01/19/2023] Open
Abstract
Background Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency. Potency is measured by the Single Radial Immuno-diffusion (SRID) assay to determine the amount of HA that has the correct antigenic form. Results The five cysteine residues in the transmembrane (TM) and cytoplasmic (CT) domains of the rHA protein from the H3 A/Perth/16/2009 human influenza strain have been substituted to alanine and/or serine residues to produce three different site directed variants (SDVs). These SDVs have been evaluated to determine the impact of the TM and CT cysteines on potency, cross-linking, and the biochemical and biophysical properties of the rHA. Modification of these cysteine residues prevents disulfide bond cross-linking in the TM and CT, and the resulting rHA maintains potency for at least 12 months at 25°C. The strategy of substituting TM and CT cysteines to prevent potency loss has been successfully applied to another H3 rHA protein (from the A/Texas/50/2012 influenza strain) further demonstrating the utility of the approach. Conclusion rHA potency can be maintained by preventing non-specific disulfide bonding and cross-linked multimer formation. Substitution of carboxy terminal cysteines is an alternative to using reducing agents, and permits room temperature storage of the vaccine.
Collapse
|
16
|
Liu Q, Liu K, Xue C, Zhou J, Li X, Luo D, Zheng J, Xu S, Liu GD, Cao Y. Recombinant influenza H1, H5 and H9 hemagglutinins containing replaced H3 hemagglutinin transmembrane domain showed enhanced heterosubtypic protection in mice. Vaccine 2014; 32:3041-9. [PMID: 24704333 PMCID: PMC7115591 DOI: 10.1016/j.vaccine.2014.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/24/2014] [Accepted: 03/13/2014] [Indexed: 11/06/2022]
Abstract
We found H3-WT transmembrane domain is critical for H3 HA-induced hetero-protection. Wild-type H3 showed more hetero-protection than H1, H5 and H9 HAs. Replaced transmembrane domain had no apparent impact on in vitro expression of H1, H5 and H9 HA proteins in Sf9 cells. HAs with H3 transmembrane domain proteins exhibited enhanced heterosubtypic protections.
Influenza A viruses cause annual epidemics and irregular pandemics. A vaccine with heterosubtypic protection (hetero-protection) has been needed. In the present study, various influenza H1, H3, H5, and H9 hemagglutinin (HA) proteins were expressed in insect cells, and then mice were subcutaneously immunized with the expressed HA proteins, and challenged by influenza A viruses (A/Puerto Rico/8/1934 (H1N1) or A/chicken/Guangdong/96 (H9N2)). The results first showed that wild-type H3 hemagglutinin (HA) (H3-WT), but not a transmembrane domain (TM) mutant, had hetero-protection against both H1N1 and H9N2 with survival rates of 17% and 33% respectively, and that wild-type H1 (H1-WT), H5 (H5-WT) and H9 (H9-WT) had no hetero-protection against H1N1 or H9N2 except for H5-WT against H1N1 with a survival rate of 17%. Then the H3-WT TM replaced the TMs of H1-WT, H5-WT and H9-WT to generate recombinant H1-TM, H5-TM and H9-TM respectively, and whether the H3-WT TM-dependent hetero-protection could be transferred to these TM mutants was investigated. The results showed that the H3-WT TM-dependent hetero-protection was transferable. H1-TM against H9N2 and H9-TM against H1N1 were with survival rates of 33% and 17% respectively, and H5-TM against both H1N1 and H9N2 with survival rates of 50% and 17% respectively. Furthermore, higher dosage H5-TM scored 100% hetero-protection against H1N1. These results demonstrated that replacement of the TMs of non-H3 HAs with H3-WT TM could enhance their hetero-protection. These findings would help the development of future influenza vaccines against pandemics such as the recently appeared H7N9 infection.
Collapse
Affiliation(s)
- Qiliang Liu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kang Liu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jianqiang Zhou
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoming Li
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongyu Luo
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Zheng
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shun Xu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, 510006, China
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12050 167th PL NE, Redmond, WA 98052, USA
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Xu S, Zhou J, Liu Q, Liu K, Xue C, Li X, Zheng J, Luo D, Cao Y. Evidences for the existence of intermolecular disulfide-bonded oligomers in the H3 hemagglutinins expressed in insect cells. Virus Genes 2013; 48:304-11. [PMID: 24297311 DOI: 10.1007/s11262-013-1021-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/26/2013] [Indexed: 01/09/2023]
Abstract
The hemagglutinin (HA) protein as the predominant antigen, executes receptor binding and membrane fusion, which critically influence the virological characteristics of influenza viruses. The literature contained scattered data showing reduction-sensitive HA oligomers when HA proteins were analyzed under non-reducing conditions. However, whether the reduction-sensitive HA oligomers are inter-monomer disulfide-bonded has not been studied. Here, we showed: (1) the detection of β-mercaptoethanol-sensitive H3 HA oligomers was not affected by the treatment of cells with iodoacetamide prior to cell solubilization; (2) H3 HA oligomers were present on cell surfaces; (3) H3 HA oligomers had higher density than monomers; and (4) mutation of all the five C-terminal cysteines completely abolished the formation of H3 HA oligomers. Furthermore, mutant HAs with mutations of TM cysteines, CT cysteines or all five cysteines had decreased thermal stability but increased fusion activity in comparison with wildtype HA. In conclusion, this study has presented enough evidence for the existence of inter-monomer S-S H3 HA oligomers formed by five C-terminal cysteines, and suggested that all five C-terminal cysteines exerted opposite effects on HA thermal stability and fusion activity.
Collapse
Affiliation(s)
- Shun Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou J, Xu S, Ma J, Lei W, Liu K, Liu Q, Ren Y, Xue C, Cao Y. Recombinant influenza A H3N2 viruses with mutations of HA transmembrane cysteines exhibited altered virological characteristics. Virus Genes 2013; 48:273-82. [PMID: 24272698 DOI: 10.1007/s11262-013-1011-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/06/2013] [Indexed: 01/20/2023]
Abstract
Influenza A H3N2 virus as the cause of 1968 pandemic has since been circulating in human and swine. Our earlier study has shown that mutations of one or two cysteines in the transmembrane domain of H3 hemagglutinin (HA) affected the thermal stability and fusion activity of recombinant HA proteins. Here, we report the successful generation of three recombinant H3N2 mutant viruses (C540S, C544L, and 2C/SL) with mutations of one or two transmembrane cysteines of HA in the background of A/swine/Guangdong/01/98 [H3N2] using reverse genetics, indicating that the mutated cysteines were not essential for virus assembly and growth. Further characterization revealed that recombinant H3N2 mutant viruses exhibited larger plaque sizes, increased growth rate in cells, enhanced fusion activity, reduced thermal and acidic resistances, and increased virulence in embryonated eggs. These results demonstrated that the transmembrane cysteines (C540 and C544) in H3 HA have profound effects on the virological features of H3N2 viruses.
Collapse
Affiliation(s)
- Jianqiang Zhou
- State Key Laboratory of Biocontrol, Life Sciences School, Guangzhou Higher Education Mega Center, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|