1
|
Nooruzzaman M, Mumu TT, Hossain I, Kabiraj CK, Begum JA, Rahman MM, Ali MZ, Giasuddin M, King J, Diel DG, Chowdhury EH, Harder T, Islam MR, Parvin R. Continuing evolution of H5N1 highly pathogenic avian influenza viruses of clade 2.3.2.1a G2 genotype in domestic poultry of Bangladesh during 2018-2021. Avian Pathol 2024:1-14. [PMID: 39382006 DOI: 10.1080/03079457.2024.2403427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 10/10/2024]
Abstract
We characterized 15 H5N1 HPAI viruses from different small- and medium-scale poultry flocks across Bangladesh during 2018-2021 based on their complete genome sequences. The antigenic relatedness of H5N1 HPAI viruses from different timepoints was analysed. During 2020-2021, 42.11% of the flocks tested positive for at least one of the respiratory infections, with 15.79% showing influenza A virus, of which 8.77% tested positive for HPAIV H5N1. Co-infections with two to four pathogens were detected in 15.8% of flocks. Phylogeny and gene constellation analyses based on complete genome sequences of 15 HPAI viruses revealed the continuing circulation of H5 clade 2.3.2.1a genotype G2 viruses. In the HA protein of the study isolates, functionally meaningful mutations caused the loss of an N-linked glycosylation site (T156A), a modified antigenic site A (S141P), and a mutation in the receptor binding pocket (E193R/K). Consequently, antigenic analysis revealed a significant loss of cross-reactivity between viruses from different host species and periods. Most viruses displayed oseltamivir resistance markers at positions V96, I97, S227, and N275 (N1 numbering) of the NA protein. In addition, for the PB2, M1, and NS1 proteins, significant mutations were noticed that have been associated with polymerase activity and increased virulence for mammals in all study isolates. These results highlight the need for intensified genomic surveillance of HPAI circulating in poultry in Bangladesh and for establishing appropriate control measures to decrease the circulation of these viruses in poultry in the country.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Tanjin Tamanna Mumu
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Congriev Kumar Kabiraj
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Mijanur Rahman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Zulfekar Ali
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Mohammed Giasuddin
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Khatun MN, Tasnim S, Hossain MR, Rahman MZ, Hossain MT, Chowdhury EH, Parvin R. Molecular epidemiology of avian influenza viruses and avian coronaviruses in environmental samples from migratory bird inhabitants in Bangladesh. Front Vet Sci 2024; 11:1446577. [PMID: 39434717 PMCID: PMC11491338 DOI: 10.3389/fvets.2024.1446577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Migratory birds are a natural reservoir for major respiratory viruses such as the avian influenza virus (AIV) and the avian coronavirus (AvCoV). Transmission of these viruses from migratory birds to domestic birds increases the prevalence of those diseases that cause severe economic and public health concerns in Bangladesh. The study focused on active surveillance of major respiratory viral pathogens in migratory birds, molecular identification of the viruses, and their phylogenetic origin. To conduct this study, 850 environmental samples (830 fecal samples, 10 soil samples, and 10 water samples) were collected during three consecutive winter seasons from three divisions (Dhaka, Sylhet, and Mymensingh) and pooled according to the year of collection and locations, resulting in a total of 184 tested samples. Using gene-specific primers and probes in TaqMan-and SYBR Green-based RT-qPCR assays, the samples were screened for AIV and AvCoV, respectively. Out of the 184 pooled samples, 37 were found to be positive for these respiratory pathogens. Furthermore, out of the 37 (20.11%) positive respiratory pathogens, 11.96% were AIV (n = 22) and 8.15% were AvCoV (n = 15). For the first time in Bangladesh, AIV H4N2, H4N6, and AvCoVs have been found in fecal samples from migratory birds through surveillance. Phylogenetic analyses of the HA and NA genes of AIV and the polymerase gene (Orf 1) of AvCoV revealed that these strains share a close phylogenetic relationship with the isolates from wild birds in Europe and Asia. The Bangladeshi strains with Eurasian ancestry might pose a significant threat to migratory birds flying through the Asian flyways. They might also be a potential source of virus introduction and spread to poultry raised on land. These findings emphasize the significance of ongoing AIV and AvCoV surveillance in migratory birds in Bangladesh.
Collapse
Affiliation(s)
- Most. Nahida Khatun
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shadia Tasnim
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Riabbel Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ziaur Rahman
- Molecular Radiobiology and Biodosimetry Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Dhaka, Bangladesh
| | - Md. Tofazzal Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
3
|
Islam A, Hossain ME, Amin E, Islam S, Islam M, Sayeed MA, Hasan MM, Miah M, Hassan MM, Rahman MZ, Shirin T. Epidemiology and phylodynamics of multiple clades of H5N1 circulating in domestic duck farms in different production systems in Bangladesh. Front Public Health 2023; 11:1168613. [PMID: 37483933 PMCID: PMC10358836 DOI: 10.3389/fpubh.2023.1168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Waterfowl are considered to be natural reservoirs of the avian influenza virus (AIV). However, the dynamics of transmission and evolutionary patterns of AIV and its subtypes within duck farms in Bangladesh remain poorly documented. Hence, a cross-sectional study was conducted in nine districts of Bangladesh between 2019 and 2021, to determine the prevalence of AIV and its subtypes H5 and H9, as well as to identify risk factors and the phylodynamics of H5N1 clades circulating in domestic duck farms. The oropharyngeal and cloacal swab samples were tested for the AIV Matrix gene (M-gene) followed by H5, H7, and H9 subtypes using rRT-PCR. The exploratory analysis was performed to estimate AIV and its subtype prevalence in different production systems, and multivariable logistic regression model was used to identify the risk factors that influence AIV infection in ducks. Bayesian phylogenetic analysis was conducted to generate a maximum clade credibility (MCC) tree and the maximum likelihood method to determine the phylogenetic relationships of the H5N1 viruses isolated from ducks. AIV was detected in 40% (95% CI: 33.0-48.1) of the duck farms. The prevalence of AIV was highest in nomadic ducks (39.8%; 95% CI: 32.9-47.1), followed by commercial ducks (24.6%; 95% CI: 14.5-37.3) and backyard ducks (14.4%; 95% CI: 10.5-19.2). The H5 prevalence was also highest in nomadic ducks (19.4%; 95% CI: 14.0-25.7). The multivariable logistic regression model revealed that ducks from nomadic farms (AOR: 2.4; 95% CI: 1.45-3.93), juvenile (AOR: 2.2; 95% CI: 1.37-3.61), and sick ducks (AOR: 11.59; 95% CI: 4.82-32.44) had a higher risk of AIV. Similarly, the likelihood of H5 detection was higher in sick ducks (AOR: 40.8; 95% CI: 16.3-115.3). Bayesian phylogenetic analysis revealed that H5N1 viruses in ducks belong to two distinct clades, 2.3.2.1a, and 2.3.4.4b. The clade 2.3.2.1a (reassorted) has been evolving silently since 2015 and forming at least nine subgroups based on >90% posterior probability. Notably, clade 2.3.4.4b was introduced in ducks in Bangladesh by the end of the year 2020, which was genetically similar to viruses detected in wild birds in Japan, China, and Africa, indicating migration-associated transmission of an emerging panzootic clade. We recommend continuing AIV surveillance in the duck production system and preventing the intermingling of domestic ducks with migratory waterfowl in wetlands.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, United States
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mohammad Enayet Hossain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emama Amin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Shariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Monjurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Abu Sayeed
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Mehedi Hasan
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mojnu Miah
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| |
Collapse
|
4
|
Dutta P, Islam A, Sayeed MA, Rahman MA, Abdullah MS, Saha O, Rahman MZ, Klaassen M, Hoque MA, Hassan MM. Epidemiology and molecular characterization of avian influenza virus in backyard poultry of Chattogram, Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105377. [PMID: 36220485 DOI: 10.1016/j.meegid.2022.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Ducks, the natural reservoir of avian influenza virus (AIV), act as reassortment vessels for HPAI and low pathogenic avian influenza (LPAI) virus for domestic and wild bird species. In Bangladesh, earlier research was mainly focused on AIV in commercial poultry and live bird markets, where there is scanty literature reported on AIV in apparently healthy backyard poultry at the household level. The present cross-sectional study was carried out to reveal the genomic epidemiology of AIV of backyard poultry in coastal (Anowara) and plain land (Rangunia) areas of Bangladesh. We randomly selected a total of 292 households' poultry (having both chicken and duck) for sampling. We administered structured pre-tested questionnaires to farmers through direct interviews. We tested cloacal samples from birds for the matrix gene (M gene) followed by H5 and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). All AIV-positive samples were subjected to four-gene segment sequencing (M, PB1, HA, and NA gene). We found that the prevalence of AIV RNA at the household level was 6.2% (n = 18; N = 292), whereas duck and chicken prevalence was 3.6% and 3.2%, respectively. Prevalence varied with season, ranging from 3.1% in the summer to 8.2% in the winter. The prevalence of subtypes H5 and H9 in backyard poultry was 2.7% and 3.3%, respectively. The phylogenetic analysis of M, HA, NA, and PB1 genes revealed intra-genomic similarity, and they are closely related to previously reported AIV strains in Bangladesh and Southeast Asia. The findings indicate that H5 and H9 subtypes of AIV are circulating in the backyard poultry with or without clinical symptoms. Moreover, we revealed the circulation of 2.3.2.1a (new) clade among the chicken and duck population without occurring outbreak which might be due to vaccination. In addition to routine surveillance, molecular epidemiology of AIV will assist to gain a clear understanding of the genomic evolution of the AIV virus in the backyard poultry rearing system, thereby facilitating the implementation of effective preventive measures to control infection and prevent the potential spillover to humans.
Collapse
Affiliation(s)
- Pronesh Dutta
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Ariful Islam
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Victoria 3216, Australia; EcoHealth Alliance, New York, NY 10001-2320, USA.
| | - Md Abu Sayeed
- EcoHealth Alliance, New York, NY 10001-2320, USA; Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Md Ashiqur Rahman
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Md Sadeque Abdullah
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Otun Saha
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh; Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | | | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Victoria 3216, Australia
| | - Md Ahasanul Hoque
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton 4343, Queensland, Australia.
| |
Collapse
|
5
|
Ali MZ, Hasan M, Giasuddin M. Potential risk factors of avian influenza virus infection in asymptomatic commercial chicken flocks in selected areas of Bangladesh during 2019. J Adv Vet Anim Res 2021; 8:51-57. [PMID: 33860012 PMCID: PMC8043349 DOI: 10.5455/javar.2021.h484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/06/2022] Open
Abstract
Objective: Avian influenza is a zoonotic disease with a pandemic potential that can infect avian and mammalian species, including humans. Studies aimed at investigating avian influenza virus (AIV) status in asymptomatic chickens and their shedding are uncommon in Bangladesh. Therefore, the current study aimed to examine the distribution of AIV subtypes in asymptomatic commercial chicken flocks and to identify the possible risk factors associated with this infection in two selected sub-districts of Bangladesh. Materials and Methods: A total of 582 oropharyngeal swabs were collected from 23 chicken farms during 2019 and evaluated for the presence of AIV and its subtypes by real-time reverse transcription PCR assays. Risk factors associated with AIV infection were analyzed from questionnaire data. Results: Overall, AIV prevalence was 7.73% (n = 45) with 7.39% and 7.92% in Dhamrai and Gazipur Sadar sub-districts, respectively. In AIV-positive samples, the prevalence of A/H5N1, A/H5N2, A/H9N1, and A/H9N2 was 31.11%, 28.89%, 6.67%, and 8.89%, respectively. None of the samples were positive for N6 and N8. The odds ratio (OR) of AIV infection was 1.15 in broiler versus layer and 2 in Sonali versus layer chickens. The OR was 1.95 for medium versus small, 2.6 for large versus small flock size, 1.5 for moderate versus good biosecurity, and 2.92 for poor versus good biosecurity practicing farms. Conclusion: The results demonstrated that A/H5N1, A/H5N2, A/H9N1, and A/H9N2 are circulating in asymptomatic chickens of selected areas. Strict farm biosecurity practices and avoiding higher flock density are recommended to prevent AIV spread in the study.
Collapse
Affiliation(s)
- Md Zulfekar Ali
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Mahmudul Hasan
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Md Giasuddin
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| |
Collapse
|
6
|
Prevalence and Distribution of Avian Influenza Viruses in Domestic Ducks at the Waterfowl-Chicken Interface in Wetlands. Pathogens 2020; 9:pathogens9110953. [PMID: 33207803 PMCID: PMC7709030 DOI: 10.3390/pathogens9110953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Ducks are a natural reservoir of influenza A viruses (IAVs) and can act as a reassortment vessel. Wetlands, such as Hakaluki and Tanguar haor in Bangladesh, have unique ecosystems including domestic duck (Anas platyrhynchos domesticus) rearing, especially household and free-range ducks. A cross-sectional study was, therefore, conducted to explore avian influenza status and its distribution and risk factors in the wetland areas. During the three consecutive winters of 2015-2017, specifically in December of these years, we collected a total of 947 samples including blood, oropharyngeal and cloacal swabs from domestic ducks (free-range duck (n = 312 samples) and household ducks (n = 635 samples) in wetlands. We screened serum samples using a nucleoprotein competitive enzyme-linked immunosorbent assay (c-ELISA) to estimate seroprevalence of IAV antibodies and swab samples by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) to detect IA viral M gene. Eleven (11) M gene positive samples were subjected to sequencing and phylogenetic analysis. Serological and viral prevalence rates of IAVs were 63.8% (95% CI: 60.6-66.8) and 10.7% (8.8-12.8), respectively. Serological and viral RNA prevalence rates were 51.8% (95% CI: 47.2-56.4) and 10.2% (7.6-13.3) in Hakaluki haor, 75.6% (71.5-79.4) and 11.1% (8.5-14.3) in Tanguar haor, 66.3% (62.5-69.9) and 11.2% (8.8-13.9) in household ducks and 58.7% (52.9-64.2) and 9.6% (6.5-13.4) in free-range ducks, respectively. The risk factors identified for higher odds of AI seropositive ducks were location (OR = 2.9, 95% CI: 2.2-3.8, p < 0.001; Tanguar haor vs. Hakaluki haor), duck-rearing system (OR = 1.4, 1.1-1.8, household vs. free-range), farmer's education status (OR = 1.5, 1.2-2.0, p < 0.05 illiterate vs. literate) and contact type (OR = 3.0, 2.1-4.3, p < 0.001; contact with chicken vs. no contact with chicken). The risk factors identified for higher odds of AI RNA positive ducks were farmer's education status (OR = 1.5, 1.0-2.3, p < 0.05 for illiterate vs literate), contact type (OR = 2.7, 1.7-4.2, p < 0.001; ducks having contact with chicken vs. ducks having contact with waterfowl). The phylogenetic analysis of 11 partial M gene sequences suggested that the M gene sequences detected in free-range duck were very similar to each other and were closely related to the M gene sequences of previously reported highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) subtypes in waterfowl in Bangladesh and Southeast Asian countries. Results of the current study will help provide significant information for future surveillance programs and model IAV infection to predict the spread of the viruses among migratory waterfowl, free-range ducks and domestic poultry in Bangladesh.
Collapse
|
7
|
Mumu TT, Nooruzzaman M, Hasnat A, Parvin R, Chowdhury EH, Bari ASM, Islam MR. Pathology of an outbreak of highly pathogenic avian influenza A(H5N1) virus of clade 2.3.2.1a in turkeys in Bangladesh. J Vet Diagn Invest 2020; 33:124-128. [PMID: 33054595 DOI: 10.1177/1040638720965540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A mixed-aged flock of 130 turkeys in Bangladesh reported the sudden death of 1 bird in September 2017. Highly pathogenic avian influenza A(H5N1) virus was detected in 3 turkeys, and phylogenetic analysis placed the viruses in the reassortant clade 2.3.2.1a. The birds had clinical signs of depression, diarrhea, weakness, closed eyes, and finally death. The mortality rate of the flock was 13% over the 6 d prior to the flock being euthanized. At autopsy, we observed congestion in lungs and brain, hemorrhages in the trachea, pancreas, breast muscle, coronary fat, intestine, bursa of Fabricius, and kidneys. Histopathology revealed hemorrhagic pneumonia, hemorrhages in the liver and kidneys, and hemorrhages and necrosis in the spleen and pancreas. Significant changes in the brain included gliosis, focal encephalomalacia and encephalitis, and neuronophagia.
Collapse
Affiliation(s)
- Tanjin T Mumu
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Azmary Hasnat
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul H Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abu S M Bari
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad R Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
8
|
Controlling Avian Influenza Virus in Bangladesh: Challenges and Recommendations. Viruses 2020; 12:v12070751. [PMID: 32664683 PMCID: PMC7412482 DOI: 10.3390/v12070751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
Avian influenza virus (AIV) remains a huge challenge for poultry production with negative repercussions for micro- and macro-economy and public health in Bangladesh. High (HP) H5N1 and low pathogenicity (LP) H9N2 AIV are currently endemic in poultry, and both have been reported to infect humans sporadically. Multiple virus introductions of different clades of HPAIV H5N1, reassorted genotypes, and on-going diversification of LPAIV H9N2 create a highly volatile virological environment which potentially implicates increased virulence, adaptation to new host species, and subsequent zoonotic transmission. Allotropy of poultry rearing systems and supply chains further increase the risk of virus spreading, which leads to human exposure and fosters the emergence of new potentially pre-pandemic virus strains. Here, we review the epidemiology, focusing on (i) risk factors for virus spreading, (ii) viral genetic evolution, and (iii) options for AIV control in Bangladesh. It is concluded that improved control strategies would profit from the integration of various intervention tools, including effective vaccination, enhanced biosecurity practice, and improved awareness of producers and traders, although widespread household poultry rearing significantly interferes with any such strategies. Nevertheless, continuous surveillance associated with rapid diagnosis and thorough virus characterization is the basis of such strategies.
Collapse
|
9
|
Hassan MM, El Zowalaty ME, Islam A, Khan SA, Rahman MK, Järhult JD, Hoque MA. Prevalence and Diversity of Avian Influenza Virus Hemagglutinin Sero-Subtypes in Poultry and Wild Birds in Bangladesh. Vet Sci 2020; 7:vetsci7020073. [PMID: 32492967 PMCID: PMC7355479 DOI: 10.3390/vetsci7020073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 02/05/2023] Open
Abstract
Highly pathogenic avian influenza H5 viruses have pandemic potential, cause significant economic losses and are of veterinary and public health concerns. This study aimed to investigate the distribution and diversity of hemagglutinin (HA) subtypes of avian influenza virus (AIV) in poultry and wild birds in Bangladesh. We conducted an avian influenza sero-surveillance in wild and domestic birds in wetlands of Chattogram and Sylhet in the winter seasons 2012-2014. We tested serum samples using a competitive enzyme-linked immunosorbent assay (c-ELISA), and randomly selected positive serum samples (170 of 942) were tested using hemagglutination inhibition (HI) to detect antibodies against the 16 different HA sero-subtypes. All AIV sero-subtypes except H7, H11, H14 and H15 were identified in the present study, with H5 and H9 dominating over other subtypes, regardless of the bird species. The diversity of HA sero-subtypes within groups ranged from 3 (in household chickens) to 10 (in migratory birds). The prevalence of the H5 sero-subtype was 76.3% (29/38) in nomadic ducks, 71.4% (5/7) in household chicken, 66.7% (24/36) in resident wild birds, 65.9% (27/41) in migratory birds and 61.7% (29/47) in household ducks. Moreover, the H9 sero-subtype was common in migratory birds (56%; 23/41), followed by 38.3% (18/47) in household ducks, 36.8% (14/38) in nomadic ducks, 30.6% (11/66) in resident wild birds and 28.5% (2/7) in household chickens. H1, H4 and H6 sero-subtypes were the most common sero-subtypes (80%; 8/10, 70%; 7/10 and 70%; 7/10, respectively) in migratory birds in 2012, H9 in resident wild birds (83.3%; 5/6) and H2 in nomadic ducks (73.9%; 17/23) in 2013, and the H5 sero-subtype in all types of birds (50% to 100%) in 2014. The present study demonstrates that a high diversity of HA subtypes circulated in diverse bird species in Bangladesh, and this broad range of AIV hosts may increase the probability of AIVs' reassortment and may enhance the emergence of novel AIV strains. A continued surveillance for AIV at targeted domestic-wild bird interfaces is recommended to understand the ecology and evolution of AIVs.
Collapse
Affiliation(s)
- Mohammad M. Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
- Correspondence: (M.M.H.); (M.E.E.Z.)
| | - Mohamed E. El Zowalaty
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75 123 Uppsala, Sweden
- St. Jude Center of Excellence for Influenza Research and Surveillance, Division of Virology, Department of Infectious Diseases, St Jude Children’s Hospital, Memphis, TN 38105, USA
- Correspondence: (M.M.H.); (M.E.E.Z.)
| | - Ariful Islam
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong Campus, Geelong, VIC 3125, Australia
- EcoHealth Alliance, New York, NY 10001-2320, USA;
| | - Shahneaz A. Khan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
| | | | - Josef D. Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, SE-752 36 Uppsala, Sweden;
| | - Md. A. Hoque
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
| |
Collapse
|
10
|
A Decade of Avian Influenza in Bangladesh: Where Are We Now? Trop Med Infect Dis 2019; 4:tropicalmed4030119. [PMID: 31514405 PMCID: PMC6789720 DOI: 10.3390/tropicalmed4030119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/14/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) has been a public health threat in Bangladesh since the first reported outbreak in poultry in 2007. The country has undertaken numerous efforts to detect, track, and combat avian influenza viruses (AIVs). The predominant genotype of the H5N1 viruses is clade 2.3.2.1a. The persistent changing of clades of the circulating H5N1 strains suggests probable mutations that might have been occurring over time. Surveillance has provided evidence that the virus has persistently prevailed in all sectors and caused discontinuous infections. The presence of AIV in live bird markets has been detected persistently. Weak biosecurity in the poultry sector is linked with resource limitation, low risk perception, and short-term sporadic interventions. Controlling avian influenza necessitates a concerted multi-sector ‘One Health’ approach that includes the government and key stakeholders.
Collapse
|
11
|
Yang G, Chowdury S, Hodges E, Rahman MZ, Jang Y, Hossain ME, Jones J, Stark TJ, Di H, Cook PW, Ghosh S, Azziz-Baumgartner E, Barnes JR, Wentworth DE, Kennedy E, Davis CT. Detection of highly pathogenic avian influenza A(H5N6) viruses in waterfowl in Bangladesh. Virology 2019; 534:36-44. [DOI: 10.1016/j.virol.2019.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/24/2022]
|
12
|
Nooruzzaman M, Haque ME, Chowdhury EH, Islam MR. Pathology of clade 2.3.2.1 avian influenza virus (H5N1) infection in quails and ducks in Bangladesh. Avian Pathol 2018; 48:73-79. [DOI: 10.1080/03079457.2018.1535165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Enamul Haque
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
13
|
Parvin R, Begum JA, Nooruzzaman M, Chowdhury EH, Islam MR, Vahlenkamp TW. Review analysis and impact of co-circulating H5N1 and H9N2 avian influenza viruses in Bangladesh. Epidemiol Infect 2018; 146:1259-1266. [PMID: 29781424 PMCID: PMC9134290 DOI: 10.1017/s0950268818001292] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Almost the full range of 16 haemagglutinin (HA) and nine neuraminidase subtypes of avian influenza viruses (AIVs) has been detected either in waterfowl, land-based poultry or in the environment in Bangladesh. AIV infections in Bangladesh affected a wide range of host species of terrestrial poultry. The highly pathogenic avian influenza (AI) H5N1 and low pathogenic AI H9N2 were found to co-circulate and be well entrenched in the poultry population, which has caused serious damage to the poultry industry since 2007. By reviewing the available scientific literature, the overall situation of AIVs in Bangladesh is discussed. All Bangladeshi (BD) H5N1 and H9N2 AIV sequences available at GenBank were downloaded along with other representative sequences to analyse the genetic diversity among the circulating AIVs in Bangladesh and to compare with the global situation. Three different H5N1 clades, 2.2.2, 2.3.2.1 and 2.3.4.2, have been detected in Bangladesh. Only 2.3.2.1a is still present. The BD LP H9N2 viruses mostly belonged to the H9 G1 lineage but segregated into many branches, and some of these shared internal genes with HP viruses of subtypes H7N3 and H5N1. However, these reassortment events might have taken place before introduction to Bangladesh. Currently, H9N2 viruses continue to evolve their HA cleavage, receptor binding and glycosylation sites. Multiple mutations in the HA gene associated with adaptation to mammalian hosts were also observed. Strict biosecurity at farms and gradual phasing out of live-bird markets could be the key measures to better control AIVs, whereas stamping out is not a practicable option in Bangladesh. Vaccination also could be an additional tool, which however, requires careful planning. Continuous monitoring of AIVs through systematic surveillance and genetic characterisation of the viruses remains a hallmark of AI control.
Collapse
Affiliation(s)
- Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Faculty of Veterinary Medicine, Center of Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Thomas W. Vahlenkamp
- Faculty of Veterinary Medicine, Center of Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Sarkar S, Khan SU, Mikolon A, Rahman MZ, Abedin J, Zeidner N, Sturm‐Ramirez K, Luby SP. An epidemiological study of avian influenza A (H5) virus in nomadic ducks and their raising practices in northeastern Bangladesh, 2011-2012. Influenza Other Respir Viruses 2017; 11:275-282. [PMID: 27966289 PMCID: PMC5410719 DOI: 10.1111/irv.12438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND In Bangladesh, nomadic duck flocks are groups of domestic ducks reared for egg production that are moved to access feeding sites beyond their owners' village boundaries and are housed overnight in portable enclosures in scavenging areas. The objectives of this study were to measure the prevalence of influenza A virus RNA and H5-specific antibodies in nomadic ducks and to characterize nomadic duck raising practices in northeastern Bangladesh. METHODS We tested duck egg yolk specimens by competitive ELISA to detect antibodies against avian influenza A (H5) and environmental fecal samples by real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect influenza A virus RNA and H5 subtype. RESULTS The median age of the ducks was 24 months (range: 8-36 months) and the median flock size was 300 ducks (range: 105-1100). Of 1860 egg yolk samples, 556 (30%, 95% confidence interval (CI): 28-32) were positive for antibodies against H5 and 58 flocks (94%) had at least one egg with H5-specific antibodies. Of 496 fecal samples, 121 (24%, 95% CI: 22-29) had detectable influenza A RNA. Thirty-three flocks (53%) had at least one fecal sample positive for influenza A RNA. CONCLUSIONS Nomadic ducks in Bangladesh are commonly infected with avian influenza A (H5) virus and may serve as a bridging host for transmission of avian influenza A (H5) virus or other avian influenza A viruses subtypes between wild waterfowl, backyard poultry, and humans in Bangladesh.
Collapse
Affiliation(s)
- Shamim Sarkar
- Programme on Emerging Infections (PEI)Infectious Diseases Division (IDD)icddr,b, DhakaBangladesh
| | - Salah Uddin Khan
- Programme on Emerging Infections (PEI)Infectious Diseases Division (IDD)icddr,b, DhakaBangladesh
- College of Public Health and Health Professionals and Emerging Pathogen InstituteUniversity of FloridaGainesvilleFLUSA
| | - Andrea Mikolon
- Programme on Emerging Infections (PEI)Infectious Diseases Division (IDD)icddr,b, DhakaBangladesh
- California Department of Food &AgricultureOntarioCAUSA
| | - Mohammad Ziaur Rahman
- Programme on Emerging Infections (PEI)Infectious Diseases Division (IDD)icddr,b, DhakaBangladesh
| | - Jaynal Abedin
- Programme on Emerging Infections (PEI)Infectious Diseases Division (IDD)icddr,b, DhakaBangladesh
| | - Nord Zeidner
- Programme on Emerging Infections (PEI)Infectious Diseases Division (IDD)icddr,b, DhakaBangladesh
- Centers for Disease Control and Prevention (CDC)AtlantaGAUSA
| | - Katherine Sturm‐Ramirez
- Programme on Emerging Infections (PEI)Infectious Diseases Division (IDD)icddr,b, DhakaBangladesh
- Centers for Disease Control and Prevention (CDC)AtlantaGAUSA
| | - Stephen P. Luby
- Programme on Emerging Infections (PEI)Infectious Diseases Division (IDD)icddr,b, DhakaBangladesh
- Centers for Disease Control and Prevention (CDC)AtlantaGAUSA
- Center for Innovation in Global HealthStanford UniversityStanfordCAUSA
| |
Collapse
|