1
|
Gu C, Su J, Wang J, Xie Q, Wu J, Xiao J, Liu W. Fusion protein and hemagglutinin of canine distemper virus co-induce apoptosis in canine mammary tumor cells. J Cancer Res Clin Oncol 2023; 149:9903-9918. [PMID: 37249647 DOI: 10.1007/s00432-023-04878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Canine distemper virus (CDV) has been shown to have oncolytic activity against primary canine tumors. Previous studies from this laboratory had confirmed that CDV induces apoptosis in canine mammary tumor (CMT) cells, although the molecular mechanism remains unknown. METHODS The CDV N, P, M, F, H, L, C, and V genes were identified in CDV-L and cloned separately. Mutants with deletions in the 5' region (pCMV-F L△60, pCMV-FL△107, and pCMV-FL△114) or with site-directed mutagenesis in the 3' region (pCMV-FLA602-610) of the F gene were generated. Late-stage apoptotic cells were detected by Hoechst 33342. Early-stage apoptotic cells were detected by AnnexinV-FITC/PI. Quantitative real-time PCR was performed to detect the mRNA levels of target genes of apoptotic and NF-κB pathway. Western blot analysis was performed to detect the expression or phosphorylation levels of target proteins of apoptotic or NF-κB pathway. Immunofluorescence assay was performed to detect the nuclear translocation of p65 protein. Recombinant viruses (rCDV-FL△60 and rCDV-FLA602-610) were rescued by a BHK-T7-based system. 5-week-old female BALB/c nude mice were used to detect the oncolytic activity of recombinant viruses. RESULTS In this study, it was first confirmed that none of the structural or non-structural proteins of CDV-L, a vaccine strain, was individually able to induce apoptosis in canine mammary tubular adenocarcinoma cells (CIPp) or intraductal papillary carcinoma cells (CMT-7364). However, when CIPp or CMT-7364 cells were co-transfected with glycoprotein fusion (F) and hemagglutinin (H) proteins of CDV-L, nuclear fragmentation was observed and a high proportion of early apoptotic cells were detected, as well as cleaved caspase-3, caspase-8 and poly (ATP ribose) polymerase (PARP). Cleaved caspase-3 and PARP were down-regulated by apoptosis broad-spectrum inhibitor Z-VAD-FMK and caspase-8 pathway inhibitor Z-IETD-FMK, confirming that the F and H proteins coinduced apoptosis in CMT cells via the caspase-8 and caspase-3 pathways. F and H proteins co-induced phosphorylation of p65 and IκBα and nuclear translocation of p65, confirming activation of the NF-κB pathway, inhibition of which down-regulated cleaved caspase-3 and cleaved PARP. Recombinant F protein with enhanced fusion activity and H protein co-induced more cleaved caspase-3 and PARP than parental F protein, while the corresponding recombinant virus exhibited the same properties both in CIPp cells and in a subcutaneous xenograft mouse model. CONCLUSIONS F and H proteins of CDV-L co-induce apoptosis in CMT cells, while the NF-κB pathway and fusion activity of F protein paly essential roles in the process.
Collapse
Affiliation(s)
- Chenchen Gu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Jun Su
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Qianqian Xie
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Jing Wu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Jun Xiao
- Department of Geriatrics, The Eight Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China.
| |
Collapse
|
2
|
Wu J, Lu R, Wang J, Su J, Gu C, Xie Q, Zhu H, Xiao J, Liu W. Establishment of reverse genetics for genotype VII Newcastle disease virus and altering the cell tropism by inserting TMPRSS2 into the viral genome. Virus Genes 2023:10.1007/s11262-023-01999-9. [PMID: 37103648 PMCID: PMC10133899 DOI: 10.1007/s11262-023-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Newcastle disease (ND) is the most important infectious disease in poultry, which is caused by avian orthoavulavirus type 1 (AOAV-1), previously known as Newcastle disease virus (NDV). In this study, an NDV strain SD19 (GenBank accession number OP797800) was isolated, and phylogenetic analysis suggested the virus belongs to the class II genotype VII. After generating wild-type rescued SD19 (rSD19), the attenuating strain (raSD19) was generated by mutating the F protein cleavage site. To explore the potential role of the transmembrane protease, serine S1 member 2 (TMPRSS2), the TMPRSS2 gene was inserted into the region between the P and M genes of raSD19 to generate raSD19-TMPRSS2. Besides, the coding sequence of the enhanced green fluorescent protein (EGFP) gene was inserted in the same region as a control (rSD19-EGFP and raSD19-EGFP). The Western blot, indirect immunofluorescence assay (IFA), and real-time quantitative PCR were employed to determine the replication activity of these constructs. The results reveal that all the rescued viruses can replicate in chicken embryo fibroblast (DF-1) cells; however, the proliferation of raSD19 and raSD19-EGFP needs additional trypsin. We next evaluated the virulence of these constructs, and our results reveal that the SD19, rSD19, and rSD19-EGFP are velogenic; the raSD19 and raSD19-EGFP are lentogenic; and the raSD19-TMPRSS2 are mesogenic. Moreover, due to the enzymatic hydrolysis of serine protease, the raSD19-TMPRSS2 can support itself to proliferate in the DF-1 cells without adding exogenous trypsin. These results may provide a new method for the NDV cell culture and contribute to ND's vaccine development.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Rongguang Lu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, Guangdong, People's Republic of China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jun Su
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Chenchen Gu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qianqian Xie
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hui Zhu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jun Xiao
- Department of Geriatrics, The Eight Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
3
|
Zhao S, Han X, Lang Y, Xie Y, Yang Z, Zhao Q, Wen Y, Xia J, Wu R, Huang X, Huang Y, Cao S, Lan J, Luo L, Yan Q. Development and efficacy evaluation of remodeled canine parvovirus-like particles displaying major antigenic epitopes of a giant panda derived canine distemper virus. Front Microbiol 2023; 14:1117135. [PMID: 36922967 PMCID: PMC10008873 DOI: 10.3389/fmicb.2023.1117135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Canine parvovirus (CPV) and Canine distemper virus (CDV) can cause fatal diseases in giant panda (Ailuropoda melanoleuca). The main capsid protein of CPV VP2 can be self-assembled to form virus-like particles (VLPs) in vitro, which is of great significance for potential vaccine development. In the present study, we remodeled the VP2 protein of a giant panda-derived CPV, where the major CDV F and N epitopes were incorporated in the N-terminal and loop2 region in two combinations to form chimeric VLPs. The reactivity ability and morphology of the recombinant proteins were confirmed by Western blot, hemagglutination (HA) test and electron microscopy. Subsequently, the immunogenicity of the VLPs was examined in vivo. Antigen-specific antibodies and neutralizing activity were measured by ELISA, hemagglutination inhibition (HI) test and serum neutralization test (SNT), respectively. In addition, antigen specific T cell activation were determined in splenic lymphocytes. The results indicated that the VLPs displayed good reaction with CDV/CPV antibodies, and the heterologous epitopes do not hamper solubility or activity. The VLPs showed decent HA activity, and resembled round-shaped particles with a diameter of 22-26 nm, which is identical to natural virions. VLPs could induce high levels of specific antibodies to CPV and CDV, shown by the indication of neutralizing antibodies in both VP2N and VP2L VLPs group. In addition, splenic lymphocytes of mice immunized with VLPs could proliferate rapidly after stimulation by specific antigen. Taken together, the CPV VP2 VLPs or chimeric VLPs are highly immunogenic, and henceforth could function as CPV/CDV vaccine candidates for giant pandas.
Collapse
Affiliation(s)
- Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Zhijie Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Li Luo
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
4
|
Lin J, Li Y, Lyu L, Wang Q, Zhang H, Ni B, Liu F. Recovery of Two Replication-Competent Canine Distemper Viruses That Separately Express Dabie Bandavirus Gn and Gc. Front Vet Sci 2022; 9:845845. [PMID: 35433907 PMCID: PMC9008723 DOI: 10.3389/fvets.2022.845845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne zoonosis with a high mortality rate in humans. Additionally, dogs are frequently reported to be infected with this disease. There has been no commercially available vaccine for humans and animals as yet. The SFTS is caused by Dabie bandavirus (DBV), formerly known as SFTS virus. The DBV is now classified into the genus Bandavirus in the family Phenuiviridae. DBV Gn and Gc can induce specific immune responses in vivo. In this study, we used reverse genetics technique to construct two recombinant canine distemper viruses (rCDVs), rCDV-Gn and -Gc, which could express Gn and Gc in vitro, respectively. Both of the recombinants, derived from a common parental CDV, were independently subjected to twenty serial passages in cells for Sanger sequencing. Neither point mutation nor fragment deletion was found in the Gn open reading frame (ORF), whereas the rCDV-Gc showed a nonsynonymous mutation (A157C) in the Gc ORF, correspondingly resulting in a mutation of amino acid (T53P) in the Gc. Growth curve of the rCDV-Gc almost coincided with that of a wild-type CDV, but exhibited a significant difference from that of the rCDV-Gn. Much research remains to be performed to demonstrate whether both recombinants are able of inducing specific immune responses in vivo.
Collapse
Affiliation(s)
- Jiahui Lin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yuehua Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Liangpeng Lyu
- Qingdao Workstation of Animal Husbandry, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, Qingdao, China
- *Correspondence: Fuxiao Liu
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Bo Ni
| |
Collapse
|
5
|
Liu F, Lin J, Wang Q, Zhang Y, Shan H. Recovery of Recombinant Canine Distemper Virus That Expresses CPV-2a VP2: Uncovering the Mutation Profile of Recombinant Undergoing 50 Serial Passages In Vitro. Front Cell Infect Microbiol 2022; 11:770576. [PMID: 35096636 PMCID: PMC8795682 DOI: 10.3389/fcimb.2021.770576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Canine distemper and canine parvoviral enteritis are infections caused by the canine distemper virus (CDV) and canine parvovirus type 2 (CPV-2), respectively. They are two common infectious diseases that cause high morbidity and mortality in affected dogs. Combination vaccines have been broadly used to protect dogs from infections of CDV, CPV-2, and other viruses. VP2 is the most abundant protein of the CPV-2 capsid. It elicits potent immunity in animals and, therefore, is widely used for designing subunit antigen-based vaccines. In this study, we rescued a recombinant CDV (QN vaccine strain) using reverse genetics. The recombinant CDV (rCDV-VP2) was demonstrated to express stably the VP2 in cells for at least 33 serial passages in vitro. Unfortunately, a nonsense mutation was initially identified in the VP2 open reading frame (ORF) at passage-34 (P34) and gradually became predominant in rCDV-VP2 quasispecies with passaging. Neither test strip detection nor indirect immunofluorescence assay demonstrated the expression of the VP2 at P50. The P50 rCDV-VP2 was subjected to next-generation sequencing, which totally identified 17 single-nucleotide variations (SNVs), consisting of 11 transitions and 6 transversions. Out of the 17 SNVs, 1 and 9 were identified as nonsense and missense mutations, respectively. Since the nonsense mutation arose in the VP2 ORF as early as P34, an earlier rCDV-VP2 progeny should be selected for the vaccination of animals in future experiments.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Hu Shan, ; Fuxiao Liu,
| | - Jiahui Lin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Hu Shan, ; Fuxiao Liu,
| |
Collapse
|
6
|
Liu F, Lin J, Wang Q, Shan H. Rescue of recombinant canine distemper virus that expresses S1 subunit of SARS-CoV-2 spike protein in vitro. Microb Pathog 2021; 158:105108. [PMID: 34324997 PMCID: PMC8312057 DOI: 10.1016/j.micpath.2021.105108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19), as an unprecedented pandemic, has rapidly spread around the globe. Its etiological agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belongs to the genus Betacoronavirus in the family Coronaviridae. The viral S1 subunit has been demonstrated to have a powerful potential in inducing protective immune responses in vivo. Since April 2020, farmed minks were frequently reported to be infected with the SARS-CoV-2 in different countries. Unfortunately, there has been no available veterinary vaccine as yet. In this study, we used reverse genetics to rescue a recombinant canine distemper virus (CDV) that could express the SARS-CoV-2 S1 subunit in vitro. The S1 subunit sequence was demonstrated to be relatively stable in the genome of recombinant CDV during twenty serial viral passages in cells. However, due to introduction of the S1 subunit sequence into CDV genome, this recombinant CDV grew more slowly than the wild-type strain did. The genomic backbone of recombinant CDV was derived from a virulence-attenuating strain (QN strain). Therefore, if able to induce immune protections in minks from canine distemper and COVID-19 infections, this recombinant would be a potential vaccine candidate for veterinary use.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jiahui Lin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Yan L, Zhao Z, Xue X, Zheng W, Xu T, Liu L, Tian L, Wang X, He H, Zheng X. A Bivalent Human Adenovirus Type 5 Vaccine Expressing the Rabies Virus Glycoprotein and Canine Distemper Virus Hemagglutinin Protein Confers Protective Immunity in Mice and Foxes. Front Microbiol 2020; 11:1070. [PMID: 32612580 PMCID: PMC7309451 DOI: 10.3389/fmicb.2020.01070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The development of a safe and efficient multivalent vaccine has great prospects for application. Both rabies virus (RABV) and canine distemper virus (CDV) are highly infectious antigens, causing lethal diseases in domestic dogs and other carnivores worldwide. In this study, a replication-deficient human adenovirus 5 (Ad5)-vectored vaccine, rAd5-G-H, expressing RABV glycoprotein (G) and CDV hemagglutinin (H) protein was constructed. The RABV G and CDV H protein of rAd5-G-H were expressed and confirmed in infected HEK-293 cells by indirect immunofluorescence assay. The rAd5-G-H retained a homogeneous icosahedral morphology similar to rAd5-GFP under an electron microscope. A single dose of 108 GFU of rAd5-G-H administered to mice by intramuscular injection elicited rapid and robust neutralizing antibodies against RABV and CDV. Flow cytometry assays indicated that the dendritic cells and B cells in inguinal lymph nodes were significantly recruited in rAd5-G-H-immunized mice in comparison with the mock and rAd5-GFP groups. rAd5-G-H also activated the Th1- and Th2-mediated cell immune responses against RABV and CDV in mice, which contributed to 100% survival of a lethal-dose RABV challenge without any clinical signs. In foxes, a single dose of 109 GFU of rAd5-G-H could elicit high levels of neutralizing antibodies against both RABV and CDV in comparison with the mock and rAd5-GFP groups. All foxes in the rAd5-GFP and mock groups died, while the foxes inoculated with rAd5-G-H all survived and showed no clinical signs of disease after being challenged with a lethal wild-type CDV strain. These results suggested that rAd5-G-H has great potential as a bivalent vaccine against rabies and canine distemper in highly susceptible dogs and wildlife animals.
Collapse
Affiliation(s)
- Lina Yan
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongxin Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianghong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tong Xu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianwei Wang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Zhang YN, Chen C, Deng CL, Zhang CG, Li N, Wang Z, Zhao L, Zhang B. A novel rabies vaccine based on infectious propagating particles derived from hybrid VEEV-Rabies replicon. EBioMedicine 2020; 56:102819. [PMID: 32512518 PMCID: PMC7273168 DOI: 10.1016/j.ebiom.2020.102819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Live attenuated vaccines (LAVs) can mimic natural infection and have advantages to stimulate a robust and sustained immune response as well as to confer long-term protection. However, safety concerns is one of the major obstacles for LAVs development. In an effort to achieve the optimal balance between immunogenicity and safety, researchers currently have taken different strategies for the development of LAVs. METHODS We constructed a novel infectious self-propagating hybrid replicon particle (PRP), VEEV-RABV-G, through replacing the entire structural proteins of the Venezuelan equine encephalitis virus (VEEV) with the glycoprotein of rabies virus (RABV-G) as the single structural protein. We evaluated the potential of VEEV-RABV-G as a safe live attenuated vaccine in mice model. FINDINGS We found that VEEV-RABV-G could self-propagate efficiently in cell culture and induce a robust humoral immunity and provide protection against virulent RABV challenge in immunized mice. Remarkably, VEEV-RABV-G is highly attenuated in both adult and sucking mice, causing much weaker inflammatory and apoptotic effects in the brains of infected adult mice and significantly lower weight loss and morbidity compared with the commonly used RABV-derived LAVs. INTERPRETATION This study reveals the feasibility of developing novel rabies vaccines based on the self-replicating PRPs. FUNDING This work was supported by the National Key Research and Development Program of China (2016YFD0500400).
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Guang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
9
|
Viral Pathogenesis, Recombinant Vaccines, and Oncolytic Virotherapy: Applications of the Canine Distemper Virus Reverse Genetics System. Viruses 2020; 12:v12030339. [PMID: 32244946 PMCID: PMC7150803 DOI: 10.3390/v12030339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Canine distemper virus (CDV) is a highly contagious pathogen transmissible to a broad range of terrestrial and aquatic carnivores. Despite the availability of attenuated vaccines against CDV, the virus remains responsible for outbreaks of canine distemper (CD) with significant morbidity and mortality in domesticated and wild carnivores worldwide. CDV uses the signaling lymphocytic activation molecule (SLAM, or CD150) and nectin-4 (PVRL4) as entry receptors, well-known tumor-associated markers for several lymphadenomas and adenocarcinomas, which are also responsible for the lysis of tumor cells and apparent tumor regression. Thus, CDV vaccine strains have emerged as a promising platform of oncolytic viruses for use in animal cancer therapy. Recent advances have revealed that use of the CDV reverse genetic system (RGS) has helped increase the understanding of viral pathogenesis and explore the development of recombinant CDV vaccines. In addition, genetic engineering of CDV based on RGS approaches also has the potential of enhancing oncolytic activity and selectively targeting tumors. Here, we reviewed the host tropism and pathogenesis of CDV, and current development of recombinant CDV-based vaccines as well as their use as oncolytic viruses against cancers.
Collapse
|
10
|
Bull JJ, Nuismer SL, Antia R. Recombinant vector vaccine evolution. PLoS Comput Biol 2019; 15:e1006857. [PMID: 31323032 PMCID: PMC6668849 DOI: 10.1371/journal.pcbi.1006857] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/31/2019] [Accepted: 06/07/2019] [Indexed: 01/01/2023] Open
Abstract
Replicating recombinant vector vaccines consist of a fully competent viral vector backbone engineered to express an antigen from a foreign transgene. From the perspective of viral replication, the transgene is not only dispensable but may even be detrimental. Thus vaccine revertants that delete or inactivate the transgene may evolve to dominate the vaccine virus population both during the process of manufacture of the vaccine as well as during the course of host infection. A particular concern is that this vaccine evolution could reduce its antigenicity—the immunity elicited to the transgene. We use mathematical and computational models to study vaccine evolution and immunity. These models include evolution arising during the process of manufacture, the dynamics of vaccine and revertant growth, plus innate and adaptive immunity elicited during the course of infection. Although the selective basis of vaccine evolution is easy to comprehend, the immunological consequences are not. One complication is that the opportunity for vaccine evolution is limited by the short period of within-host growth before the viral population is cleared. Even less obvious, revertant growth may only weakly interfere with vaccine growth in the host and thus have a limited effect on immunity to vaccine. Overall, we find that within-host vaccine evolution can sometimes compromise vaccine immunity, but only when the extent of evolution during vaccine manufacture is severe, and this evolution can be easily avoided or mitigated. Recombinant vector vaccines are live replicating viruses that are engineered to carry extra genes derived from a pathogen—and these extra genes produce proteins against which we want to generate immunity. These vaccine genomes may evolve to lose the extra genes during the process of manufacture of the vaccine or during replication within an individual, and there is a concern that this evolution might severely limit the vaccine’s efficacy. The dynamics of this process are studied here with mathematical models. The potential for vaccine evolution within the host is somewhat limited by the short-term growth of the vaccine population before it is suppressed by the immune response. We find that evolution is a problem only when the process of manufacture results in the majority of the vaccine virus being revertant. We show that increasing the vaccine inoculum size or reducing the level of revertant in the vaccine inoculum can largely avoid the loss of immunity arising from evolution.
Collapse
Affiliation(s)
- James J. Bull
- Department Integrative Biology, University of Texas, Austin, Texas, United States of America
- * E-mail:
| | - Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Rustom Antia
- Department of Biology, Emory University, Altanta, Georgia, United States of America
| |
Collapse
|
11
|
Abstract
Viruses are widely used as vectors for heterologous gene expression in cultured cells or natural hosts, and therefore a large number of viruses with exogenous sequences inserted into their genomes have been engineered. Many of these engineered viruses are viable and express heterologous proteins at high levels, but the inserted sequences often prove to be unstable over time and are rapidly lost, limiting heterologous protein expression. Although virologists are aware that inserted sequences can be unstable, processes leading to insert instability are rarely considered from an evolutionary perspective. Here, we review experimental work on the stability of inserted sequences over a broad range of viruses, and we present some theoretical considerations concerning insert stability. Different virus genome organizations strongly impact insert stability, and factors such as the position of insertion can have a strong effect. In addition, we argue that insert stability not only depends on the characteristics of a particular genome, but that it will also depend on the host environment and the demography of a virus population. The interplay between all factors affecting stability is complex, which makes it challenging to develop a general model to predict the stability of genomic insertions. We highlight key questions and future directions, finding that insert stability is a surprisingly complex problem and that there is need for mechanism-based, predictive models. Combining theoretical models with experimental tests for stability under varying conditions can lead to improved engineering of viral modified genomes, which is a valuable tool for understanding genome evolution as well as for biotechnological applications, such as gene therapy.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS IRD University of Montpellier), Centre National de la Recherche Scientifique (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Mark P Zwart
- Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
12
|
Li P, Wang J, Chen G, Zhang X, Lin D, Zhou Y, Yu Y, Liu W, Zhang D. Oncolytic activity of canine distemper virus in canine mammary tubular adenocarcinoma cells. Vet Comp Oncol 2019; 17:174-183. [PMID: 30756476 DOI: 10.1111/vco.12466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Canine distemper virus (CDV), bearing a close resemblance to measles virus, represents a promising candidate for oncolytic therapy; however, its application and underlying oncolytic mechanisms in canine mammary carcinoma cells remain to be explored. Here, we found that an attenuated canine distemper vaccine strain, CDV-L, efficiently infected and inhibited the growth of canine mammary tubular adenocarcinoma CIPp cells but not MDCK cells in vitro. Transcriptomic analysis of CDV-L-infected CIPp cells revealed substantially differentially expressed genes in apoptotic and NF-κB signalling pathways. Subsequent validations confirmed that CDV-L-induced apoptosis of CIPp cells through the caspase-8 and caspase-3 pathway. Identification of phosphorylated-IκBα, phosphorylated-p65 and the nuclear translocation of p65 confirmed the activation of the NF-κB signalling pathway. Inhibition of the NF-κB pathway abrogated CDV-L-induced cleaved-caspase-3 and cleaved-PARP. In a CIPp subcutaneous xenograft mouse model, intratumoural injections of CDV-L significantly restricted tumour growth without apparent pathology, and virus remained localized within the tumour. Taken altogether, these findings indicate that CDV-L exerts an antitumour effect in CIPp cells, and that apoptosis and the NF-κB pathway play essential roles in this process.
Collapse
Affiliation(s)
- Peiran Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Gaoxiang Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Xiaomei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Yun Zhou
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Yongle Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
13
|
Feline herpesvirus vectored-rabies vaccine in cats: A dual protection. Vaccine 2019; 37:2224-2231. [PMID: 30878247 DOI: 10.1016/j.vaccine.2019.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 01/01/2023]
Abstract
In China, cats cause about 5% of human rabies cases. Rabies control in cats plays a role in achieving the ultimate goal of elimination of dog rabies-mediated human deaths. However, there is no cat-specific rabies vaccine in China yet. In this study, we constructed a recombinant rabies vaccine by using a felid herpesvirus 1 (FHV-1) isolate, and deleted the gI/E in the FHV-1 and replaced the region with a glycoprotein (G) of rabies virus (RABV) strain BD06 through homologous recombination. The recombinant virus FHV-RVG was recovered and purified, and the expression of RABV glycoprotein was verified by indirect immunofluorescent assay. For potency in cats, each animal was inoculated intranasally with 1 ml FHV-RVG at 106.5 TCID50. Blood samples were collected at defined intervals for antibody titration. The animals were challenged by herpes and rabies after completion of vaccination on day 180 and day 194, respectively. Our results demonstrated all vaccinated cats generated antibodies against both FHV-1 and RABV, and reached an arbitrary protective titer > 0.5 IU/ml for rabies viral neutralizing antibody (VNA) by day 14 post inoculation (dpi) and titer peaked on 30 dpi with VNA at 24.5 ± 10.23 IU/ml. All vaccinated cats presented no clinical signs of FHV-1 infection and survived rabies challenge, while the control cats had severe rhinotracheitis and died from rabies after challenge. All this demonstrated that the FHV-based recombinant vaccine is effective in protection against both FHV-1 and RABV infections.
Collapse
|
14
|
The 5' Untranslated Region of the Capsid Protein 2 Gene of Mink Enteritis Virus Is Essential for Its Expression. J Virol 2018; 92:JVI.00787-18. [PMID: 29976664 DOI: 10.1128/jvi.00787-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Mink enteritis virus (MEV), as a parvovirus, is among the smallest of the animal DNA viruses. The limited genome leads to multifunctional sequences and complex gene expression regulation. Here, we show that the expression of viral capsid protein 2 (VP2) of MEV requires its 5' untranslated regions (5' UTR) which promote VP2 gene expression at both transcriptional and translational levels. The expression of VP2 was inhibited in several common eukaryotic expression vectors. Our data showed that the 5' UTR of VP2 enhanced capsid gene transcription but not increased stability or promotes nucleocytoplasmic export of VP2 mRNA. Analysis of the functions of 5' UTR fragments showed that the proximal region (nucleotides [nt] 1 to 270; that is, positions +1 to +270 relative to the transcription initiation site, nt 2048 to 2317 of MEV-L) of 5' UTR of VP2 was necessary for VP2 transcription and also promoted the activity of P38 promoter. Unexpectedly, further analysis showed that deletion of the distal region (nt 271 to 653) of the 5' UTR of VP2 almost completely abolished VP2 translation in the presence of P38, whereas the transcription was still induced significantly. Furthermore, using a luciferase reporter bicistronic system, we identified that the 5' UTR had an internal ribosome entry site-like function which could be enhanced by NS1 via the site at nt 382 to 447. Mutation of the 5' UTR in the MEV full-length clones further showed that the 5' UTR was required for VP2 gene expression. Together, our data reveal an undiscovered function of 5' UTR of MEV VP2 in regulating viral gene expression.IMPORTANCE MEV, a parvovirus, causes acute enteritis in mink. In the present report, we describe an untranslated sequence-dependent mechanism by which MEV regulates capsid gene expression. Our results highlight the roles of untranslated sequences in regulating the transcriptional activity of P38 promoter and translation of capsid genes. These data also reveal the possibility of an unusual translation mechanism in capsid protein expression and the multiple functions of nonstructural protein. A better understanding of the gene expression regulation mechanism of this virus will help in the design of new vaccines and targets for antiviral agents against MEV.
Collapse
|
15
|
Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant. Arch Virol 2015; 160:2315-23. [DOI: 10.1007/s00705-015-2512-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/23/2015] [Indexed: 12/25/2022]
|