1
|
Cao Y, Ren Q, Chang S, Cui W, Zhao P, Wang Y. N6-methyladenosine RNA methylation modification regulates the transcription of viral-derived E (XSR) miRNAs to promote ALV-J replication. Vet Microbiol 2024; 298:110218. [PMID: 39159504 DOI: 10.1016/j.vetmic.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The E (XSR) element located in the 3'UTR of the ALV-J genome has the capability to transcribe and generate viral-derived E (XSR) miRNA. However, the biological function and transcriptional regulation mechanism of this process remain unclear. In this study, the impact of E (XSR) miRNA on ALV-J replication and the regulatory effect of N6-methyladenosine (m6A) methylation on its transcription were investigated. The results demonstrated that E (XSR) miRNA could stimulate ALV-J replication and suppress apoptosis in DF-1 cells in vitro. E (XSR) miRNA's promotion of ALV-J replication was not associated with the type I interferon pathway, but achieved by suppressing the expression of the host GPC5 gene. The transcription of E (XSR) miRNA could be promoted by m6A methylation modification, where m6A modification was found at the A6880 and A7016 sites of ALV-J gRNA. This study provides a new perspective on the transcription of ALV-J E (XSR) miRNA and its regulatory function in ALV-J replication.
Collapse
Affiliation(s)
- Yuqing Cao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Qingling Ren
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Wenping Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China.
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China.
| |
Collapse
|
2
|
Wang M, Li H, Sun X, Qiu J, Jing C, Jia H, Guo Y, Guo H. J Subgroup Avian Leukosis Virus Strain Promotes Cell Proliferation by Negatively Regulating 14-3-3σ Expressions in Chicken Fibroblast Cells. Viruses 2023; 15:v15020404. [PMID: 36851618 PMCID: PMC9960514 DOI: 10.3390/v15020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
This study focuses on clarifying the regulation of chicken 14-3-3σ protein on the fibrous histiocyte proliferation caused by ALV-J-SD1005 strain infection. DF-1 cells were inoculated with 102 TCID50 of ALV-J-SD1005 strain; the cell proliferation viability was dramatically increased and 14-3-3σ expressions were dramatically decreased within 48 h after inoculation. Chicken 14-3-3σ over-expression could significantly decrease the cell proliferation and the ratio of S-phase cells, but increase the ratio of G2/M-phase cells in ALV-J-infected DF-1 cells; by contrast, chicken 14-3-3σ knockdown expression could cause the opposite effects. Additionally, chicken 14-3-3σ over-expression could also dramatically down-regulate the expressions of CDK2/CDC2, but up-regulate p53 expressions in the DF-1 cells; in contrast, the knockdown expression could significantly increase the expressions of CDK2/CDC2 and decrease p53 expressions. It can be concluded that chicken 14-3-3σ can inhibit cell proliferation and cell cycle by regulating CDK2/CDC2/p53 expressions in ALV-J-infected DF1 cells. ALV-J-SD1005 strain can promote cell proliferation by reducing 14-3-3σ expressions. This study helps to clarify the forming mechanism of acute fibrosarcoma induced by ALV-J infection.
Collapse
|
3
|
Meng F, Li Q, Han R, Xu G, Gao X, Luo F, Shen G, Liu X, Zhang Z, Zhao P, Zhang G. A study on the infection status and transmission of avian leukosis virus subgroup J in Hy-line brown roosters. Arch Virol 2022; 167:1521-1527. [PMID: 35606465 DOI: 10.1007/s00705-022-05452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/19/2022] [Indexed: 11/28/2022]
Abstract
Avian leukosis virus subgroup J (ALV-J) is the most prevalent subgroup in chickens and exhibits increased pathogenicity and stronger horizontal and vertical transmission ability among different breeds. Although vertical transmission of ALV-J from infected hens through artificial insemination has been inferred from the detection of the p27 antigen in swabs and serum, there has been no further research on the transmission pattern of ALVs in roosters. In the present study, the positive rate of ALV increased significantly in an indigenous flock after detecting the p27 antigen via enzyme-linked immunosorbent assay (ELISA) and virus isolation in DF-1 cells. Viral sequence comparisons and an indirect fluorescent antibody assay showed that these isolates belonged to the ALV-J subgroup but formed a new branch in a phylogenetic tree when compared to domestic and foreign referential strains. The gp85 gene of the ALV-J isolated from hens and albumen was 94.1-99.7% identical to that in roosters, revealing that these isolates were quite likely transmitted to the hens and their offspring through the semen of ALV-infected roosters by artificial insemination from the Hy-line brown roosters. In addition, we defined four ALV-J infection states in plasma and semen of roosters (P+S+, P-S+, P+S-, and P-S-), which suggests that, in order to eradicate ALV in roosters, it is necessary to perform virus isolation using both semen and plasma. Additionally, ALV detection in semen by ELISA produced false-positive and false-negative results when compared to virus isolation in DF-1 cells. Collectively, our results suggested that an incomplete process of eradication of ALV from ALV-positive roosters led to the sporadic presence of ALV-J in laying hens.
Collapse
Affiliation(s)
- Fanfeng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiuchen Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Han
- TECON Biopharmaceutical Co., Ltd., Xinjiang, China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fubing Luo
- Beijing Center for Animal Disease Control and Prevention, Beijing, China
| | - Guangnian Shen
- Beijing Center for Animal Disease Control and Prevention, Beijing, China
| | - Xiaodong Liu
- Beijing Center for Animal Disease Control and Prevention, Beijing, China
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
| | - Guozhong Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Li Y, Liu Y, Lin Z, Cui S, Chang S, Cui Z, Zhao P, Wang Y. Role of env gene and LTR sequence in the pathogenesis of subgroup K avian leukosis virus. J Gen Virol 2022; 103. [PMID: 35130137 DOI: 10.1099/jgv.0.001719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian leukosis virus (ALV) is a retrovirus that induces tumours in infected birds; ALV is divided into different subgroups according to the env gene and cellular tropism. In general, ALV subgroup J (ALV-J) is considered to be the most pathogenic and prevalent subgroup while subgroup K (ALV-K), a newly identified subgroup, only causes mild symptoms. To illuminate the roles of the env viral gene and LTR sequence in pathogenic differences between ALV-J and ALV-K, rescued ALV-J strain rSDAU1005, rescued ALV-K strain rJS11C1, and recombinant strains rENV(J)-LTR(K) and rENV(K)-LTR(J) were characterized and investigated in this study. Among rescued viruses, rSDAU1005 had the highest replication efficiency while rJS11C1 replicated the slowest (replication efficiency rankings were rSDAU1005 >rENV(K)-LTR(J)>rENV(J)-LTR(K)>rJS11 C1). The luciferase reporter gene assay results showed that the promoter activity of ALV-K LTR was lower than that of the ALV-J LTR promoter, which may have accounted for the slower replication efficiency of ALV-K. Pathogenicity of the four rescued viruses was determined via inoculating the yolk sacs of specific-pathogen-free chickens. The results demonstrated that all four viruses were pathogenic; rSDAU1005 caused the most severe growth retardation and immunosuppression. rENV(J)-LTR(K) was more pathogenic when compared to rENV(K)-LTR(J), indicating that env and the LTR sequence play important roles in pathogenicity between ALV-K and ALV-J. Additionally, env seemed to especially play a role in ALV-K pathogenesis. This study provided scientific data and insight to improve detection methods and judgement criteria in ALV clearance and surveillance.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China.,China Animal Health and Epidemiology Center, Qingdao, PR China
| | - Yi Liu
- China Animal Disease Control Centre, Beijing, PR China
| | - Zhanye Lin
- Ministry of Agriculture and Rural Affairs of China, Animal Husbandry and Veterinary Bureau, Beijing, PR China
| | - Shuai Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Zhizhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| |
Collapse
|
5
|
Li L, Zhuang P, Cheng Z, Yang J, Bi J, Wang G. Avian leukosis virus subgroup J and reticuloendotheliosis virus coinfection induced TRIM62 regulation of the actin cytoskeleton. J Vet Sci 2020; 21:e49. [PMID: 32476322 PMCID: PMC7263916 DOI: 10.4142/jvs.2020.21.e49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background Coinfection with avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) is common in chickens, and the molecular mechanism of the synergistic pathogenic effects of the coinfection is not clear. Exosomes have been identified as new players in the pathogenesis of retroviruses. The different functions of exosomes depend on their cargo components. Objectives The aim of this study was to investigate the function of co-regulation differentially expressed proteins in exosomes on coinfection of ALV-J and REV. Methods Here, viral replication in CEF cells infected with ALV-J, REV or both was detected by immunofluorescence microscopy. Then, we analyzed the exosomes isolated from supernatants of chicken embryo fibroblast (CEF) cells single infected and coinfected with ALV-J and REV by mass spectrometry. KEGG pathway enrichment analyzed the co-regulation differentially expressed proteins in exosomes. Next, we silenced and overexpressed tripartite motif containing 62 (TRIM62) to evaluate the effects of TRIM62 on viral replication and the expression levels of NCK-association proteins 1 (NCKAP1) and actin-related 2/3 complex subunit 5 (ARPC5) determined by quantitative reverse transcription polymerase chain reaction. Results The results showed that coinfection of ALV-J and REV promoted the replication of each other. Thirty proteins, including TRIM62, NCK-association proteins 1 (NCKAP1, also known as Nap125), and Arp2/3-5, ARPC5, were identified. NCKAP1 and ARPC5 were involved in the actin cytoskeleton pathway. TRIM62 negatively regulated viral replication and that the inhibition of REV was more significant than that on ALV-J in CEF cells coinfected with TRIM62. In addition, TRIM62 decreased the expression of NCKAP1 and increased the expression of ARPC5 in coinfected CEF cells. Conclusions Collectively, our results indicated that coinfection with ALV-J and REV competitively promoted each other's replication, the actin cytoskeleton played an important role in the coinfection mechanism, and TRIM62 regulated the actin cytoskeleton.
Collapse
Affiliation(s)
- Ling Li
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Pingping Zhuang
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziqiang Cheng
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jie Yang
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jianmin Bi
- China Animal Husbandry Industry Co. Ltd., Beijing 10070, China
| | - Guihua Wang
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
6
|
Minarovits J, Niller HH. Truncated oncoproteins of retroviruses and hepatitis B virus: A lesson in contrasts. INFECTION GENETICS AND EVOLUTION 2019; 73:342-357. [DOI: 10.1016/j.meegid.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
|
7
|
Taishan Pinus Massoniana pollen polysaccharide inhibits the replication of acute tumorigenic ALV-J and its associated tumor growth. Vet Microbiol 2019; 236:108376. [DOI: 10.1016/j.vetmic.2019.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023]
|
8
|
Li H, Wang P, Lin L, Shi M, Gu Z, Huang T, Mo M, Wei T, Zhang H, Wei P. The emergence of the infection of subgroup J avian leucosis virus escalated the tumour incidence in commercial Yellow chickens in Southern China in recent years. Transbound Emerg Dis 2018; 66:312-316. [DOI: 10.1111/tbed.13023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Haijuan Li
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Peikun Wang
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
- College of Life Science Linyi University Linyi City Shandong China
| | - Lulu Lin
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Mengya Shi
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Zhanming Gu
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Teng Huang
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Mei‐lan Mo
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Tianchao Wei
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Huanmin Zhang
- United States, Department of Agriculture (USDA) Agricultural Research Service Avian Disease and Oncology Laboratory East Lansing Michigan
| | - Ping Wei
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| |
Collapse
|
9
|
Full-length genome sequence analysis of four subgroup J avian leukosis virus strains isolated from chickens with clinical hemangioma. Virus Genes 2017; 53:868-875. [DOI: 10.1007/s11262-017-1490-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 01/10/2023]
|
10
|
Complete genome sequencing and characterization revealed a recombinant subgroup B isolate of avian leukosis virus with a subgroup J-like U3 region. Virus Genes 2017; 53:927-930. [PMID: 28718046 DOI: 10.1007/s11262-017-1493-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
One natural recombinant subgroup B avian leukosis virus (ALV) with a subgroup J-like U3 region was isolated from commercial native chickens that experienced disease in 2014 and named GX14FF03. GX14FF03 was isolated by DF-1 cell culture and then identified with ELISA detection of avian leukosis virus p27 group-specific antigen, the detection of subtype specific PCR, and indirect immunofluorescence assay with ALV-B-specific monoclonal antibody. Its complete proviral genome was sequenced and compared with the reference strains of ALVs and found that the gag and pol were relatively conservative. The gp85 of GX14FF03 showed 91.3-96.2% amino acid identity to the other ALV-B reference strains and 36.0-37.1% identity to the ALV-J reference strains, and its U3 region showed 49.4-89.3% nucleotide identity to ALV-A, B, C, D, E, K reference strains and 91.6-95.3% identity to ALV-J reference strains. Phylogenetic analysis of U3 region showed that GX14FF03 and ALV-J reference strains were in the same cluster. Moreover, an additional AIB REP1 retroviral transcription regulatory element was found in GX14FF04 U3 region which was only presenting in ALV-J strains. These results suggested that isolate GX14FF03 may be a recombinant ALV-B with the ALV-J-like U3 region.
Collapse
|
11
|
Feng M, Zhang X. Immunity to Avian Leukosis Virus: Where Are We Now and What Should We Do? Front Immunol 2016; 7:624. [PMID: 28066434 PMCID: PMC5174080 DOI: 10.3389/fimmu.2016.00624] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022] Open
Abstract
Avian leukosis virus (ALV) is an avian oncogenic retrovirus causing enormous economic losses in the global poultry industry. Although ALV-related research has lasted for more than a century, there are no vaccines to protect chickens from ALV infection. The interaction between chickens and ALV remains not fully understood especially with regard to the host immunity. The current review provides an overview of our current knowledge of innate and adaptive immunity induced by ALV infection. More importantly, we have pointed out the unknown area involved in ALV-related studies, which is worthy of our serious exploring in future.
Collapse
Affiliation(s)
- Min Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|