1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
2
|
Pewkliang Y, Thongsri P, Suthivanich P, Thongbaiphet N, Keatkla J, Pasomsub E, Anurathapan U, Borwornpinyo S, Wongkajornsilp A, Hongeng S, Sa-Ngiamsuntorn K. Immortalized hepatocyte-like cells: A competent hepatocyte model for studying clinical HCV isolate infection. PLoS One 2024; 19:e0303265. [PMID: 38739590 PMCID: PMC11090328 DOI: 10.1371/journal.pone.0303265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
More than 58 million individuals worldwide are inflicted with chronic HCV. The disease carries a high risk of end stage liver disease, i.e., cirrhosis and hepatocellular carcinoma. Although direct-acting antiviral agents (DAAs) have revolutionized therapy, the emergence of drug-resistant strains has become a growing concern. Conventional cellular models, Huh7 and its derivatives were very permissive to only HCVcc (JFH-1), but not HCV clinical isolates. The lack of suitable host cells had hindered comprehensive research on patient-derived HCV. Here, we established a novel hepatocyte model for HCV culture to host clinically pan-genotype HCV strains. The immortalized hepatocyte-like cell line (imHC) derived from human mesenchymal stem cell carries HCV receptors and essential host factors. The imHC outperformed Huh7 as a host for HCV (JFH-1) and sustained the entire HCV life cycle of pan-genotypic clinical isolates. We analyzed the alteration of host markers (i.e., hepatic markers, cellular innate immune response, and cell apoptosis) in response to HCV infection. The imHC model uncovered the underlying mechanisms governing the action of IFN-α and the activation of sofosbuvir. The insights from HCV-cell culture model hold promise for understanding disease pathogenesis and novel anti-HCV development.
Collapse
Affiliation(s)
- Yongyut Pewkliang
- Faculty of Medicine Ramathibodi Hospital, Program in Translational Medicine, Mahidol University, Rama VI Road, Rajathevi, Bangkok, Thailand
| | - Piyanoot Thongsri
- Faculty of Medicine Ramathibodi Hospital, Program in Translational Medicine, Mahidol University, Rama VI Road, Rajathevi, Bangkok, Thailand
| | - Phichaya Suthivanich
- Faculty of Science, Excellent Center for Drug Discovery, Mahidol University, Rama VI Road, Rajathevi, Bangkok, Thailand
| | - Nipa Thongbaiphet
- Faculty of Medicine Ramathibodi Hospital, Department of Pathology, Virology Laboratory, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Jiraporn Keatkla
- Faculty of Medicine Ramathibodi Hospital, Department of Pathology, Virology Laboratory, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Ekawat Pasomsub
- Faculty of Medicine Ramathibodi Hospital, Department of Pathology, Virology Laboratory, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Usanarat Anurathapan
- Faculty of Medicine Ramathibodi Hospital, Department of Pediatrics, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Faculty of Science, Excellent Center for Drug Discovery, Mahidol University, Rama VI Road, Rajathevi, Bangkok, Thailand
- Faculty of Science, Department of Biotechnology, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Faculty of Medicine Siriraj Hospital, Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Faculty of Medicine Ramathibodi Hospital, Department of Pediatrics, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Khanit Sa-Ngiamsuntorn
- Faculty of Pharmacy, Department of Biochemistry, Mahidol University, Rajathevi, Bangkok, Thailand
| |
Collapse
|
3
|
Domovitz T, Ayoub S, Werbner M, Alter J, Izhaki Tavor L, Yahalom-Ronen Y, Tikhonov E, Meirson T, Maman Y, Paran N, Israely T, Dessau M, Gal-Tanamy M. HCV Infection Increases the Expression of ACE2 Receptor, Leading to Enhanced Entry of Both HCV and SARS-CoV-2 into Hepatocytes and a Coinfection State. Microbiol Spectr 2022; 10:e0115022. [PMID: 36314945 PMCID: PMC9769977 DOI: 10.1128/spectrum.01150-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies suggest the enhancement of liver injury in COVID-19 patients infected with Hepatitis C virus (HCV). Hepatocytes express low levels of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor, raising the possibility of HCV-SARS-CoV-2 coinfection in the liver. This work aimed to explore whether HCV and SARS-CoV-2 coinfect hepatocytes and the interplay between these viruses. We demonstrate that SARS-CoV-2 coinfects HCV-infected Huh7.5 (Huh7.5HCV) cells. Both viruses replicated efficiently in the coinfected cells, with HCV replication enhanced in coinfected compared to HCV-mono-infected cells. Strikingly, Huh7.5HCV cells were eight fold more susceptible to SARS-CoV-2 pseudoviruses than naive Huh7.5 cells, suggesting enhanced SARS-CoV-2 entry into HCV-preinfected hepatocytes. In addition, we observed increased binding of spike receptor-binding domain (RBD) protein to Huh7.5HCV cells, as well as enhanced cell-to-cell fusion of Huh7.5HCV cells with spike-expressing Huh7.5 cells. We explored the mechanism of enhanced SARS-CoV-2 entry and identified an increased ACE2 mRNA and protein levels in Huh7.5HCV cells, primary hepatocytes, and in data from infected liver biopsies obtained from database. Importantly, higher expression of ACE2 increased HCV infection by enhancing its binding to the host cell, underscoring its role in the HCV life cycle as well. Transcriptome analysis revealed that shared host signaling pathways were induced in HCV-SARS-CoV-2 coinfection. This study revealed complex interactions between HCV and SARS-CoV-2 infections in hepatocytes, which may lead to the increased liver damage recently reported in HCV-positive COVID-19 patients. IMPORTANCE Here, we provide the first experimental evidence for the coexistence of SARS-CoV-2 infection with HCV, and the interplay between them. The study revealed a complex relationship of enhancement between the two viruses, where HCV infection increased the expression of the SARS-CoV-2 entry receptor ACE2, thus facilitating SARS-CoV-2 entry, and potentially, also HCV entry. Thereafter, SARS-CoV-2 infection enhanced HCV replication in hepatocytes. This study may explain the aggravation of liver damage that was recently reported in COVID-19 patients with HCV coinfection and suggests preinfection with HCV as a risk factor for severe COVID-19. Moreover, it highlights the possible importance of HCV treatment for coinfected patients. In a broader view, these findings emphasize the importance of identifying coinfecting pathogens that increase the risk of SARS-CoV-2 infection and that may accelerate COVID-19-related co-morbidities.
Collapse
Affiliation(s)
- Tom Domovitz
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samer Ayoub
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michal Werbner
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Joel Alter
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lee Izhaki Tavor
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Evgeny Tikhonov
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Yaakov Maman
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Dessau
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
4
|
Giansanti MG, Piergentili R. Linking GOLPH3 and Extracellular Vesicles Content-a Potential New Route in Cancer Physiopathology and a Promising Therapeutic Target is in Sight? Technol Cancer Res Treat 2022; 21:15330338221135724. [PMID: 36320176 PMCID: PMC9630892 DOI: 10.1177/15330338221135724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3), a highly conserved phosphatidylinositol 4-phosphate effector, is required for maintenance of Golgi architecture, vesicle trafficking, and Golgi glycosylation. GOLPH3 overexpression has been reported in several human solid cancers, including glioblastoma, breast cancer, colorectal cancer, nonsmall cell lung cancer, epithelial ovarian cancer, prostate cancer, gastric cancer, and hepatocellular carcinoma. Although the molecular mechanisms that link GOLPH3 to tumorigenesis require further investigation, it is likely that GOLPH3 may act by controlling the intracellular movement of key oncogenic molecules, between the Golgi compartments and/or between the Golgi and the endoplasmic reticulum. Indeed, numerous evidence indicates that deregulation of intracellular vesicle trafficking contributes to several aspects of cancer phenotypes. However, a direct and clear link between extracellular vesicle movements and GOLPH3 is still missing. In the past years several lines of evidence have implicated GOLPH3 in the regulation of extracellular vesicle content. Specifically, a new role for GOLPH3 has emerged in controlling the internalization of exosomes containing either oncogenic proteins or noncoding RNAs, especially micro-RNA. Although far from being elucidated, growing evidence indicates that GOLPH3 does not increase quantitatively the excretion of exosomes, but rather regulates the exosome content. In particular, recent data support a role for GOLPH3 for loading specific oncogenic molecules into the exosomes, driving both tumor malignancy and metastasis formation. Additionally, the older literature indirectly implicates GOLPH3 in cancerogenesis through its function in controlling hepatitis C virus secretion, which in turn is linked to hepatocellular carcinoma formation. Thus, GOLPH3 might promote tumorigenesis in unexpected ways, involving both direct and indirect routes. If these data are further confirmed, the spectrum of action of GOLPH3 in tumor formation will significantly expand, indicating this protein as a strong candidate for targeted cancer therapy.
Collapse
Affiliation(s)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR
(CNR-IBPM), Roma, Italy,Roberto Piergentili, Istituto di Biologia e
Patologia Molecolari del CNR (CNR-IBPM), Piazzale Aldo Moro 5, 00185, Roma,
Italy.
| |
Collapse
|
5
|
High-Titer Hepatitis C Virus Production in a Scalable Single-Use High Cell Density Bioreactor. Vaccines (Basel) 2022; 10:vaccines10020249. [PMID: 35214707 PMCID: PMC8880717 DOI: 10.3390/vaccines10020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis C virus (HCV) infections pose a major public health burden due to high chronicity rates and associated morbidity and mortality. A vaccine protecting against chronic infection is not available but would be important for global control of HCV infections. In this study, cell culture-based HCV production was established in a packed-bed bioreactor (CelCradle™) aiming to further the development of an inactivated whole virus vaccine and to facilitate virological and immunological studies requiring large quantities of virus particles. HCV was produced in human hepatoma-derived Huh7.5 cells maintained in serum-free medium on days of virus harvesting. Highest virus yields were obtained when the culture was maintained with two medium exchanges per day. However, increasing the total number of cells in the culture vessel negatively impacted infectivity titers. Peak infectivity titers of up to 7.2 log10 focus forming units (FFU)/mL, accumulated virus yields of up to 5.9 × 1010 FFU, and a cell specific virus yield of up to 41 FFU/cell were obtained from one CelCradle™. CelCradle™-derived and T flask-derived virus had similar characteristics regarding neutralization sensitivity and buoyant density. This packed-bed tide-motion system is available with larger vessels and may thus be a promising platform for large-scale HCV production.
Collapse
|
6
|
Gargan S, Stevenson NJ. Unravelling the Immunomodulatory Effects of Viral Ion Channels, towards the Treatment of Disease. Viruses 2021; 13:2165. [PMID: 34834972 PMCID: PMC8618147 DOI: 10.3390/v13112165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has highlighted the need for the research community to develop a better understanding of viruses, in particular their modes of infection and replicative lifecycles, to aid in the development of novel vaccines and much needed anti-viral therapeutics. Several viruses express proteins capable of forming pores in host cellular membranes, termed "Viroporins". They are a family of small hydrophobic proteins, with at least one amphipathic domain, which characteristically form oligomeric structures with central hydrophilic domains. Consequently, they can facilitate the transport of ions through the hydrophilic core. Viroporins localise to host membranes such as the endoplasmic reticulum and regulate ion homeostasis creating a favourable environment for viral infection. Viroporins also contribute to viral immune evasion via several mechanisms. Given that viroporins are often essential for virion assembly and egress, and as their structural features tend to be evolutionarily conserved, they are attractive targets for anti-viral therapeutics. This review discusses the current knowledge of several viroporins, namely Influenza A virus (IAV) M2, Human Immunodeficiency Virus (HIV)-1 Viral protein U (Vpu), Hepatitis C Virus (HCV) p7, Human Papillomavirus (HPV)-16 E5, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Open Reading Frame (ORF)3a and Polyomavirus agnoprotein. We highlight the intricate but broad immunomodulatory effects of these viroporins and discuss the current antiviral therapies that target them; continually highlighting the need for future investigations to focus on novel therapeutics in the treatment of existing and future emergent viruses.
Collapse
Affiliation(s)
- Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
- Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Manama 15503, Bahrain
| |
Collapse
|
7
|
Shi Y, Du L, Lv D, Li Y, Zhang Z, Huang X, Tang H. Emerging role and therapeutic application of exosome in hepatitis virus infection and associated diseases. J Gastroenterol 2021; 56:336-349. [PMID: 33665710 PMCID: PMC8005397 DOI: 10.1007/s00535-021-01765-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/23/2021] [Indexed: 02/05/2023]
Abstract
Hepatitis viruses are chief pathogens of hepatitis and end-stage liver diseases. Their replication and related pathogenic process highly rely on the host micro-environment and multiple cellular elements, including exosomes. Representing with a sort of cell-derived vesicle structure, exosomes were considered to be dispensable cellular components, even wastes. Along with advancing investigation, a specific profile of exosome in driving hepatitis viruses' infection and hepatic disease progression is revealed. Exosomes greatly affect the pathogenesis of hepatitis viruses by mediating their replication and modulating the host immune responses. The characteristics of host exosomes are markedly changed after infection with hepatitis viruses. Exosomes released from hepatitis virus-infected cells can carry viral nucleic or protein components, thereby acting as an effective subterfuge for hepatitis viruses by participating in viral transportation and immune escape. On the contrary, immune cell-derived exosomes contribute toward the innate antiviral immune defense and virus eradication. There is growing evidence supporting the application of exosomal biomarkers for predicting disease progress or therapeutic outcome, while exosomal nanoshuttles are regarded as promising therapeutic options based on their delivery properties and immune compatibility. In this review, we summarize the biogenesis and secretion mechanism of exosomes, review the recent findings pertaining to the role of exosomes in the interplay between hepatitis viruses and innate immune responses, and conclude their potential in further therapeutic application.
Collapse
Affiliation(s)
- Ying Shi
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, 610041, Sichuan, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, 610041, Sichuan, China
| | - Yan Li
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Zilong Zhang
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Xiaolun Huang
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Recent Progress on Exosomes in RNA Virus Infection. Viruses 2021; 13:v13020256. [PMID: 33567490 PMCID: PMC7915723 DOI: 10.3390/v13020256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Recent research indicates that most tissue and cell types can secrete and release membrane-enclosed small vesicles, known as exosomes, whose content reflects the physiological/pathological state of the cells from which they originate. These exosomes participate in the communication and cell-to-cell transfer of biologically active proteins, lipids, and nucleic acids. Studies of RNA viruses have demonstrated that exosomes release regulatory factors from infected cells and deliver other functional host genetic elements to neighboring cells, and these functions are involved in the infection process and modulate the cellular responses. This review provides an overview of the biogenesis, composition, and some of the most striking functions of exosome secretion and identifies physiological/pathological areas in need of further research. While initial indications suggest that exosome-mediated pathways operate in vivo, the exosome mechanisms involved in the related effects still need to be clarified. The current review focuses on the role of exosomes in RNA virus infections, with an emphasis on the potential contributions of exosomes to pathogenesis.
Collapse
|
9
|
Abstract
Enveloped viruses exit producer cells and acquire their external lipid envelopes by budding through limiting cellular membranes. Most viruses encode multifunctional structural proteins that coordinate the processes of virion assembly, membrane envelopment, budding, and maturation. In many cases, the cellular ESCRT pathway is recruited to facilitate the membrane fission step of budding, but alternative strategies are also employed. Recently, many viruses previously considered to be non-enveloped have been shown to exit cells non-lytically within vesicles, adding further complexity to the intricacies of virus budding and egress.
Collapse
|
10
|
Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019; 20:ijms20184659. [PMID: 31546975 PMCID: PMC6769940 DOI: 10.3390/ijms20184659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
With respect to their genome and their structure, the human hepatitis B virus (HBV) and hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms. The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element (ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life cycle of the respective viruses and the virus-associated pathogenesis.
Collapse
Affiliation(s)
- Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| |
Collapse
|
11
|
Moustafa RI, Dubuisson J, Lavie M. Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virol 2019. [DOI: 10.2217/fvl-2018-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HCV envelope glycoproteins, E1 and E2, are multifunctional proteins. Until recently, E2 glycoprotein was thought to be the fusion protein and was the focus of investigations. However, the recently obtained partial structures of E2 and E1 rather support a role for E1 alone or in association with E2 in HCV fusion. Moreover, they suggest that HCV harbors a new fusion mechanism, distinct from that of other members of the Flaviviridae family. In this context, E1 aroused a renewed interest. Recent functional characterizations of E1 revealed a more important role than previously thought in entry and assembly. Thus, E1 is involved in the viral genome encapsidation step and influences the association of the virus with lipoprotein components. Moreover, E1 modulates HCV–receptor interaction and participates in a late entry step potentially fusion. In this review, we outline our current knowledge on E1 functions in HCV assembly and entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- Department of Microbial Biotechnology, Genetic Engineering & Biotechnology Division, National Research Center, Dokki, Cairo, Egypt
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Muriel Lavie
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
12
|
Alazard-Dany N, Denolly S, Boson B, Cosset FL. Overview of HCV Life Cycle with a Special Focus on Current and Possible Future Antiviral Targets. Viruses 2019; 11:v11010030. [PMID: 30621318 PMCID: PMC6356578 DOI: 10.3390/v11010030] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C infection is the leading cause of liver diseases worldwide and a major health concern that affects an estimated 3% of the global population. Novel therapies available since 2014 and 2017 are very efficient and the WHO considers HCV eradication possible by the year 2030. These treatments are based on the so-called direct acting antivirals (DAAs) that have been developed through research efforts by academia and industry since the 1990s. After a brief overview of the HCV life cycle, we describe here the functions of the different targets of current DAAs, the mode of action of these DAAs and potential future inhibitors.
Collapse
Affiliation(s)
- Nathalie Alazard-Dany
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Solène Denolly
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
13
|
Elgner F, Hildt E, Bender D. Relevance of Rab Proteins for the Life Cycle of Hepatitis C Virus. Front Cell Dev Biol 2018; 6:166. [PMID: 30564577 PMCID: PMC6288913 DOI: 10.3389/fcell.2018.00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Although potent direct-acting antiviral drugs for the treatment of chronic hepatitis C virus (HCV) infection are licensed, there are more than 70 million individuals suffering from chronic HCV infection. In light of the limited access to these drugs, high costs, and a lot of undiagnosed cases, it is expected that the number of HCV cases will not decrease worldwide in the next years. Therefore, and due to the paradigmatic character of HCV for deciphering the crosstalk between viral pathogens and the host cell, characterization of HCV life cycle remains a challenge. HCV belongs to the family of Flaviviridae. As an enveloped virus HCV life cycle depends in many steps on intracellular trafficking. Rab GTPases, a large family of small GTPases, play a central role in intracellular trafficking processes controlling fusion, uncoating, vesicle budding, motility by recruiting specific effector proteins. This review describes the relevance of various Rab proteins for the different steps of the HCV life cycle.
Collapse
Affiliation(s)
- Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
14
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
15
|
Denolly S, Mialon C, Bourlet T, Amirache F, Penin F, Lindenbach B, Boson B, Cosset FL. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types. PLoS Pathog 2017; 13:e1006774. [PMID: 29253880 PMCID: PMC5749900 DOI: 10.1371/journal.ppat.1006774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/02/2018] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.
Collapse
Affiliation(s)
- Solène Denolly
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Chloé Mialon
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas Bourlet
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, Saint Etienne, France
| | - Fouzia Amirache
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François Penin
- IBCP—Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Univ Lyon, Lyon, France
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Bertrand Boson
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
16
|
Taherkhani R, Farshadpour F. Global elimination of hepatitis C virus infection: Progresses and the remaining challenges. World J Hepatol 2017; 9:1239-1252. [PMID: 29312527 PMCID: PMC5745585 DOI: 10.4254/wjh.v9.i33.1239] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/01/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Today, with the introduction of interferon-free direct-acting antivirals and outstanding progresses in the prevention, diagnosis and treatment of hepatitis C virus (HCV) infection, the elimination of HCV infection seems more achievable. A further challenge is continued transmission of HCV infection in high-risk population specially injecting drug users (IDUs) as the major reservoir of HCV infection. Considering the fact that most of these infections remain undiagnosed, unidentified HCV-infected IDUs are potential sources for the rapid spread of HCV in the community. The continuous increase in the number of IDUs along with the rising prevalence of HCV infection among young IDUs is harbinger of a forthcoming public health dilemma, presenting a serious challenge to control transmission of HCV infection. Even the changes in HCV genotype distribution attributed to injecting drug use confirm this issue. These circumstances create a strong demand for timely diagnosis and proper treatment of HCV-infected patients through risk-based screening to mitigate the risk of HCV transmission in the IDUs community and, consequently, in the society. Meanwhile, raising general awareness of HCV infection, diagnosis and treatment through public education should be the core activity of any harm reduction intervention, as the root cause of failure in control of HCV infection has been lack of awareness among young drug takers. In addition, effective prevention, comprehensive screening programs with a specific focus on high-risk population, accessibility to the new anti-HCV treatment regimens and public education should be considered as the top priorities of any health policy decision to eliminate HCV infection.
Collapse
Affiliation(s)
- Reza Taherkhani
- the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Fatemeh Farshadpour
- the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| |
Collapse
|
17
|
Romero-López C, Berzal-Herranz A. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Front Microbiol 2017; 8:2093. [PMID: 29163393 PMCID: PMC5671509 DOI: 10.3389/fmicb.2017.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Viral genomes are complexly folded entities that carry all the information required for the infective cycle. The nucleotide sequence of the RNA virus genome encodes proteins and functional information contained in discrete, highly conserved structural units. These so-called functional RNA domains play essential roles in the progression of infection, which requires their preservation from one generation to the next. Numerous functional RNA domains exist in the genome of the hepatitis C virus (HCV). Among them, the 5BSL3.2 domain in the cis-acting replication element (CRE) at the 3' end of the viral open reading frame has become of particular interest given its role in HCV RNA replication and as a regulator of viral protein synthesis. These functionalities are achieved via the establishment of a complex network of long-distance RNA-RNA contacts involving (at least as known to date) the highly conserved 3'X tail, the apical loop of domain IIId in the internal ribosome entry site, and/or the so-called Alt region upstream of the CRE. Changing contacts promotes the execution of different stages of the viral cycle. The 5BSL3.2 domain thus operates at the core of a system that governs the progression of HCV infection. This review summarizes our knowledge of the long-range RNA-RNA interaction network in the HCV genome, with special attention paid to the structural and functional consequences derived from the establishment of different contacts. The potential implications of such interactions in switching between the different stages of the viral cycle are discussed.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
18
|
Hu L, Li J, Cai H, Yao W, Xiao J, Li YP, Qiu X, Xia H, Peng T. Avasimibe: A novel hepatitis C virus inhibitor that targets the assembly of infectious viral particles. Antiviral Res 2017; 148:5-14. [PMID: 29074218 DOI: 10.1016/j.antiviral.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/15/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals (DAAs), which target hepatitis C virus (HCV) proteins, have exhibited impressive efficacy in the management of chronic hepatitis C. However, the concerns regarding high costs, drug resistance mutations and subsequent unexpected side effects still call for the development of host-targeting agents (HTAs) that target host factors involved in the viral life cycle and exhibit pan-genotypic antiviral activity. Given the close relationship between lipid metabolism and the HCV life cycle, we investigated the anti-HCV activity of a series of lipid-lowering drugs that have been approved by government administrations or proven safety in clinical trials. Our results showed that avasimibe, an inhibitor of acyl coenzyme A:cholesterol acyltransferase (ACAT), exhibited marked pan-genotypic inhibitory activity and superior inhibition against HCV when combined with DAAs. Moreover, avasimibe significantly impaired the assembly of infectious HCV virions. Mechanistic studies demonstrated that avasimibe induced downregulation of microsomal triglyceride transfer protein expression, resulting in reduced apolipoprotein E and apolipoprotein B secretion. Therefore, the pan-genotypic antiviral activity and clinically proven safety endow avasimibe exceptional potential as a candidate for combination therapy with DAAs. In addition, the discovery of the antiviral properties of ACAT inhibitors also suggests that inhibiting the synthesis of cholesteryl esters might be an additional target for the therapeutic intervention for chronic HCV infection.
Collapse
Affiliation(s)
- Longbo Hu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinqian Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hua Cai
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenxia Yao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Ping Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Huimin Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|