1
|
Zhang Y, Shi X, Shen Y, Dong X, He R, Chen G, Zhang Y, Tan H, Zhang K. Nanoengineering-armed oncolytic viruses drive antitumor response: progress and challenges. MedComm (Beijing) 2024; 5:e755. [PMID: 39399642 PMCID: PMC11467370 DOI: 10.1002/mco2.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a powerful tool in cancer therapy. Characterized with the unique abilities to selectively target and lyse tumor cells, OVs can expedite the induction of cell death, thereby facilitating effective tumor eradication. Nanoengineering-derived OVs overcome traditional OV therapy limitations by enhancing the stability of viral circulation, and tumor targeting, promising improved clinical safety and efficacy and so on. This review provides a comprehensive analysis of the multifaceted mechanisms through which engineered OVs can suppress tumor progression. It initiates with a concise delineation on the fundamental attributes of existing OVs, followed by the exploration of their mechanisms of the antitumor response. Amid rapid advancements in nanomedicine, this review presents an extensive overview of the latest developments in the synergy between nanomaterials, nanotechnologies, and OVs, highlighting the unique characteristics and properties of the nanomaterials employed and their potential to spur innovation in novel virus design. Additionally, it delves into the current challenges in this emerging field and proposes strategies to overcome these obstacles, aiming to spur innovation in the design and application of next-generation OVs.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyu Shi
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yifan Shen
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiulin Dong
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ruiqing He
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guo Chen
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Zhang
- Department of Medical UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Honghong Tan
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
2
|
Funk C, Uhlig N, Ruzsics Z, Baur F, Peindl M, Nietzer S, Epting K, Vacun G, Dandekar G, Botteron C, Werno C, Grunwald T, Bailer SM. TheraVision: Engineering platform technology for the development of oncolytic viruses based on herpes simplex virus type 1. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200784. [PMID: 38596296 PMCID: PMC10950833 DOI: 10.1016/j.omton.2024.200784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Viruses are able to efficiently penetrate cells, multiply, and eventually kill infected cells, release tumor antigens, and activate the immune system. Therefore, viruses are highly attractive novel agents for cancer therapy. Clinical trials with first generations of oncolytic viruses (OVs) are very promising but show significant need for optimization. The aim of TheraVision was to establish a broadly applicable engineering platform technology for combinatorial oncolytic virus and immunotherapy. Through genetic engineering, an attenuated herpes simplex virus type 1 (HSV1) was generated that showed increased safety compared to the wild-type strain. To demonstrate the modularity and the facilitated generation of new OVs, two transgenes encoding retargeting as well as immunomodulating single-chain variable fragments (scFvs) were integrated into the platform vector. The resulting virus selectively infected epidermal growth factor receptor (EGFR)-expressing cells and produced a functional immune checkpoint inhibitor against programmed cell death protein 1 (PD-1). Thus, both viral-mediated oncolysis and immune-cell-mediated therapy were combined into a single viral vector. Safety and functionality of the armed OVs have been shown in novel preclinical models ranging from patient-derived organoids and tissue-engineered human in vitro 3D tumor models to complex humanized mouse models. Consequently, a novel and proprietary engineering platform vector based on HSV1 is available for the facilitated preclinical development of oncolytic virotherapy.
Collapse
Affiliation(s)
- Christina Funk
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Zsolt Ruzsics
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Florentin Baur
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Matthias Peindl
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Sarah Nietzer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Karina Epting
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gabriele Vacun
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Catherine Botteron
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Christian Werno
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Susanne M. Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
3
|
Knickmann J, Staliunaite L, Puhach O, Ostermann E, Günther T, Nichols J, Jarvis MA, Voigt S, Grundhoff A, Davison AJ, Brune W. A simple method for rapid cloning of complete herpesvirus genomes. CELL REPORTS METHODS 2024; 4:100696. [PMID: 38266652 PMCID: PMC10921015 DOI: 10.1016/j.crmeth.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Herpesviruses are large DNA viruses and include important human and veterinary pathogens. Their genomes can be cloned as bacterial artificial chromosomes (BACs) and genetically engineered in Escherichia coli using BAC recombineering methods. While the recombineering methods are efficient, the initial BAC-cloning step remains laborious. To overcome this limitation, we have developed a simple, rapid, and efficient BAC-cloning method based on single-step transformation-associated recombination (STAR) in Saccharomyces cerevisiae. The linear viral genome is directly integrated into a vector comprising a yeast centromeric plasmid and a BAC replicon. Following transfer into E. coli, the viral genome can be modified using standard BAC recombineering techniques. We demonstrate the speed, fidelity, and broad applicability of STAR by cloning two strains of both rat cytomegalovirus (a betaherpesvirus) and Kaposi's sarcoma-associated herpesvirus (a gammaherpesvirus). STAR cloning facilitates the functional genetic analysis of herpesviruses and other large DNA viruses and their use as vaccines and therapeutic vectors.
Collapse
Affiliation(s)
- Jan Knickmann
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Olha Puhach
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Michael A Jarvis
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK; The Vaccine Group Ltd., Plymouth, UK
| | - Sebastian Voigt
- Institute for Virology, University Hospital Essen, Essen, Germany
| | | | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany.
| |
Collapse
|
4
|
Deng X, Shen Y, Yi M, Zhang C, Zhao B, Zhong G, Xue D, Leng Q, Ding J, Zhao R, Jia W, Dong C, Dai Z. Combination of novel oncolytic herpesvirus with paclitaxel as an efficient strategy for breast cancer therapy. J Med Virol 2023; 95:e28768. [PMID: 37212336 DOI: 10.1002/jmv.28768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND New strategies are needed to improve the treatment of patients with breast cancer (BC). Oncolytic virotherapy is a promising new tool for cancer treatment but still has a limited overall durable antitumor response. A novel replicable recombinant oncolytic herpes simplex virus type 1 called VG161 has been developed and has demonstrated antitumor effects in several cancers. Here, we explored the efficacy and the antitumor immune response of VG161 cotreatment with paclitaxel (PTX) which as a novel oncolytic viral immunotherapy for BC. METHODS The antitumor effect of VG161 and PTX was confirmed in a BC xenograft mouse model. The immunostimulatory pathways were tested by RNA-seq and the remodeling of tumor microenvironment was detected by Flow cytometry analysis or Immunohistochemistry. Pulmonary lesions were analyzed by the EMT6-Luc BC model. RESULTS In this report, we demonstrate that VG161 can significantly represses BC growth and elicit a robust antitumor immune response in a mouse model. The effect is amplified when combined with PTX treatment. The antitumor effect is associated with the infiltration of lymphoid cells, including CD4+ T cells, CD8+ T cells, and NK cells (expressing TNF and IFN-γ), and myeloid cells, including macrophages, myeloid-derived suppressor cells, and dendritic cell cells. Additionally, VG161 cotreatment with PTX showed a significant reduction in BC lung metastasis, which may result from the enhanced CD4+ and CD8+ T cell-mediated responses. CONCLUSIONS The combination of PTX and VG161 is effective for repressing BC growth by inducing proinflammatory changes in the tumor microenvironment and reducing BC pulmonary metastasis. These data will provide a new strategy and valuable insight for oncolytic virus therapy applications in primary solid or metastatic BC tumors.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaomei Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Zhao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dixuan Xue
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Leng
- Department of Geriatics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ding
- Shanghai Virogin Biotech Co. Ltd., Shanghai, China
| | - Ronghua Zhao
- Shanghai Virogin Biotech Co. Ltd., Shanghai, China
- CNBG-Virogin Biotech (Shanghai) Co. Ltd., Shanghai, China
| | - Weiguo Jia
- Shanghai Virogin Biotech Co. Ltd., Shanghai, China
- CNBG-Virogin Biotech (Shanghai) Co. Ltd., Shanghai, China
| | - Chenfang Dong
- Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Griffiths ME, Meza DK, Haydon DT, Streicker DG. Inferring the disruption of rabies circulation in vampire bat populations using a betaherpesvirus-vectored transmissible vaccine. Proc Natl Acad Sci U S A 2023; 120:e2216667120. [PMID: 36877838 PMCID: PMC10089182 DOI: 10.1073/pnas.2216667120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
Transmissible vaccines are an emerging biotechnology that hold prospects to eliminate pathogens from wildlife populations. Such vaccines would genetically modify naturally occurring, nonpathogenic viruses ("viral vectors") to express pathogen antigens while retaining their capacity to transmit. The epidemiology of candidate viral vectors within the target wildlife population has been notoriously challenging to resolve but underpins the selection of effective vectors prior to major investments in vaccine development. Here, we used spatiotemporally replicated deep sequencing to parameterize competing epidemiological mechanistic models of Desmodus rotundus betaherpesvirus (DrBHV), a proposed vector for a transmissible vaccine targeting vampire bat-transmitted rabies. Using 36 strain- and location-specific time series of prevalence collected over 6 y, we found that lifelong infections with cycles of latency and reactivation, combined with a high R0 (6.9; CI: 4.39 to 7.85), are necessary to explain patterns of DrBHV infection observed in wild bats. These epidemiological properties suggest that DrBHV may be suited to vector a lifelong, self-boosting, and transmissible vaccine. Simulations showed that inoculating a single bat with a DrBHV-vectored rabies vaccine could immunize >80% of a bat population, reducing the size, frequency, and duration of rabies outbreaks by 50 to 95%. Gradual loss of infectious vaccine from vaccinated individuals is expected but can be countered by inoculating larger but practically achievable proportions of bat populations. Parameterizing epidemiological models using accessible genomic data brings transmissible vaccines one step closer to implementation.
Collapse
Affiliation(s)
- Megan E. Griffiths
- Medical Research Council–University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Diana K. Meza
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| | - Daniel T. Haydon
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| | - Daniel G. Streicker
- Medical Research Council–University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| |
Collapse
|
6
|
bin Umair M, Akusa FN, Kashif H, Seerat-e-Fatima, Butt F, Azhar M, Munir I, Ahmed M, Khalil W, Sharyar H, Rafique S, Shahid M, Afzal S. Viruses as tools in gene therapy, vaccine development, and cancer treatment. Arch Virol 2022; 167:1387-1404. [PMID: 35462594 PMCID: PMC9035288 DOI: 10.1007/s00705-022-05432-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Using viruses to our advantage has been a huge leap for humanity. Their ability to mediate horizontal gene transfer has made them useful tools for gene therapy, vaccine development, and cancer treatment. Adenoviruses, adeno-associated viruses, retroviruses, lentiviruses, alphaviruses, and herpesviruses are a few of the most common candidates for use as therapeutic agents or efficient gene delivery systems. Efforts are being made to improve and perfect viral-vector-based therapies to overcome potential or reported drawbacks. Some preclinical trials of viral vector vaccines have yielded positive results, indicating their potential as prophylactic or therapeutic vaccine candidates. Utilization of the oncolytic activity of viruses is the future of cancer therapy, as patients will then be free from the harmful effects of chemo- or radiotherapy. This review discusses in vitro and in vivo studies showing the brilliant therapeutic potential of viruses.
Collapse
Affiliation(s)
- Musab bin Umair
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Fujimura Nao Akusa
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Hadia Kashif
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Seerat-e-Fatima
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Fatima Butt
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Marium Azhar
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Iqra Munir
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Muhammad Ahmed
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Wajeeha Khalil
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Hafiz Sharyar
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Muhammad Shahid
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| |
Collapse
|
7
|
Enhanced Production of Herpes Simplex Virus 1 Amplicon Vectors by Gene Modification and Optimization of Packaging Cell Growth Medium. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:491-496. [PMID: 32258212 PMCID: PMC7114837 DOI: 10.1016/j.omtm.2020.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
Herpes simplex virus 1 (HSV-1)-derived amplicon vectors are unique in their ability to accommodate large DNA molecules allowing whole genomic loci to be included with all of their regulatory elements. Additional advantages of these amplicons include their minimal toxicity and ability to persist as episomes, with negligible risk of insertional mutagenesis, being particularly well-suited for gene therapy of neurological disorders due to their outstanding ability to deliver genes into neurons and other neural cells. However, extensive gene therapy application has been hindered by difficulties in vector production. This work improved HSV-1 amplicons production by genetic modification of the packaging cell line and optimization of the culture medium. A stably-transfected Vero 2-2 cell line overexpressing the anti-apoptotic Bcl-2 protein was generated, exhibiting an increased resistance to apoptosis, prolonged culture duration, and a significant improvement in viral vector production. Additionally, supplementation of the growth medium with antioxidants, polyamines, amino acids, and reduced glutathione further increased the yield of packaged amplicon vectors. With these modifications, HSV-1 amplicons could be isolated from culture supernatants instead of cell lysates, leading to vector preparations with higher titer and purity and paving the way for generation of stable cell lines that are capable of continuous herpesviral vector production.
Collapse
|
8
|
Abstract
Gene therapy is emerging as a viable option for clinical therapy of monogenic disorders and other genetically defined diseases, with approved gene therapies available in Europe and newly approved gene therapies in the United States. In the past 10 years, gene therapy has moved from a distant possibility, even in the minds of much of the scientific community, to being widely realized as a valuable therapeutic tool with wide-ranging potential. The U.S. Food and Drug Administration has recently approved Luxturna (Spark Therapeutics Inc, Philadelphia, PA, USA), a recombinant adeno-associated virus (rAAV) 2 gene therapy for one type of Leber congenital amaurosis 2 ( 1 , 2 ). The European Medicines Agency (EMA) has approved 3 recombinant viral vector products: Glybera (UniQure, Amsterdam, The Netherlands), an rAAV vector for lipoprotein lipase deficiency; Strimvelis (Glaxo Smith-Kline, Brentford, United Kingdom), an ex vivo gammaretrovirus-based therapy for patients with adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID); and Kymriah (Novartis, Basel, Switzerland), an ex vivo lentivirus-based therapy to engineer autologous chimeric antigen-receptor T (CAR-T) cells targeting CD19-positive cells in acute lymphoblastic leukemia. These examples will be followed by the clinical approval of other gene therapy products as this field matures. In this review we provide an overview of the state of gene therapy by discussing where the field stands with respect to the different gene therapy vector platforms and the types of therapies that are available.-Gruntman, A. M., Flotte, T. R. The rapidly evolving state of gene therapy.
Collapse
Affiliation(s)
- Alisha M Gruntman
- Horae Gene Therapy Center, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Prospect of Plasmacytoid Dendritic Cells in Enhancing Anti-Tumor Immunity of Oncolytic Herpes Viruses. Cancers (Basel) 2019; 11:cancers11050651. [PMID: 31083559 PMCID: PMC6562787 DOI: 10.3390/cancers11050651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
The major type I interferon-producing plasmacytoid dendritic cells (pDC) surround and infiltrate certain tumors like malignant melanoma, head and neck cancer, and ovarian and breast cancer. The presence of pDC in these tumors is associated with an unfavorable prognosis for the patients as long as these cells are unstimulated. Upon activation by synthetic Toll-like receptor agonists or viruses, however, pDC develop cytotoxic activities. Viruses have the additional advantage to augment cytotoxic activities of pDC via lytic replication in malignant lesions. These effects turn cold tumors into hotspots, recruiting further immune cells to the site of inflammation. Activated pDC contribute to cross-presentation of tumor-associated antigens by classical dendritic cells, which induce cytotoxic T-cells in particular in the presence of checkpoint inhibitors. The modification of oncolytic herpes viruses via genetic engineering favorably affects this process through the enhanced production of pro-inflammatory cytokines, curbing of tumor blood supply, and removal of extracellular barriers for efficient viral spread. Importantly, viral vectors may contribute to stimulation of memory-type adaptive immune responses through presentation of tumor-related neo- and/or self-antigens. Eventually, both replication-competent and replication-deficient herpes simplex virus 1 (HSV-1) may serve as vaccine vectors, which contribute to tumor regression by the stimulation of pDC and other dendritic cells in adjuvant and neo-adjuvant situations.
Collapse
|
10
|
Kreppel F, Ehrhardt A. From Virus to vector to medicine: Foreword by guest editors. Virus Genes 2017; 53:673-674. [PMID: 28921483 DOI: 10.1007/s11262-017-1503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Florian Kreppel
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany.
| | - Anja Ehrhardt
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany.
| |
Collapse
|