1
|
Martin MF, Bonaventure B, McCray NE, Peersen OB, Rozen-Gagnon K, Stapleford KA. Distinct chikungunya virus polymerase palm subdomains contribute to viral protein accumulation and virion production. PLoS Pathog 2024; 20:e1011972. [PMID: 39401243 PMCID: PMC11501042 DOI: 10.1371/journal.ppat.1011972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/24/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus has established the importance of the nsP4 residue cysteine 483 in replication. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function. To test this hypothesis, we designed a panel of nsP4 variants via homology modeling based on the coxsackievirus B3 3D polymerase. We rescued each variant in mammalian and mosquito cells and discovered that the palm domain and ring finger subdomain contribute to host-specific replication. In C6/36 cells, we found that while the nsP4 variants had replicase function similar to that of wild-type CHIKV, many variants presented changes in protein accumulation and virion production even when viral nonstructural and structural proteins were produced. Finally, we found that WT CHIKV and nsP4 variant replication and protein production could be enhanced in mammalian cells at 28°C, yet growing virus under these conditions led to changes in virus infectivity. Taken together, these studies highlight that distinct nsP4 subdomains are required for proper RNA transcription and translation, having major effects on virion production.
Collapse
Affiliation(s)
- Marie-France Martin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Boris Bonaventure
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nia E. McCray
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
2
|
Ramos B, Carvalho V, da Silva E, Freitas M, Barros LJ, Santos M, Pantoja JA, Gonçalves E, Nunes Neto J, Junior JW, Vieira D, Dias D, Cruz AC, Nunes B, Silva S, Aragão C, Casseb A, Martins L. The First Isolation of Insect-Specific Alphavirus ( Agua Salud alphavirus) in Culex (Melanoconion) Mosquitoes in the Brazilian Amazon. Viruses 2024; 16:1355. [PMID: 39339832 PMCID: PMC11436152 DOI: 10.3390/v16091355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Advances in diagnostic techniques coupled with ongoing environmental changes have resulted in intensified surveillance and monitoring of arbovirus circulation in the Amazon. This increased effort has resulted in increased detection of insect-specific viruses among hematophagous arthropods collected in the field. This study aimed to document the first isolation of Agua Salud alphavirus in mosquitoes collected within the Brazilian Amazon. Arthropods belonging to the family Culicidae were collected within a forest fragment located in the Environmental Protection Area of the metropolitan region of Belem. Subsequently, these specimens were meticulously identified to the species level. Afterward, the collected batches were macerated, and the resulting supernatant was then inoculated into C6/36 and Vero cell cultures to facilitate viral isolation. The presence of arboviruses within the inoculated cell cultures was determined through indirect immunofluorescence analysis. Furthermore, positive supernatant samples underwent nucleotide sequencing to precisely identify the viral strains present. Notably, a batch containing Culex (Melanoconion) mosquitoes was identified to be positive for the genus Alphavirus via indirect immunofluorescence. This study is the first report on insect-specific alphavirus isolation in Brazil and the first-ever description of Agua Salud alphavirus isolation within Amazon Forest remnants.
Collapse
Affiliation(s)
- Bruna Ramos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
- Graduate Program in Virology, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil
| | - Valéria Carvalho
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Eliana da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Maria Freitas
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Landeson Junior Barros
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Maissa Santos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Jamilla Augusta Pantoja
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Ercília Gonçalves
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Joaquim Nunes Neto
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - José Wilson Junior
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Durval Vieira
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Daniel Dias
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Ana Cecília Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Bruno Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Sandro Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Carine Aragão
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| | - Alexandre Casseb
- Institute of Animal Health and Production, Federal Rural University of Amazônia, President Tancredo Neves Boulevard, 2501, Belem 66077-830, PA, Brazil;
| | - Lívia Martins
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, BR 316, Km 07, s/n, Ananindeua 67030-000, PA, Brazil; (V.C.); (E.d.S.); (M.F.); (L.J.B.); (M.S.); (J.A.P.); (E.G.); (J.N.N.); (J.W.J.); (D.V.); (D.D.); (A.C.C.); (B.N.); (S.S.); (C.A.); (L.M.)
| |
Collapse
|
3
|
Chen MN, Ye ZX, Feng KH, Yuan JN, Chen JP, Zhang CX, Li JM, Mao QZ. Genetic Characterization of Two Novel Insect-Infecting Negative-Sense RNA Viruses Identified in a Leaf Beetle, Aulacophora indica. INSECTS 2024; 15:615. [PMID: 39194819 DOI: 10.3390/insects15080615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue while feeding, often creating openings that can act as entry points for plant pathogens. In this study, we have identified two new negative-sense RNA viruses infecting the leaf beetle Aulacophora indica, an important member of the Chrysomelidae family. These recently discovered viruses belong to the viral families Nyamiviridae and Chuviridae and have been preliminarily named Aulacophora indica nyami-like virus 1 (AINlV1) and Aulacophora indica chu-like virus 1 (AIClV1), respectively. The complete genomic sequences of these viruses were obtained using rapid amplification of cDNA ends (RACE) techniques. Detailed analysis of their genomic structures has confirmed their similarity to other members within their respective families. Furthermore, analysis of virus-derived small interfering RNA (vsiRNA) demonstrated a high abundance and typical vsiRNA pattern of AINlV1 and AIClV1, offering substantial evidence to support their classification as ISVs. This research enhances our understanding of viral diversity within insects.
Collapse
Affiliation(s)
- Meng-Nan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ke-Hui Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jing-Na Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Baril C, Cassone BJ. Metatranscriptomic analysis of common mosquito vector species in the Canadian Prairies. mSphere 2024; 9:e0020324. [PMID: 38912793 PMCID: PMC11288045 DOI: 10.1128/msphere.00203-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 06/25/2024] Open
Abstract
The microbiome plays vital roles in the life history of mosquitoes, including their development, immunity, longevity, and vector competence. Recent advances in sequencing technologies have allowed for detailed exploration into the diverse microorganisms harbored by these medically important insects. Although these meta-studies have cataloged the microbiomes of mosquitoes in several continents, much of the information currently available for North America is limited to the state of California. In this study, we collected >35,000 mosquitoes throughout Manitoba, Canada, over a 3-year period and then harnessed RNA sequencing and targeted reverse transcriptase-PCR to characterize the microbiomes of the eight most pervasive and important vector and pest species. The consensus microbiome of each species was overwhelmingly composed of viruses but also included fungi, bacteria, protozoa, and parasitic invertebrates. The microbial assemblages were heterogeneous between species, even within the same genus. We detected notable pathogens, including the causal agents of Cache Valley Fever, avian malaria, and canine heartworm. The remaining microbiome consisted largely of putatively insect-specific viruses that are not well characterized, including 17 newly discovered viruses from 10 different families. Future research should focus on evaluating the potential application of these viruses in biocontrol, as biomarkers, and/or in disrupting mosquito vectorial capacity. Interestingly, we also detected viruses that naturally infect honeybees and thrips, which were presumably acquired indirectly through nectar foraging behaviors. Overall, we provide the first comprehensive catalog of the microorganisms harbored by the most common and important mosquito vectors and pests in the Canadian Prairies. IMPORTANCE Mosquitoes are the most dangerous animals on the planet, responsible for over 800,000 deaths per year globally. This is because they carry and transmit a plethora of human disease-causing microorganisms, such as West Nile virus and the malaria parasite. Recent innovations in nucleic acid sequencing technologies have enabled researchers unparalleled opportunities to characterize the suite of microorganisms harbored by different mosquito species, including the causal agents of disease. In our study, we carried out 3 years of intensive mosquito surveillance in Canada. We collected and characterized the microorganisms harbored by >35,000 mosquitoes, including the identification of the agents of Cache Valley fever, avian malaria, and canine heartworm. We also detected insect-specific viruses and discovered 17 new viruses that have never been reported. This study, which is the first of its kind in Canada and one of only a handful globally, will greatly aid in future infectious disease research.
Collapse
Affiliation(s)
- Cole Baril
- Department of Biology, Brandon University, Brandon, Manitoba, Canada
| | - Bryan J. Cassone
- Department of Biology, Brandon University, Brandon, Manitoba, Canada
| |
Collapse
|
5
|
Norton AM, Buchmann G, Ashe A, Watson OT, Beekman M, Remnant EJ. Deformed wing virus genotypes A and B do not elicit immunologically different responses in naïve honey bee hosts. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39072811 DOI: 10.1111/imb.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Iflavirus aladeformis (Picornavirales: Iflaviridae), commonly known as deformed wing virus(DWV), in association with Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae), is a leading factor associated with honey bee (Apis mellifera L. [Hymenoptera: Apidae]) deaths. The virus and mite have a near global distribution, making it difficult to separate the effect of one from the other. The prevalence of two main DWV genotypes (DWV-A and DWV-B) has changed over time, leading to the possibility that the two strains elicit a different immune response by the host. Here, we use a honey bee population naïve to both the mite and the virus to investigate if honey bees show a different immunological response to DWV genotypes. We examined the expression of 19 immune genes by reverse transcription quantitative PCR (RT-qPCR) and analysed small RNA after experimental injection with DWV-A and DWV-B. We found no evidence that DWV-A and DWV-B elicit different immune responses in honey bees. RNA interference genes were up-regulated during DWV infection, and small interfering RNA (siRNA) responses were proportional to viral loads yet did not inhibit DWV accumulation. The siRNA response towards DWV was weaker than the response to another honey bee pathogen, Triatovirus nigereginacellulae (Picornavirales: Dicistroviridae; black queen cell virus), suggesting that DWV is comparatively better at evading host antiviral defences. There was no evidence for the production of virus-derived Piwi-interacting RNAs (piRNAs) in response to DWV. In contrast to previous studies, and in the absence of V. destructor, we found no evidence that DWV has an immunosuppressive effect. Overall, our results advance our understanding of the immunological effect that DWV in isolation elicits in honey bees.
Collapse
Affiliation(s)
- Amanda M Norton
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabriele Buchmann
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Owen T Watson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Madeleine Beekman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Emily J Remnant
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Pavon JAR, da Silva Neves NA, Pinho JB, de Souza VJ, Patroca da Silva S, Ribeiro Cruz AC, de Almeida Medeiros DB, Teixeira Nunes MR, Slhessarenko RD. Disclosing the virome of Aedes, Anopheles and Culex female mosquitoes, Alto Pantanal of Mato Grosso, Brazil, 2019. Virology 2024; 598:110182. [PMID: 39033587 DOI: 10.1016/j.virol.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Using Illumina NextSeq sequencing and bioinformatics, we identified and characterized thirty-three viral sequences of unsegmented and multipartite viral families in Aedes spp., Culex sp. and Anopheles darlingi female mosquito pools from Porto São Luiz and Pirizal, Alto Pantanal. Seventeen sequences belong to unsegmented viral families, twelve represent putative novel insect-specific viruses (ISVs) within families Chuviridae (3/33; partial genomes) and coding-complete sequences of Xinmoviridae (1/33), Rhabdoviridae (2/33) and Metaviridae (6/33); and five coding-complete sequences of already-known ISVs. Notably, two putative novel rhabdoviruses, Corixo rhabdovirus 1 and 2, were phylogenetically related to Coxipo dielmovirus, but separated from other Alpharhabdovirinae genera, sharing Anopheles spp. as host. Regarding multipartite families, sixteen segments of different putative novel viruses were identified (13 coding-complete segments) within Durnavirales (4/33), Elliovirales (1/33), Hareavirales (3/33) and Reovirales (8/33) orders. Overall, this study describes twenty-eight (28/33) putative novel ISVs and five (5/33) already described viruses using metagenomics approach.
Collapse
Affiliation(s)
- Janeth Aracely Ramirez Pavon
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Nilvanei Aparecido da Silva Neves
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - João Batista Pinho
- Instituto de Biociências, Laboratório de Ecologia de Aves e Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, CEP 78060-900, Mato Grosso, Brazil
| | - Vilma Juscineide de Souza
- Coordenadoria de Vigilância Ambiental, Secretaria Estadual de Saúde, Centro Político Administrativo de Mato Grosso, Palácio Paiaguás, CEP 78049-902, Cuiabá, Mato Grosso, Brazil
| | | | | | | | - Márcio Roberto Teixeira Nunes
- Laboratório de Tecnologia Biomolecular, Centro de Ciências Biológicas, Universidade Federal Do Pará, CEP 66075-110, Belém, Pará, Brazil
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
7
|
Nag DK, Efner KJ. Transovarial Transmission of Cell-Fusing Agent Virus in Naturally Infected Aedes aegypti Mosquitoes. Viruses 2024; 16:1116. [PMID: 39066278 PMCID: PMC11281400 DOI: 10.3390/v16071116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquito-borne arboviruses include several pathogens that are responsible for many diseases of significant public health burden. Mosquitoes also host many insect-specific viruses that cannot replicate in vertebrate cells. These insect-specific viruses persist in nature predominantly via vertical transmission (VT), and they exhibit high VT rates (VTRs). Cell-fusing agent virus (CFAV), an insect-specific orthoflavivirus, shows high VTRs in naturally infected mosquitoes but not in artificially infected mosquitoes. To determine whether the high VTRs are due to transovarial transmission, we investigated VT and ovary infection patterns in naturally CFAV-infected Aedes aegypti (Bangkok) mosquitoes. VT was monitored by detecting CFAV among the progeny by reverse-transcription polymerase chain reaction and ovary infection was determined by in situ hybridization using a virus-specific probe. We showed that in CFAV-positive mosquitoes, ovarian follicles were infected, suggesting that VT occurs by transovarial transmission in naturally infected mosquitoes. Additionally, mosquitoes harbored dormant, non-replicative CFAV that remained below the detection level. These results suggested that CFAV persists via VT in nature and has the potential to remain dormant in diapausing mosquitoes during unfavorable conditions. Understanding this VT mechanism is crucial for comprehending the persistence of insect-specific viruses (and potentially dual-host arboviruses) in their natural environment.
Collapse
Affiliation(s)
- Dilip K. Nag
- Griffin Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
| | | |
Collapse
|
8
|
Wang H, Chen Q, Wei T. Complex interactions among insect viruses-insect vector-arboviruses. INSECT SCIENCE 2024; 31:683-693. [PMID: 37877630 DOI: 10.1111/1744-7917.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023]
Abstract
Insects are the host or vector of diverse viruses including those that infect vertebrates, plants, and fungi. Insect viruses reside inside their insect hosts and are vertically transmitted from parent to offspring. The insect virus-host relationship is intricate, as these viruses can impact various aspects of insect biology, such as development, reproduction, sex ratios, and immunity. Arthropod-borne viruses (arboviruses) that cause substantial global health or agricultural problems can also be vertically transmitted to insect vector progeny. Multiple infections with insect viruses and arboviruses are common in nature. Such coinfections involve complex interactions, including synergism, dependence, and antagonism. Recent studies have shed light on the influence of insect viruses on the competence of insect vectors for arboviruses. In this review, we focus on the biological effects of insect viruses on the transmission of arboviruses by insects. We also discuss the potential mechanisms by which insect viruses affect the ability of hosts to transmit arboviruses, as well as potential strategies for disease control through manipulation of insect viruses. Analyses of the interactions among insect vectors, insect viruses and arboviruses will provide new opportunities for development of innovative strategies to control arbovirus transmission.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Yuan JN, Ye ZX, Chen MN, Ren PP, Ning C, Sun ZT, Chen JP, Zhang CX, Li JM, Mao Q. Identification and Characterization of Three Novel Solemo-like Viruses in the White-Backed Planthopper, Sogatella furcifera. INSECTS 2024; 15:394. [PMID: 38921109 PMCID: PMC11203538 DOI: 10.3390/insects15060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host's siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs' hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults.
Collapse
Affiliation(s)
- Jing-Na Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Meng-Nan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Chao Ning
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Qianzhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| |
Collapse
|
10
|
Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024; 16:804. [PMID: 38793685 PMCID: PMC11125801 DOI: 10.3390/v16050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.
Collapse
Affiliation(s)
- Clara Isabel Bermudez-Santana
- Computational and theoretical RNomics Group, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Gallego-Gómez
- Grupo de Medicina de Traslación, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
11
|
Nag DK, Efner K. Cell fusing agent virus rarely transmits vertically in artificially infected laboratory-colonized Aedes aegypti mosquitoes. Parasit Vectors 2024; 17:177. [PMID: 38575981 PMCID: PMC10996217 DOI: 10.1186/s13071-024-06232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Vertical transmission (VT) of arboviruses (arthropod-borne viruses) can serve as an essential link in the transmission cycle during adverse environmental conditions. The extent of VT among mosquito-borne arboviruses can vary significantly among different virus families and even among different viruses within the same genus. For example, orthobunyaviruses exhibit a higher VT rate than orthoflaviviruses and alphaviruses. Mosquitoes are also the natural hosts of a large number of insect-specific viruses (ISV) that belong to several virus families, including Bunyaviridae, Flaviviridae, and Togaviridae. Cell fusing agent virus (CFAV), an insect-specific orthoflavivirus, displays higher VT rates than other dual-host orthoflaviviruses, such as Zika and dengue viruses. High VT rates require establishment of stabilized infections in the germinal tissues of female vectors. To delve deeper into understanding the mechanisms governing these differences in VT rates and the establishment of stabilized infections, the ovary infection patterns and VT of Zika virus (ZIKV) and CFAV were compared. METHODS Laboratory colonized Aedes aegypti females were infected with either ZIKV or CFAV by intrathoracic injection. Ovary infection patterns were monitored by in situ hybridization using virus-specific probes, and VT was determined by detecting the presence of the virus among the progeny, using a reverse-transcription quantitative polymerase chain reaction (PCR) assay. RESULTS Both ZIKV and CFAV infect mosquito ovaries after intrathoracic injection. Infections then become widespread following a non-infectious blood meal. VT rates of ZIKV are similar to previously reported results (3.33%). CFAV, on the contrary transmits vertically very rarely. VT was not observed in the first gonotrophic cycle following intrathoracic injection, and only rarely in the second gonotrophic cycle. VT of CFAV is mosquito population independent, since similar results were obtained with Aedes aegypti collected from two different geographic locations. CONCLUSIONS Although CFAV infects mosquito ovaries, the occurrence of VT remains infrequent in artificially infected Ae. aegypti, despite the observation of high VT rates in field-collected mosquitoes. These results suggest that infections of insect-specific viruses are stabilized in mosquitoes by some as yet unidentified mechanisms.
Collapse
Affiliation(s)
- Dilip K Nag
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA.
| | - Kathryn Efner
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| |
Collapse
|
12
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Gangopadhayya A, Lole K, Ghuge O, Ramdasi A, Kamble A, Roy D, Thakar S, Nath A, Sudeep AB, Cherian S. Metagenomic Analysis of Viromes of Aedes Mosquitoes across India. Viruses 2024; 16:109. [PMID: 38257809 PMCID: PMC10818685 DOI: 10.3390/v16010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Metagenomic analysis of Aedes aegypti and Ae. albopictus mosquitoes from diverse geographical regions of India revealed the presence of several insect viruses of human interest. Most abundant reads found in Ae. aegypti mosquitoes were of Phasi Charoen-like virus (PCLV), Choristoneura fumiferana granulovirus (CfGV), Cell fusing agent virus (CFAV), and Wenzhou sobemo-like virus 4 (WSLV4), whereas WSLV4 and CfGV constituted the highest percentage of reads in Ae. albopictus viromes. Other reads that were of low percentage included Hubei mosquito virus 2 (HMV2), Porcine astrovirus 4 (PAstV4), and Wild Boar astrovirus (WBAstV). PCLV and CFAV, which were found to be abundant in Ae. aegypti viromes were absent in Ae. albopictus viromes. Among the viromes analyzed, Ae. aegypti sampled from Pune showed the highest percentage (79.82%) of viral reads, while Ae. aegypti mosquitoes sampled from Dibrugarh showed the lowest percentage (3.47%). Shamonda orthobunyavirus (SHAV), African swine fever virus (ASFV), Aroa virus (AROAV), and Ilheus virus (ILHV), having the potential to infect vertebrates, including humans, were also detected in both mosquito species, albeit with low read numbers. Reads of gemykibivirus, avian retrovirus, bacteriophages, herpesviruses, and viruses infecting protozoans, algae, etc., were also detected in the mosquitoes. A high percentage of reads in the Ae. albopictus mosquito samples belonged to unclassified viruses and warrant further investigation. The data generated in the present work may not only lead to studies to explain the influence of these viruses on the replication and transmission of viruses of clinical importance but also to find applications as biocontrol agents against pathogenic viruses.
Collapse
Affiliation(s)
- Abhranil Gangopadhayya
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Kavita Lole
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Onkar Ghuge
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Ashwini Ramdasi
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Asmita Kamble
- Bioinformatics and Data Management Group, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (A.K.); (D.R.)
| | - Diya Roy
- Bioinformatics and Data Management Group, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (A.K.); (D.R.)
| | - Shivani Thakar
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Amol Nath
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - AB Sudeep
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Sarah Cherian
- Bioinformatics and Data Management Group, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (A.K.); (D.R.)
| |
Collapse
|
14
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
15
|
Gómez M, Martínez D, Páez-Triana L, Luna N, De Las Salas JL, Hernández C, Flórez AZ, Muñoz M, Ramírez JD. Characterizing viral species in mosquitoes (Culicidae) in the Colombian Orinoco: insights from a preliminary metagenomic study. Sci Rep 2023; 13:22081. [PMID: 38086841 PMCID: PMC10716246 DOI: 10.1038/s41598-023-49232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Mosquitoes (Diptera: Culicidae) are primary vectors of arthropod-borne viruses (arboviruses) that pose significant public health threats. Recent advances in sequencing technology emphasize the importance of understanding the arboviruses and insect-specific viruses (ISVs) hosted by mosquitoes, collectively called the "virome". Colombia, a tropical country with favorable conditions for the development and adaptation of multiple species of Culicidae, offers a favorable scenario for the transmission of epidemiologically important arboviruses. However, entomovirological surveillance studies are scarce in rural areas of the country, where humans, mosquitoes, and animals (both domestic and wild) coexist, leading to a higher risk of transmission of zoonotic diseases to humans. Thus, our study aimed to perform a preliminary metagenomic analysis of the mosquitoes of special relevance to public health belonging to the genera Ochlerotatus, Culex, Limatus, Mansonia, Psorophora, and Sabethes, within a rural savanna ecosystem in the Colombian Orinoco. We employed third-generation sequencing technology (Oxford Nanopore Technologies; ONT) to describe the virome of mosquitoes samples. Our results revealed that the virome was primarily shaped by insect-specific viruses (ISVs), with the Iflaviridae family being the most prevalent across all mosquito samples. Furthermore, we identified a group of ISVs that were common in all mosquito species tested, displaying the highest relative abundance concerning other groups of viruses. Notably, Hanko iflavirus-1 was especially prevalent in Culex eknomios (88.4%) and Ochlerotatus serratus (88.0%). Additionally, other ISVs, such as Guadalupe mosquito virus (GMV), Hubei mosquito virus1 (HMV1), Uxmal virus, Tanay virus, Cordoba virus, and Castlerea virus (all belonging to the Negevirus genus), were found as common viral species among the mosquitoes, although in lower proportions. These initial findings contribute to our understanding of ISVs within mosquito vectors of the Culicidae family in the Eastern Plains of Colombia. We recommend that future research explore deeper into ISV species shared among diverse vector species, and their potential interactions with arboviruses. In addition, we also showed the need for a thorough exploration of the influence of local rural habitat conditions on the shape of the virome in mosquito vectors.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
McMinn RJ, Chacon A, Rückert C, Scorza V, Young MC, Worthington D, Lamb MM, Medrano RE, Harris EK, Arias K, Lopez MR, Asturias EJ, Foy BD, Stenglein MD, Olson D, Ebel GD. Evaluation of Vector-Enabled Xenosurveillance in Rural Guatemala. Am J Trop Med Hyg 2023; 109:1303-1310. [PMID: 37972312 DOI: 10.4269/ajtmh.22-0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/02/2023] [Indexed: 11/19/2023] Open
Abstract
Surveillance methods that permit rapid detection of circulating pathogens in low-resource settings are desperately needed. In this study, we evaluated a mosquito bloodmeal-based surveillance method ("xenosurveillance") in rural Guatemala. Twenty households from two villages (Los Encuentros and Chiquirines) in rural southwest Guatemala were enrolled and underwent weekly prospective surveillance from August 2019 to December 2019 (16 weeks). When febrile illness was reported in a household, recently blood-fed mosquitoes were collected from within dwellings and blood samples taken from each member of the household. Mosquitoes were identified to species and blood sources identified by sequencing. Shotgun metagenomic sequencing was used to identify circulating viruses. Culex pipiens (60.9%) and Aedes aegypti (18.6%) were the most abundant mosquitoes collected. Bloodmeal sources were most commonly human (32.6%) and chicken (31.6%), with various other mammal and avian hosts detected. Several mosquito-specific viruses were detected, including Culex orthophasma virus. Human pathogens were not detected. Therefore, xenosurveillance may require more intensive sampling to detect human pathogens in Guatemala and ecologically similar localities in Central America.
Collapse
Affiliation(s)
- Rebekah J McMinn
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Andrea Chacon
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Claudia Rückert
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Valeria Scorza
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Michael C Young
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Delaney Worthington
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Molly M Lamb
- Colorado School of Public Health, Aurora, Colorado
| | - Ramon E Medrano
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Emma K Harris
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Kareen Arias
- Center for Human Development, Retalhuleu, Guatemala
| | - Maria Renee Lopez
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Edwin J Asturias
- Colorado School of Public Health, Aurora, Colorado
- Center for Human Development, Retalhuleu, Guatemala
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Daniel Olson
- Colorado School of Public Health, Aurora, Colorado
- Center for Human Development, Retalhuleu, Guatemala
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
17
|
Langat SK, Kerich G, Cinkovich S, Johnson J, Ambale J, Yalwala S, Opot B, Garges E, Ojwang E, Eyase F. Genome sequences of Phasi Charoen-like phasivirus and Fako virus from Aedes aegypti mosquitoes collected in coastal Kenya. Microbiol Resour Announc 2023; 12:e0067823. [PMID: 37846988 PMCID: PMC10652973 DOI: 10.1128/mra.00678-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
We report the sequencing of two viruses, Phasi Charoen-like phasivirus (PCLV) and Fako virus (FAKV), which were detected in a pool of Aedes aegypti from Kenya. Analysis showed a high similarity of PCLV to publicly available PCLV genomes from Kenya. FAKV showed a high genetic divergence from publicly available FAKV genomes.
Collapse
Affiliation(s)
- Solomon K. Langat
- Department of Entomology and Vector Borne Infections, United States Army Medical Research Directorate-Africa (USAMRD-A), Center for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
- Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Gladys Kerich
- Department of Entomology and Vector Borne Infections, United States Army Medical Research Directorate-Africa (USAMRD-A), Center for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Stephanie Cinkovich
- Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, Maryland, USA
- Cherokee Nation Strategic Programs, Tulsa, Oklahoma, USA
| | - Jaree Johnson
- Armed Forces Pest Management Board, Silver Spring, Maryland, USA
| | - Janet Ambale
- Department of Entomology and Vector Borne Infections, United States Army Medical Research Directorate-Africa (USAMRD-A), Center for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Santos Yalwala
- Department of Entomology and Vector Borne Infections, United States Army Medical Research Directorate-Africa (USAMRD-A), Center for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Benjamin Opot
- Department of Entomology and Vector Borne Infections, United States Army Medical Research Directorate-Africa (USAMRD-A), Center for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Eric Garges
- Department of Entomology and Vector Borne Infections, United States Army Medical Research Directorate-Africa (USAMRD-A), Center for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Elly Ojwang
- Department of Entomology and Vector Borne Infections, United States Army Medical Research Directorate-Africa (USAMRD-A), Center for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Fredrick Eyase
- Department of Entomology and Vector Borne Infections, United States Army Medical Research Directorate-Africa (USAMRD-A), Center for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
- Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| |
Collapse
|
18
|
Zhou N, Huang E, Guo X, Xiong Y, Xie J, Cai T, Du Y, Wu Q, Guo S, Han W, Zhang H, Xing D, Zhao T, Jiang Y. Cell fusing agent virus isolated from Aag2 cells does not vertically transmit in Aedes aegypti via artificial infection. Parasit Vectors 2023; 16:402. [PMID: 37932781 PMCID: PMC10626676 DOI: 10.1186/s13071-023-06033-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Cell fusing agent virus (CFAV) was the first insect-specific virus to be characterized, and has been reported to negatively influence the growth of arboviruses such as dengue, Zika, and La Cross, making it a promising biocontrol agent for mosquito-borne disease prevention. Aedes aegypti Aag2 cells were naturally infected with CFAV. However, the ability of this virus to stably colonize an Ae. aegypti population via artificial infection and how it influences the vector competence of this mosquito have yet to be demonstrated. METHODS CFAV used in this study was harvested from Aag2 cells and its complete genome sequence was obtained by polymerase chain reaction and rapid amplification of complementary DNA ends, followed by Sanger sequencing. Phylogenetic analysis of newly identified CFAV sequences and other sequences retrieved from GenBank was performed. CFAV stock was inoculated into Ae. aegypti by intrathoracic injection, the survival of parental mosquitoes was monitored and CFAV copies in the whole bodies, ovaries, and carcasses of the injected F0 generation and in the whole bodies of the F1 generation on different days were examined by reverse transcription-quantitative polymerase chain reaction. RESULTS The virus harvested from Aag2 cells comprised a mixture of three CFAV strains. All genome sequences of CFAV derived from Aag2 cells clustered into one clade but were far from those isolated or identified from Ae. aegypti. Aag2-derived CFAV efficiently replicated in the mosquito body and did not attenuate the survival of Ae. aegypti. However, the viral load in the ovarian tissues was much lower than that in other tissues and the virus could not passage to the offspring by vertical transmission. CONCLUSIONS The results of this study demonstrate that Aag2-derived CFAV was not vertically transmitted in Ae. aegypti and provide valuable information on the colonization of mosquitoes by this virus.
Collapse
Affiliation(s)
- Ningxin Zhou
- Public Health School of Fujian Medical University, Fuzhou, 350122, China
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Enjiong Huang
- Fuzhou International Travel Healthcare Center, Fuzhou, 350001, China
| | - Xiaoxia Guo
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yiping Xiong
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jingwen Xie
- Public Health School of Fujian Medical University, Fuzhou, 350122, China
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Tong Cai
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yutong Du
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qixing Wu
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Sihan Guo
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wanrong Han
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Life Science College, Southwest Forestry University, Kunming, 650224, China
| | - Hengduan Zhang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dan Xing
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Tongyan Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Yuting Jiang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
19
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. A Systematic Review on the Viruses of Anopheles Mosquitoes: The Potential Importance for Public Health. Trop Med Infect Dis 2023; 8:459. [PMID: 37888587 PMCID: PMC10610971 DOI: 10.3390/tropicalmed8100459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Anopheles mosquitoes are the vectors of Plasmodium, the etiological agent of malaria. In addition, Anopheles funestus and Anopheles gambiae are the main vectors of the O'nyong-nyong virus. However, research on the viruses carried by Anopheles is scarce; thus, the possible transmission of viruses by Anopheles is still unexplored. This systematic review was carried out to identify studies that report viruses in natural populations of Anopheles or virus infection and transmission in laboratory-reared mosquitoes. The databases reviewed were EBSCO-Host, Google Scholar, Science Direct, Scopus and PubMed. After the identification and screening of candidate articles, a total of 203 original studies were included that reported on a variety of viruses detected in Anopheles natural populations. In total, 161 viruses in 54 species from 41 countries worldwide were registered. In laboratory studies, 28 viruses in 15 Anopheles species were evaluated for mosquito viral transmission capacity or viral infection. The viruses reported in Anopheles encompassed 25 viral families and included arboviruses, probable arboviruses and Insect-Specific Viruses (ISVs). Insights after performing this review include the need for (1) a better understanding of Anopheles-viral interactions, (2) characterizing the Anopheles virome-considering the public health importance of the viruses potentially transmitted by Anopheles and the significance of finding viruses with biological control activity-and (3) performing virological surveillance in natural populations of Anopheles, especially in the current context of environmental modifications that may potentiate the expansion of the Anopheles species distribution.
Collapse
Affiliation(s)
- Juan C. Hernandez-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Paola Muñoz-Laiton
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Giovan F. Gómez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| |
Collapse
|
20
|
Qi YH, Ye ZX, Zhang CX, Chen JP, Li JM. Diversity of RNA viruses in agricultural insects. Comput Struct Biotechnol J 2023; 21:4312-4321. [PMID: 37711182 PMCID: PMC10497914 DOI: 10.1016/j.csbj.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advancements in next-generation sequencing (NGS) technology and bioinformatics tools have revealed a vast array of viral diversity in insects, particularly RNA viruses. However, our current understanding of insect RNA viruses has primarily focused on hematophagous insects due to their medical importance, while research on the viromes of agriculturally relevant insects remains limited. This comprehensive review aims to address the gap by providing an overview of the diversity of RNA viruses in agricultural pests and beneficial insects within the agricultural ecosystem. Based on the NCBI Virus Database, over eight hundred RNA viruses belonging to 39 viral families have been reported in more than three hundred agricultural insect species. These viruses are predominantly found in the insect orders of Hymenoptera, Hemiptera, Thysanoptera, Lepidoptera, Diptera, Coleoptera, and Orthoptera. These findings have significantly enriched our understanding of RNA viral diversity in agricultural insects. While further virome investigations are necessary to expand our knowledge to more insect species, it is crucial to explore the biological roles of these identified RNA viruses within insects in future studies. This review also highlights the limitations and challenges for the effective virus discovery through NGS and their potential solutions, which might facilitate for the development of innovative bioinformatic tools in the future.
Collapse
Affiliation(s)
- Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
21
|
Aragão CF, da Silva SP, do Nascimento BLS, da Silva FS, Nunes Neto JP, Pinheiro VCS, Cruz ACR. Shotgun Metagenomic Sequencing Reveals Virome Composition of Mosquitoes from a Transition Ecosystem of North-Northeast Brazil. Genes (Basel) 2023; 14:1443. [PMID: 37510347 PMCID: PMC10379392 DOI: 10.3390/genes14071443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
A wide diversity of pathogenic mosquito-borne viruses circulate in the Brazilian Amazon, and the intense deforestation can contribute to the spread of these viruses. In this context, this study aimed to investigate the viral diversity in mosquitoes of the genera Aedes, Culex, Haemagogus, and Sabethes from a transition area between the Amazon, Cerrado, and Caatinga biomes in Brazil. Metagenomic high-throughput sequencing was used to characterize the virome of 20 mosquito pools. A total of 15 virus-like genomes were identified, comprising species genomically close to insect-specific viruses of the families Iflaviridae, Metaviridae, Lispiviridae, Rhabdoviridae, Xinmoviridae, and Parvoviridae and species of plant viruses of the families Solemoviridae, Virgaviridae, and Partitiviridae. However, sequences of viruses associated with human and animal diseases were not detected. Most of the recovered genomes were divergent from those previously described. These findings reveal that there are a large number of unknown viruses to be explored in the middle-north of Brazil.
Collapse
Affiliation(s)
- Carine Fortes Aragão
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Bruna Laís Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Fábio Silva da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Joaquim Pinto Nunes Neto
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
22
|
Chen TY, Bozic J, Mathias D, Smartt CT. Immune-related transcripts, microbiota and vector competence differ in dengue-2 virus-infected geographically distinct Aedes aegypti populations. Parasit Vectors 2023; 16:166. [PMID: 37208697 PMCID: PMC10199558 DOI: 10.1186/s13071-023-05784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Vector competence in Aedes aegypti is influenced by various factors. Crucial new control methods can be developed by recognizing which factors affect virus and mosquito interactions. METHODS In the present study we used three geographically distinct Ae. aegypti populations and compared their susceptibility to infection by dengue virus serotype 2 (DENV-2). To identify any differences among the three mosquito populations, we evaluated expression levels of immune-related genes and assessed the presence of microbiota that might contribute to the uniqueness in their vector competence. RESULTS Based on the results from the DENV-2 competence study, we categorized the three geographically distinct Ae. aegypti populations into a refractory population (Vilas do Atlântico), a susceptible population (Vero) and a susceptible but low transmission population (California). The immune-related transcripts were highly expressed in the California population but not in the refractory population. However, the Rel-1 gene was upregulated in the Vilas do Atlântico population following ingestion of a non-infectious blood meal, suggesting the gene's involvement in non-viral responses, such as response to microbiota. Screening of the bacteria, fungi and flaviviruses revealed differences between populations, and any of these could be one of the factors that interfere with the vector competence. CONCLUSIONS The results reveal potential factors that might impact the virus and mosquito interaction, as well as influence the Ae. aegypti refractory phenotype.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jovana Bozic
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Department of Entomology, The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA USA
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| |
Collapse
|
23
|
Kong L, Xiao J, Yang L, Sui Y, Wang D, Chen S, Liu P, Chen XG, Gu J. Mosquito densovirus significantly reduces the vector susceptibility to dengue virus serotype 2 in Aedes albopictus mosquitoes (Diptera: Culicidae). Infect Dis Poverty 2023; 12:48. [PMID: 37161462 PMCID: PMC10169196 DOI: 10.1186/s40249-023-01099-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) is a major public health threat, with Aedes albopictus being the confirmed vector responsible for dengue epidemics in Guangzhou, China. Mosquito densoviruses (MDVs) are pathogenic mosquito-specific viruses, and a novel MDV was previously isolated from Ae. albopictus in Guangzhou. This study aims to determine the prevalence of MDVs in wild Ae. albopictus populations and investigate their potential interactions with DENV and impact on vector susceptibility for DENV. METHODS The prevalence of MDV in wild mosquitoes in China was investigated using open access sequencing data and PCR detection in Ae. albopictus in Guangzhou. The viral infection rate and titers in MDV-persistent C6/36 cells were evaluated at 12, 24, 48, 72, 96, and 120 h post infection (hpi) by indirect immunofluorescence assay (IFA) and real time quantitative PCR (RT-qPCR). The midgut infection rate (MIR), dissemination rate (DR), and salivary gland infection rate (SGIR) in various tissues of MDV-infected mosquitoes were detected and quantified at 0, 5, 10, and 15 days post infection (dpi) by RT-PCR and RT-qPCR. The chi-square test evaluated dengue virus serotype 2 (DENV-2) and Aedes aegypti densovirus (AaeDV) infection rates and related indices in mosquitoes, while Tukey's LSD and t-tests compared viral titers in C6/36 cells and tissues over time. RESULTS The results revealed a relatively wide distribution of MDVs in Aedes, Culex, and Anopheles mosquitoes in China and an over 68% positive rate. In vitro, significant reductions in DENV-2 titers in supernatant at 120 hpi, and an apparent decrease in DENV-2-positive cells at 96 and 120 hpi were observed. In vivo, DENV-2 in the ovaries and salivary glands was first detected at 10 dpi in both monoinfected and superinfected Ae. albopictus females, while MDV superinfection with DENV-2 suppressed the salivary gland infection rate at 15 dpi. DENV-2 titer in the ovary and salivary glands of Ae. albopictus was reduced in superinfected mosquitoes at 15 dpi. CONCLUSIONS MDVs is widespread in natural mosquito populations, and replication of DENV-2 is suppressed in MDV-infected Ae. albopictus, thus reducing vector susceptibility to DENV-2. Our study supports the hypothesis that MDVs may contribute to reducing transmission of DENV and provides an alternative strategy for mosquito-transmitted disease control.
Collapse
Affiliation(s)
- Ling Kong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuan Sui
- Brown School, Washington University, St. Louis, MO, 63130, USA
| | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Shaoqiang Chen
- Shenzhen Aiming Pest Control Operation Service Company Limited, Shenzhen, Guangdong, China
| | - Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiao-Guang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
24
|
Liu Q, Cui F, Liu X, Fu Y, Fang W, Kang X, Lu H, Li S, Liu B, Guo W, Xia Q, Kang L, Jiang F. Association of virome dynamics with mosquito species and environmental factors. MICROBIOME 2023; 11:101. [PMID: 37158937 PMCID: PMC10165777 DOI: 10.1186/s40168-023-01556-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The pathogenic viruses transmitted by mosquitoes cause a variety of animal and human diseases and public health concerns. Virome surveillance is important for the discovery, and control of mosquito-borne pathogenic viruses, as well as early warning systems. Virome composition in mosquitoes is affected by mosquito species, food source, and geographic region. However, the complex associations of virome composition remain largely unknown. RESULTS Here, we profiled the high-depth RNA viromes of 15 species of field-caught adult mosquitoes, especially from Culex, Aedes, Anopheles, and Armigeres in Hainan Island from 2018 to 2020. We detected 57 known and 39 novel viruses belonging to 15 families. We established the associations of the RNA viruses with mosquito species and their foods, indicating the importance of feeding acquisition of RNA viruses in determining virome composition. A large fraction of RNA viruses were persistent in the same mosquito species across the 3 years and different locations, showing the species-specific stability of viromes in Hainan Island. In contrast, the virome compositions of single mosquito species in different geographic regions worldwide are visibly distinct. This is consistent with the differences in food sources of mosquitoes distributed broadly across continents. CONCLUSIONS Thus, species-specific viromes in a relatively small area are limited by viral interspecific competition and food sources, whereas the viromes of mosquito species in large geographic regions may be governed by ecological interactions between mosquitoes and local environmental factors. Video Abstract.
Collapse
Affiliation(s)
- Qing Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yumei Fu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wenjing Fang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xun Kang
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siping Li
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Biao Liu
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Jagtap SV, Brink J, Frank SC, Badusche M, Leggewie M, Sreenu VB, Fuss J, Schnettler E, Altinli M. Agua Salud Alphavirus Infection, Dissemination and Transmission in Aedes aegypti Mosquitoes. Viruses 2023; 15:1113. [PMID: 37243199 PMCID: PMC10223791 DOI: 10.3390/v15051113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Mosquitoes are competent vectors for many important arthropod-borne viruses (arboviruses). In addition to arboviruses, insect-specific viruses (ISV) have also been discovered in mosquitoes. ISVs are viruses that replicate in insect hosts but are unable to infect and replicate in vertebrates. They have been shown to interfere with arbovirus replication in some cases. Despite the increase in studies on ISV-arbovirus interactions, ISV interactions with their hosts and how they are maintained in nature are still not well understood. In the present study, we investigated the infection and dissemination of the Agua Salud alphavirus (ASALV) in the important mosquito vector Aedes aegypti through different infection routes (per oral infection, intrathoracic injection) and its transmission. We show here that ASALV infects the female Ae. aegypti and replicates when mosquitoes are infected intrathoracically or orally. ASALV disseminated to different tissues, including the midgut, salivary glands and ovaries. However, we observed a higher virus load in the brain than in the salivary glands and carcasses, suggesting a tropism towards brain tissues. Our results show that ASALV is transmitted horizontally during adult and larval stages, although we did not observe vertical transmission. Understanding ISV infection and dissemination dynamics in Ae. aegypti and their transmission routes could help the use of ISVs as an arbovirus control strategy in the future.
Collapse
Affiliation(s)
- Swati V. Jagtap
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Jorn Brink
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
| | - Svea C. Frank
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
| | - Marlis Badusche
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
| | - Mayke Leggewie
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
| | | | - Janina Fuss
- Institute of Clinical Molecular Biology (IKMB), Kiel University, 24105 Kiel, Germany
| | - Esther Schnettler
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, 20148 Hamburg, Germany
| | - Mine Altinli
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| |
Collapse
|
26
|
Novelo M, Dutra HLC, Metz HC, Jones MJ, Sigle LT, Frentiu FD, Allen SL, Chenoweth SF, McGraw EA. Dengue and chikungunya virus loads in the mosquito Aedes aegypti are determined by distinct genetic architectures. PLoS Pathog 2023; 19:e1011307. [PMID: 37043515 PMCID: PMC10124881 DOI: 10.1371/journal.ppat.1011307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 03/19/2023] [Indexed: 04/13/2023] Open
Abstract
Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.
Collapse
Affiliation(s)
- Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Heverton LC Dutra
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillery C. Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Leah T. Sigle
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca D. Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, Queensland, Australia
| | - Scott L. Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth A. McGraw
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
27
|
Ferreira QR, Lemos FFB, Moura MN, Nascimento JODS, Novaes AF, Barcelos IS, Fernandes LA, Amaral LSDB, Barreto FK, de Melo FF. Role of the Microbiome in Aedes spp. Vector Competence: What Do We Know? Viruses 2023; 15:779. [PMID: 36992487 PMCID: PMC10051417 DOI: 10.3390/v15030779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the vectors of important arboviruses: dengue fever, chikungunya, Zika, and yellow fever. Female mosquitoes acquire arboviruses by feeding on the infected host blood, thus being able to transmit it to their offspring. The intrinsic ability of a vector to infect itself and transmit a pathogen is known as vector competence. Several factors influence the susceptibility of these females to be infected by these arboviruses, such as the activation of the innate immune system through the Toll, immunodeficiency (Imd), JAK-STAT pathways, and the interference of specific antiviral response pathways of RNAi. It is also believed that the presence of non-pathogenic microorganisms in the microbiota of these arthropods could influence this immune response, as it provides a baseline activation of the innate immune system, which may generate resistance against arboviruses. In addition, this microbiome has direct action against arboviruses, mainly due to the ability of Wolbachia spp. to block viral genome replication, added to the competition for resources within the mosquito organism. Despite major advances in the area, studies are still needed to evaluate the microbiota profiles of Aedes spp. and their vector competence, as well as further exploration of the individual roles of microbiome components in activating the innate immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
28
|
Hellhammer F, Heinig-Hartberger M, Neuhof P, Teitge F, Jung-Schroers V, Becker SC. Impact of different diets on the survival, pupation, and adult emergence of Culex pipiens biotype molestus larvae, and infectability with the insect-specific Culex Y virus. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The current rapidly advancing climate change will affect the transmission of arthropod-borne viruses (arboviruses), mainly through changes in vector populations. Mosquitos of the Culex pipiens complex play a particularly prominent role in virus transmission in central Europe. Factors that contribute to the vector population density and the ability of those vectors to transmit viral pathogens (vector competence) can include nutrition during the larval stages. To test the influence of larval diet on larval survival and adult emergence, as well as vector competence, several diets varying in their nutritional composition were compared using a newly established assay. We tested the effects of 17 diets or diet combinations on the fitness of third-instar larvae of Culex pipiens biotype molestus. Larval survival rates at day 7 ranged from 43.33% to 94.44%. We then selected 3 of the 17 diets (Tetra Pleco, as the routine feed; JBL NovoTab, as the significantly inferior feed; and KG, as the significantly superior feed) and tested the effect of these diets, in combination with Culex Y virus infection, on larval survival rate. All Culex Y virus-infected larvae showed significantly lower larval survival, as well as low pupation and adult emergence rates. However, none of the tested diets in our study had a significant impact on larval survival in combination with viral infection. Furthermore, we were able to correlate several water quality parameters, such as phosphate, nitrate, and ammonium concentration, electrical conductivity, and low O2 saturations, with reduced larval survival. Thus, we were able to demonstrate that Culex Y virus could be a suitable agent to reduce mosquito population density by reducing larval density, pupation rate, and adult emergence rate. When combined with certain water quality parameters, these effects can be further enhanced, leading to a reduced mosquito population density, and reduce the cycle of transmission. Furthermore, we demonstrate, for the first time, the infection of larvae of the mosquito Culex pipiens biotype molestus with a viral pathogen.
Collapse
|
29
|
Yang X, Qin S, Liu X, Zhang N, Chen J, Jin M, Liu F, Wang Y, Guo J, Shi H, Wang C, Chen Y. Meta-Viromic Sequencing Reveals Virome Characteristics of Mosquitoes and Culicoides on Zhoushan Island, China. Microbiol Spectr 2023; 11:e0268822. [PMID: 36651764 PMCID: PMC9927462 DOI: 10.1128/spectrum.02688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mosquitoes and biting Culicoides species are arbovirus vectors. Effective virome profile surveillance is essential for the prevention and control of insect-borne diseases. From June to September 2021, we collected eight species of female mosquito and Culicoides on Zhoushan Island, China, and used meta-viromic sequencing to analyze their virome compositions and characteristics. The classified virus reads were distributed in 191 genera in 66 families. The virus sequences in mosquitoes with the largest proportions were Iflaviridae (30.03%), Phasmaviridae (23.09%), Xinmoviridae (21.82%), Flaviviridae (13.44%), and Rhabdoviridae (8.40%). Single-strand RNA+ viruses formed the largest proportions of viruses in all samples. Blood meals indicated that blood-sucking mosquito hosts were mainly chicken, duck, pig, and human, broadly consistent with the habitats where the mosquitoes were collected. Novel viruses of the Orthobunyavirus, Narnavirus, and Iflavirus genera were found in Culicoides by de-novo assembly. The viruses with vertebrate hosts carried by mosquitoes and Culicoides also varied widely. The analysis of unclassified viruses and deep-learning analysis of the "dark matter" in the meta-viromic sequencing data revealed the presence of a large number of unknown viruses. IMPORTANCE The monitoring of the viromes of mosquitoes and Culicoides, widely distributed arbovirus transmission vectors, is crucial to evaluate the risk of infectious disease transmission. In this study, the compositions of the viromes of mosquitoes and Culicoides on Zhoushan Island varied widely and were related mainly to the host species, with different host species having different core viromes. and many unknown sequences in the Culicoides viromes remain to be annotated, suggesting the presence of a large number of unknown viruses.
Collapse
Affiliation(s)
- Xiaojing Yang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shiyu Qin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Na Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiali Chen
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Meiling Jin
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Fangni Liu
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Changjun Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
30
|
Uchida L, Sakurai Y, Shimooka M, Morales-Vargas RE, Hagiwara K, Muramatsu Y. Identification of Three Novel Genes in Phenuiviridae Detected from Aedes Mosquitoes in Hokkaido, Japan. Jpn J Infect Dis 2023; 76:55-63. [PMID: 36184398 DOI: 10.7883/yoken.jjid.2022.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mosquitoes are important arthropod vectors of arboviruses. The family Phenuiviridae includes several medically important arboviruses, such as the Rift Valley fever phlebovirus and Toscana phlebovirus. Recent comprehensive genetic analyses have identified many novel mosquito-specific viruses that are phylogenetically related to Phenuiviridae. We collected mosquitoes from Hokkaido in northern Japan, and conducted reverse transcription polymerase chain reactions (RT-PCRs) targeting the RNA-dependent RNA polymerase (RdRp) gene of Phenuiviridae. A total of 285 pools, comprising 3,082 mosquitoes from 2 genera and 8 species, were collected. Partial RdRp sequences were detected in 97 pools, which allowed us to classify the viruses into 3 clusters provisionally designated as Etutanne virus (ETTV) 1, 2, and 3. The virus most closely related to ETTVs is Narangue virus (family Phenuiviridae, genus Mobuvirus), which was detected in Mansonia mosquitoes; the nucleotide and amino acid sequences of the Narangue virus are 58.4-66.2% and 64.7-86.7% similar, respectively, to those of ETTVs. PCR and RT-PCR using DNA and RNase digestion methods showed that the ETTVs are RNA viruses that do not form non-retroviral integrated RNA virus sequences in the mosquito genome.
Collapse
Affiliation(s)
- Leo Uchida
- School of Veterinary Medicine, Rakuno Gakuen University, Japan
| | - Yoshimi Sakurai
- School of Veterinary Medicine, Rakuno Gakuen University, Japan
| | - Makoto Shimooka
- School of Veterinary Medicine, Rakuno Gakuen University, Japan
| | | | | | | |
Collapse
|
31
|
Moonen JP, Schinkel M, van der Most T, Miesen P, van Rij RP. Composition and global distribution of the mosquito virome - A comprehensive database of insect-specific viruses. One Health 2023; 16:100490. [PMID: 36817977 PMCID: PMC9929601 DOI: 10.1016/j.onehlt.2023.100490] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Mosquitoes are vectors for emerging and re-emerging infectious viral diseases of humans, livestock and other animals. In addition to these arthropod-borne (arbo)viruses, mosquitoes are host to an array of insect-specific viruses, collectively referred to as the mosquito virome. Mapping the mosquito virome and understanding if and how its composition modulates arbovirus transmission is critical to understand arboviral disease emergence and outbreak dynamics. In recent years, next-generation sequencing as well as PCR and culture-based methods have been extensively used to identify mosquito-associated viruses, providing insights into virus ecology and evolution. Until now, the large amount of mosquito virome data, specifically those acquired by metagenomic sequencing, has not been comprehensively integrated. We have constructed a searchable database of insect-specific viruses associated with vector mosquitoes from 175 studies, published between October 2000 and February 2022. We identify the most frequently detected and widespread viruses of the Culex, Aedes and Anopheles mosquito genera and report their global distribution. In addition, we highlight the challenges of extracting and integrating published virome data and we propose that a standardized reporting format will facilitate data interpretation and re-use by other scientists. We expect our comprehensive database, summarizing mosquito virome data collected over 20 years, to be a useful resource for future studies.
Collapse
|
32
|
Heinig-Hartberger M, Hellhammer F, Zöller DDJA, Dornbusch S, Bergmann S, Vocadlova K, Junglen S, Stern M, Lee KZ, Becker SC. Culex Y Virus: A Native Virus of Culex Species Characterized In Vivo. Viruses 2023; 15:235. [PMID: 36680275 PMCID: PMC9863036 DOI: 10.3390/v15010235] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Mosquitoes are vectors of various pathogens that cause diseases in humans and animals. To prevent the outbreak of mosquito-borne diseases, it is essential to control vector populations, as treatment or vaccination for mosquito-borne diseases are often unavailable. Insect-specific viruses (ISVs) have previously been described as being potentially helpful against arboviral disease outbreaks. In this study, we present the first in vivo characterization of the ISV Culex Y virus (CYV). CYV was first isolated from free-living Culex pipiens mosquitoes in 2010; then, it was found in several mosquito cell lines in a further study in 2018. For mammalian cells, we were able to confirm that CYV does not replicate as it was previously described. Additionally, we found that CYV does not replicate in honey bees or locusts. However, we detected replication in the Culex pipiens biotype molestus, Aedes albopictus, and Drosophila melanogaster, thus indicating dipteran specificity. We detected significantly higher mortality in Culex pipiens biotype molestus males and Drosophila melanogaster, but not in Aedes albopictus and female Culex pipiens biotype molestus. CYV could not be transmitted transovarially to offspring, but we detected venereal transmission as well as CYV in mosquitos' saliva, indicating that an oral route of infection would also be possible. CYV's dipteran specificity, transmission routes, and killing effect with respect to Culex males may be used as powerful tools with which to destabilize arbovirus vector populations in the future.
Collapse
Affiliation(s)
- Mareike Heinig-Hartberger
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - David D. J. A. Zöller
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Katerina Vocadlova
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
33
|
Batovska J, Mee PT, Sawbridge TI, Rodoni BC, Lynch SE. Enhanced Arbovirus Surveillance with High-Throughput Metatranscriptomic Processing of Field-Collected Mosquitoes. Viruses 2022; 14:v14122759. [PMID: 36560765 PMCID: PMC9782886 DOI: 10.3390/v14122759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
34
|
Abundance of Phasi-Charoen-like virus in Aedes aegypti mosquito populations in different states of India. PLoS One 2022; 17:e0277276. [PMID: 36490242 PMCID: PMC9733876 DOI: 10.1371/journal.pone.0277276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Mosquitoes are known to harbor a large number of insect specific viruses (ISV) in addition to viruses of public health importance. These ISVs are highly species specific and are non-pathogenic to humans or domestic animals. However, there is a potential threat of these ISVs evolving into human pathogens by genome alterations. Some ISVs are known to modulate replication of pathogenic viruses by altering the susceptibility of vector mosquitoes to pathogenic viruses, thereby either inhibiting or enhancing transmission of the latter. In the present study, we report predominance of Phasi Charoen-like virus (PCLV, Family: Phenuviridae) contributing to >60% of the total reads in Aedes aegypti mosquitoes collected from Pune district of Maharashtra state using next generation sequencing based metagenomic analysis of viromes. Similar results were also obtained with mosquitoes from Assam, Tamil Nadu and Karnataka states of India. Comparison of Pune mosquito sequences with PCLV Rio (Brazil) isolate showed 98.90%, 99.027% and 98.88% homologies in the S, M and L segments respectively indicating less genetic heterogeneity of PCLV. The study also demonstrated occurrence of transovarial transmission as seen by detection of PCLV in eggs, larvae, pupae and male mosquitoes. Ae. aegypti mosquitoes collected from Pune also showed a large number of reads for viruses belonging to Baculoviridae, Rhabdoviridae, Genomoviridae and Bunyaviridae families. The role of PCLV in the replication of dengue and chikungunya virus is yet not clear. It warrants further studies to know the significance of PCLV and other ISVs on the replication and transmission of Ae. aegypti borne pathogenic viruses, especially in the absence of prophylactics or therapeutics.
Collapse
|
35
|
Bugmyrin SV, Romanova LY, Belova OA, Kholodilov IS, Bespyatova LA, Chernokhaeva LL, Gmyl LV, Klimentov AS, Ivannikova AY, Polienko AE, Yakovlev AS, Ieshko EP, Gmyl AP, Karganova GG. Pathogens in Ixodes persulcatus and Ixodes ricinus ticks (Acari, Ixodidae) in Karelia (Russia). Ticks Tick Borne Dis 2022; 13:102045. [PMID: 36183587 DOI: 10.1016/j.ttbdis.2022.102045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
Ixodid ticks (Acarina, Ixodidae) are vectors of dangerous human infections. The main tick species that determine the epidemiological situation for tick-borne diseases in northern Europe are Ixodes ricinus and Ixodes persulcatus. In recent years, significant changes in the number and distribution of these species have been observed, accompanied by an expansion of the sympatric range. This work summarizes the data of long-term studies carried out in Karelia since 2007 on the infection of I. persulcatus and I. ricinus ticks with various pathogens, including new viruses with unclear pathogenic potential. As a result, tick-borne encephalitis virus (TBEV, Siberian genotype), Alongshan virus, several representatives of the family Phenuiviridae, Borrelia afzelii, Borrelia garinii, Ehrlichia muris, Candidatus Rickettsia tarasevichiae and Candidatus Lariskella arthropodarum were identified. Data were obtained on the geographical and temporal variability of tick infection rates with these main pathogens. The average infection rates of I. persulcatus with TBEV and Borrelia burgdorferi sensu lato were 4.4% and 23.4% and those of I. ricinus were 1.1% and 11.9%, respectively. We did not find a correlation between the infection rate of ticks with TBEV, B. burgdorferi s.l. and Ehrlichia muris/chaffeensis with the sex of the vector. In general, the peculiarities of the epidemiological situation in Karelia are determined by the wide distribution and high abundance of I. persulcatus ticks and by their relatively high infection rate with TBEV and B. burgdorferi s.l. in most of the territory, including the periphery of the range.
Collapse
Affiliation(s)
- S V Bugmyrin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya St., Petrozavodsk 185910, Russia
| | - L Yu Romanova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia; Institute for Translational Medicine and Biotechnology, Sechenov University, Moscow 119146, Russia
| | - O A Belova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia
| | - I S Kholodilov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia
| | - L A Bespyatova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya St., Petrozavodsk 185910, Russia
| | - L L Chernokhaeva
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia
| | - L V Gmyl
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia
| | - A S Klimentov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia
| | - A Y Ivannikova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia
| | - A E Polienko
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia
| | - A S Yakovlev
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia
| | - E P Ieshko
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya St., Petrozavodsk 185910, Russia
| | - A P Gmyl
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia
| | - G G Karganova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow 108811, Russia; Institute for Translational Medicine and Biotechnology, Sechenov University, Moscow 119146, Russia; Lomonosov Moscow State University, Department of Biology, Moscow 119991, Russia.
| |
Collapse
|
36
|
Deciphering the Tissue Tropism of the RNA Viromes Harbored by Field-Collected Anopheles sinensis and Culex quinquefasciatus. Microbiol Spectr 2022; 10:e0134422. [PMID: 35968979 PMCID: PMC9604083 DOI: 10.1128/spectrum.01344-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Arboviruses and insect-specific viruses (ISVs) are two major types of viruses harbored by mosquitoes that are distinguished by the involvement of vertebrate hosts in their transmission cycles. While intensive studies have focused on the transmission, tissue tropism, and evolution of arboviruses, these characteristics are poorly investigated in ISVs, which dominate the mosquito virome. Therefore, in this study, we collected two mosquito species, Anopheles sinensis and Culex quinquefasciatus, in the field and used a metatranscriptomics approach to characterize their RNA viromes in different tissues, such as the midgut, legs, salivary gland, eggs, and the remainder of the carcass. Blood-engorged individuals of these species were captured in 3 locations, and 60 mosquitoes were pooled from each species and location. A total of 40 viral species from diverse viral taxa associated with all viral RNA genome types were identified, among which 19 were newly identified in this study. According to the current viral taxonomy, some of these viruses, such as Yancheng Anopheles associated virus 2 (Narnaviridae) and Jiangsu Anopheles-related virus (Ghabrivirales), were novel. The two investigated mosquito species generally harbored distinct viromes. Nevertheless, the viruses were generally shared among different tissue types to various degrees. Specifically, the eggs possessed a viral community with significantly lower diversity and abundance than those in other tissues, whereas the legs and salivary glands exhibited higher viral abundance. The compositions and distributions of the viromes of different mosquito tissues were demonstrated for the first time in our study, providing important insight into the virome dynamics within individual mosquitoes. IMPORTANCE ISVs are considered to be ancestral to arboviruses. Because of their medical importance, arboviruses have been well studied from the aspects of their transmission mode, evolution of dual-host tropism, and genetic dynamics within mosquito vectors. However, the mode of ISV maintenance is poorly understood, even though many novel ISVs have been identified with the emergence of sequencing technology. In our study, in addition to the identification of a diverse virus community, the tissue tropism of RNA viromes harbored by two field-collected mosquito species was demonstrated for the first time. According to the results, the virus communities of different tissues, such as the salivary glands, midguts, legs, and eggs, can help us understand the evolution, transmission routes, and maintenance modes of mosquito-specific viruses in nature.
Collapse
|
37
|
Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors 2022; 15:287. [PMID: 35945559 PMCID: PMC9364528 DOI: 10.1186/s13071-022-05401-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of highly pathogenic viruses for humans, such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which cause febrile, hemorrhagic, and neurological diseases and remain a major threat to global public health. The high ecological plasticity, opportunistic feeding patterns, and versatility in the use of urban and natural breeding sites of these vectors have favored their dispersal and adaptation in tropical, subtropical, and even temperate zones. Due to the lack of available treatments and vaccines, mosquito population control is the most effective way to prevent arboviral diseases. Resident microorganisms play a crucial role in host fitness by preventing or enhancing its vectorial ability to transmit viral pathogens. High-throughput sequencing and metagenomic analyses have advanced our understanding of the composition and functionality of the microbiota of Aedes spp. Interestingly, shotgun metagenomics studies have established that mosquito vectors harbor a highly conserved virome composed of insect-specific viruses (ISV). Although ISVs are not infectious to vertebrates, they can alter different phases of the arboviral cycle, interfering with transmission to the human host. Therefore, this review focuses on the description of Ae. aegypti and Ae. albopictus as vectors susceptible to infection by viral pathogens, highlighting the role of the microbiota-virome in vectorial competence and its potential in control strategies for new emerging and re-emerging arboviruses.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martinez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. .,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
38
|
Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. NPJ Vaccines 2022; 7:75. [PMID: 35787629 PMCID: PMC9253346 DOI: 10.1038/s41541-022-00503-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
Vaccines represent the single most cost-efficient and equitable way to combat and eradicate infectious diseases. While traditional licensed vaccines consist of either inactivated/attenuated versions of the entire pathogen or subunits of it, most novel experimental vaccines against emerging infectious diseases employ nucleic acids to produce the antigen of interest directly in vivo. These include DNA plasmid vaccines, mRNA vaccines, and recombinant viral vectors. The advantages of using nucleic acid vaccines include their ability to induce durable immune responses, high vaccine stability, and ease of large-scale manufacturing. In this review, we present an overview of pre-clinical and clinical data on recombinant viral vector vaccines and discuss the advantages and limitations of the different viral vector platforms.
Collapse
Affiliation(s)
- Tatianna Travieso
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jenny Li
- Duke University, Durham, NC, USA
| | - Sneha Mahesh
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Juliana Da Fonzeca Redenze E Mello
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maria Blasi
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. .,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
39
|
Li Y, Zhu L, Gao J, Ma H, Li C, Song Y, Zhu X, Zhu C. Silencing suppressors of rice black-streaked dwarf virus and rice stripe virus hijack the 26S proteasome of Laodelphax striatellus to facilitate virus accumulation and transmission. PEST MANAGEMENT SCIENCE 2022; 78:2940-2951. [PMID: 35439336 DOI: 10.1002/ps.6918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rice black-streaked dwarf virus (RBSDV) is transmitted by small brown planthopper (Laodelphax striatellus [L. striatellus]) and causes devastating disease in rice. P9-1 has silencing suppression activity and is the key protein for viroplasm formation in RBSDV-infected plants and insects; however, its exact function is poorly understood. RESULTS In this study, the P9-1 of RBSDV interacted with L. striatellus 26S proteasome subunit RPN8. RBSDV accumulation in L. striatellus increased after the 26S proteasome was disrupted by silencing the RPN8 expression. This finding indicated that L. striatellus 26S proteasome played a defense role against RBSDV infection by regulating RBSDV accumulation. Further investigations revealed that P9-1 could competitively bind to RPN8 with RPN7, thereby disrupting the assembly of 26S proteasome in L. striatellus and promoting the infection of RBSDV in insect vectors, and further affecting the transmission of the virus to rice by insect vectors. Similar to P9-1, rice stripe virus (RSV) NS2, a weak silencing suppressor, regulated virus accumulation and transmission by hijacking RPN8 to interfere with the function of 26S proteasome in L. striatellus. CONCLUSION These results suggest that viruses promote their own infection via interfering with ubiquitination pathway of insect vectors, and this mechanism might be of universal importance. These findings provide a new insight into the mechanism of virus transmission in insect vectors. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Lifei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Jiaqi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Haoran Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Changyuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Taian, P. R. China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P. R. China
| |
Collapse
|
40
|
Oguzie JU, Nwangwu UC, Oluniyi PE, Olumade TJ, George UE, Kazeem A, Bankole BE, Brimmo FO, Asadu CC, Chukwuekezie OC, Ochu JC, Makwe CO, Dogunro FA, Onwude CO, Nwachukwu WE, Ezihe EK, Okonkwo GK, Umazi NE, Maikere J, Agashi NO, Eloy EI, Anokwu SO, Okoronkwo AI, Nwosu EM, Etiki SO, Ngwu IM, Ihekweazu C, Folarin OA, Komolafe IOO, Happi CT. Metagenomic sequencing characterizes a wide diversity of viruses in field mosquito samples in Nigeria. Sci Rep 2022; 12:7616. [PMID: 35538241 PMCID: PMC9090917 DOI: 10.1038/s41598-022-11797-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/07/2022] [Indexed: 01/24/2023] Open
Abstract
Mosquito vectors are a tremendous public health threat. One in six diseases worldwide is vector-borne transmitted mainly by mosquitoes. In the last couple of years, there have been active Yellow fever virus (YFV) outbreaks in many settings in Nigeria, and nationwide, entomological surveillance has been a significant effort geared towards understanding these outbreaks. In this study, we used a metagenomic sequencing approach to characterize viruses present in vector samples collected during various outbreaks of Yellow fever (YF) in Nigeria between 2017 and 2020. Mosquito samples were grouped into pools of 1 to 50 mosquitoes, each based on species, sex and location. Twenty-five pools of Aedes spp and one pool of Anopheles spp collected from nine states were sequenced and metagenomic analysis was carried out. We identified a wide diversity of viruses belonging to various families in this sample set. Seven different viruses detected included: Fako virus, Phasi Charoen-like virus, Verdadero virus, Chaq like-virus, Aedes aegypti totivirus, cell fusing agent virus and Tesano Aedes virus. Although there are no reports of these viruses being pathogenic, they are an understudied group in the same families and closely related to known pathogenic arboviruses. Our study highlights the power of next generation sequencing in identifying Insect specific viruses (ISVs), and provide insight into mosquito vectors virome in Nigeria.
Collapse
Affiliation(s)
- Judith U Oguzie
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun, Nigeria
| | - Udoka C Nwangwu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | - Paul E Oluniyi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun, Nigeria
| | - Testimony J Olumade
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun, Nigeria
| | - Uwem E George
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun, Nigeria
| | - Akano Kazeem
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun, Nigeria
| | - Bolajoko E Bankole
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun, Nigeria
| | - Farida O Brimmo
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria
| | - Chukwuemeka C Asadu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | | | - Josephine C Ochu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | | | - Festus A Dogunro
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | - Cosmas O Onwude
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | | | - Ebuka K Ezihe
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | | | | | - Jacob Maikere
- Médecins Sans Frontières (MSF Belgium), Bruxelles, Belgium
| | - Nneka O Agashi
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | - Emelda I Eloy
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | - Stephen O Anokwu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | - Angela I Okoronkwo
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | - Ebuka M Nwosu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | - Sandra O Etiki
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | - Ifeoma M Ngwu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Enugu, Nigeria
| | | | - Onikepe A Folarin
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun, Nigeria
| | - Isaac O O Komolafe
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun, Nigeria
| | - Christian T Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun, Nigeria.
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun, Nigeria.
| |
Collapse
|
41
|
Konstantinidis K, Dovrolis N, Kouvela A, Kassela K, Rosa Freitas MG, Nearchou A, de Courcy Williams M, Veletza S, Karakasiliotis I. Defining Virus-Carrier Networks that Shape the Composition of the Mosquito Core Virome of a Local Ecosystem. Virus Evol 2022; 8:veac036. [PMID: 35505691 PMCID: PMC9055857 DOI: 10.1093/ve/veac036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Mosquitoes are the most important vectors of emerging infectious diseases. During the past decade, our understanding of the diversity of viruses they carry has greatly expanded. Most of these viruses are considered mosquito-specific, but there is increasing evidence that these viruses may affect the vector competence of mosquitoes. Metagenomics approaches have focused on specific mosquito species for the identification of what is called the core virome. Despite the fact that, in most ecosystems, multiple species may participate in virus emergence and circulation, there is a lack of understanding of the virus-carrier/host network for both vector-borne and mosquito-specific viruses. Here, we studied the core virome of mosquitoes in a diverse local ecosystem that had 24 different mosquito species. The analysis of the viromes of these 24 mosquito species resulted in the identification of 34 viruses, which included 15 novel viruses, as determined according to the species demarcation criteria of the respective virus families. Most of the mosquito species had never been analysed previously, and a comparison of the individual viromes of the 24 mosquito species revealed novel relationships among mosquito species and virus families. Groups of related viruses and mosquito species from multiple genera formed a complex web in the local ecosystem. Furthermore, analyses of the virome of mixed-species pools of mosquitoes from representative traps of the local ecosystem showed almost complete overlap with the individual-species viromes identified in the study. Quantitative analysis of viruses’ relative abundance revealed a linear relationship to the abundance of the respective carrier/host mosquito species, supporting the theory of a stable core virome in the most abundant species of the local ecosystem. Finally, our study highlights the importance of using a holistic approach to investigating mosquito viromes relationships in rich and diverse ecosystems.
Collapse
Affiliation(s)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Adamantia Kouvela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Katerina Kassela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Goreti Rosa Freitas
- Laboratório de Mosquitoes Transmissores de Hematozoários, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andreas Nearchou
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Stavroula Veletza
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
42
|
Konstantinidis K, Bampali M, de Courcy Williams M, Dovrolis N, Gatzidou E, Papazilakis P, Nearchou A, Veletza S, Karakasiliotis I. Dissecting the Species-Specific Virome in Culicoides of Thrace. Front Microbiol 2022; 13:802577. [PMID: 35330767 PMCID: PMC8940260 DOI: 10.3389/fmicb.2022.802577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Biting midges (Culicoides) are vectors of arboviruses of both veterinary and medical importance. The surge of emerging and reemerging vector-borne diseases and their expansion in geographical areas affected by climate change has increased the importance of understanding their capacity to contribute to novel and emerging infectious diseases. The study of Culicoides virome is the first step in the assessment of this potential. In this study, we analyzed the RNA virome of 10 Culicoides species within the geographical area of Thrace in the southeastern part of Europe, a crossing point between Asia and Europe and important path of various arboviruses, utilizing the Ion Torrent next-generation sequencing (NGS) platform and a custom bioinformatics pipeline based on TRINITY assembler and alignment algorithms. The analysis of the RNA virome of 10 Culicoides species resulted in the identification of the genomic signatures of 14 novel RNA viruses, including three fully assembled viruses and four segmented viruses with at least one segment fully assembled, most of which were significantly divergent from previously identified related viruses from the Solemoviridae, Phasmaviridae, Phenuiviridae, Reoviridae, Chuviridae, Partitiviridae, Orthomyxoviridae, Rhabdoviridae, and Flaviviridae families. Each Culicoides species carried a species-specific set of viruses, some of which are related to viruses from other insect vectors in the same area, contributing to the idea of a virus-carrier web within the ecosystem. The identified viruses not only expand our current knowledge on the virome of Culicoides but also set the basis of the genetic diversity of such viruses in the area of southeastern Europe. Furthermore, our study highlights that such metagenomic approaches should include as many species as possible of the local virus-carrier web that interact and share the virome of a geographical area.
Collapse
Affiliation(s)
| | - Maria Bampali
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nikolas Dovrolis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Gatzidou
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Stavroula Veletza
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
43
|
Martinez-Mercado MA, de Jesús JLD, Galindo-Sánchez CE, Saavedra-Flores A, Carrillo-Tripp J. Novel viral RNA genomes of the vine mealybug Planococcus ficus. J Gen Virol 2022; 103. [PMID: 35259086 DOI: 10.1099/jgv.0.001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vine mealybug, Planococcus ficus (Signoret, 1875), is the most important insect pest in growing areas of the grapevine Vitis vinifera L. in several countries, including Mexico. In Mexico, Baja California (B.C.) is the region with the highest production of V. vinifera L. grapes for industrial purposes. Recently, the diversity of viruses infecting insects only (insect-specific viruses) has been broadly explored to elucidate further ecological viral-host interactions in many insect species, which in some cases has resulted in the application of virus-based biological control agents for insect pests. However, a survey of the Pl. ficus virome has not been done yet. In the present study, we pooled Pl. ficus individuals collected through different vineyards of Ensenada, B.C., Mexico and analysed them by meta-transcriptomics. Novel nearly complete genomes of five RNA viruses were retrieved. These viruses were related to the Iflaviridae and Reoviridae families, and to the Picornavirales and Tolivirales orders. A new isolate belonging to the Dicistroviridae family was also found. Phylogenetic analyses showed that these putative viral genomes group with viruses having hemipteran (including a mealybug species) or other insect hosts, or with viruses associated with insects. Our results suggest that the identified novel RNA viruses could be insect-specific viruses of Pl. ficus. This work is the first insight into the Pl. ficus virome; it guarantees further studies aimed to characterize those viruses with potential for application in biological control of this economically important insect.
Collapse
Affiliation(s)
- Miguel A Martinez-Mercado
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| | - José Luis Duarte de Jesús
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| | - Clara E Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| | - Anaid Saavedra-Flores
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| | - Jimena Carrillo-Tripp
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| |
Collapse
|
44
|
Coatsworth H, Bozic J, Carrillo J, Buckner EA, Rivers AR, Dinglasan RR, Mathias DK. Intrinsic variation in the vertically transmitted core virome of the mosquito Aedes aegypti. Mol Ecol 2022; 31:2545-2561. [PMID: 35229389 DOI: 10.1111/mec.16412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
Virome studies among metazoans have revealed the ubiquity of RNA viruses in animals, contributing to a fundamental re-thinking of the relationships between organisms and their microbiota. Mosquito viromes, often scrutinized due to their public health relevance, may also provide insight into broadly applicable concepts, such as a "core virome," a set of viruses consistently associated with a host species or population that may fundamentally impact its basic biology. A subset of mosquito-associated viruses (MAVs) could comprise such a core, and MAVs can be categorized as (i) arboviruses, which alternate between mosquito and vertebrate hosts, (ii) insect-specific viruses, which cannot replicate in vertebrate cells, and (iii) viruses with unknown specificity. MAVs have been widely characterized in the disease vector Aedes aegypti, and the occurrence of a core virome in this species has been proposed but remains unclear. Using a wild population previously surveyed for MAVs and a common laboratory strain, we investigated viromes in reproductive tissue via metagenomic RNA sequencing. Virome composition varied across samples, but four groups comprised >97% of virus sequences: a novel partiti-like virus (Partitiviridae), a toti-like virus (Totiviridae), unclassified Riboviria, and four orthomyxo-like viruses (Orthormyxoviridae). Whole or partial genomes for the partiti-like virus, toti-like virus, and one orthomyxo-like virus were assembled and analyzed phylogenetically. Multigenerational maintenance of these MAVs was confirmed by RT-PCR, indicating vertical transmission as a mechanism for persistence. This study provides fundamental information regarding MAV ecology and variability in A. aegypti and the potential for vertically maintained core viromes at the population level.
Collapse
Affiliation(s)
- H Coatsworth
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA.,Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.,CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| | - J Bozic
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Entomology & Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA.,Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - J Carrillo
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Manatee County Mosquito Control District, Palmetto, Florida, USA.,Lacerta Therapeutics, Production and Development, Alachua Florida, USA
| | - E A Buckner
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Entomology & Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| | - A R Rivers
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida, USA
| | - R R Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA.,Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.,CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| | - D K Mathias
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Entomology & Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| |
Collapse
|
45
|
Morais P, Trovão N, Abecasis A, Parreira R. Insect-specific viruses in the Parvoviridae family: genetic lineage characterization and spatiotemporal dynamics of the recently established Brevihamaparvovirus genus. Virus Res 2022; 313:198728. [DOI: 10.1016/j.virusres.2022.198728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
46
|
Li W, Yang S, Xu P, Zhang D, Tong Y, Chen L, Jia B, Li A, Lian C, Ru D, Zhang B, Liu M, Chen C, Fu W, Yuan S, Gu C, Wang L, Li W, Liang Y, Yang Z, Ren X, Wang S, Zhang X, Song Y, Xie Y, Lu H, Xu J, Wang H, Yu W. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine 2022; 76:103861. [PMID: 35124429 PMCID: PMC8811534 DOI: 10.1016/j.ebiom.2022.103861] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).
Collapse
Affiliation(s)
- Wei Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Peng Xu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ben Jia
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai 200233, China
| | - Ang Li
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Cheng Lian
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Daoping Ru
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Baolong Zhang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Mengxing Liu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Cancan Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Weihui Fu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Songhua Yuan
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenxuan Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ying Liang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Zhicong Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoguang Ren
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shaoxuan Wang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoyan Zhang
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jianqing Xu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China.
| |
Collapse
|
47
|
Palatini U, Contreras CA, Gasmi L, Bonizzoni M. Endogenous viral elements in mosquito genomes: current knowledge and outstanding questions. CURRENT OPINION IN INSECT SCIENCE 2022; 49:22-30. [PMID: 34740858 DOI: 10.1016/j.cois.2021.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Integrations from non-retroviral RNA viruses (nrEVEs) have been identified across several taxa, including mosquitoes. Amongst all Culicinae species, the viral vectors Aedes aegypti and Aedes albopictus stand out for their high number of nrEVEs. In addition, Aedes nrEVEs are enriched in piRNA clusters and generate piRNAs that can silence incoming viral genomes. As such, nrEVEs represent a new form of inherited antiviral immunity. To propel this discovery into novel transmission-blocking vector control strategies, a deeper understanding of nrEVE biology and evolution is essential because differences in the landscape of nrEVEs have been identified in wild-caught mosquitoes, the piRNA profile of nrEVEs is not homogeneous and nrEVEs outside piRNA clusters exist and are expressed at the mRNA level. Here we summarise current knowledge on nrEVEs in mosquitoes and we point out the many unanswered questions and potentials of these genomic elements.
Collapse
Affiliation(s)
- Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Claudia A Contreras
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Laila Gasmi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy..
| |
Collapse
|
48
|
Transcriptome Analysis of an Aedes albopictus Cell Line Single- and Dual-Infected with Lammi Virus and WNV. Int J Mol Sci 2022; 23:ijms23020875. [PMID: 35055061 PMCID: PMC8777793 DOI: 10.3390/ijms23020875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Understanding the flavivirus infection process in mosquito hosts is important and fundamental in the search for novel control strategies that target the mosquitoes’ ability to carry and transmit pathogenic arboviruses. A group of viruses known as insect-specific viruses (ISVs) has been shown to interfere with the infection and replication of a secondary arbovirus infection in mosquitoes and mosquito-derived cell lines. However, the molecular mechanisms behind this interference are unknown. Therefore, in the present study, we infected the Aedes albopictus cell line U4.4 with either the West Nile virus (WNV), the insect-specific Lammi virus (LamV) or an infection scheme whereby cells were pre-infected with LamV 24 h prior to WNV challenge. The qPCR analysis showed that the dual-infected U4.4 cells had a reduced number of WNV RNA copies compared to WNV-only infected cells. The transcriptome profiles of the different infection groups showed a variety of genes with altered expression. WNV-infected cells had an up-regulation of a broad range of immune-related genes, while in LamV-infected cells, many genes related to stress, such as different heat-shock proteins, were up-regulated. The transcriptome profile of the dual-infected cells was a mix of up- and down-regulated genes triggered by both viruses. Furthermore, we observed an up-regulation of signal peptidase complex (SPC) proteins in all infection groups. These SPC proteins have shown importance for flavivirus assembly and secretion and could be potential targets for gene modification in strategies for the interruption of flavivirus transmission by mosquitoes.
Collapse
|
49
|
Vector Competence of the Invasive Mosquito Species Aedes koreicus for Arboviruses and Interference with a Novel Insect Specific Virus. Viruses 2021; 13:v13122507. [PMID: 34960776 PMCID: PMC8704790 DOI: 10.3390/v13122507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/01/2022] Open
Abstract
The global spread of invasive mosquito species increases arbovirus infections. In addition to the invasive species Aedes albopictus and Aedes japonicus, Aedes koreicus has spread within Central Europe. Extensive information on its vector competence is missing. Ae. koreicus from Germany were investigated for their vector competence for chikungunya virus (CHIKV), Zika virus (ZIKV) and West Nile virus (WNV). Experiments were performed under different climate conditions (27 ± 5 °C; 24 ± 5 °C) for fourteen days. Ae. koreicus had the potential to transmit CHIKV and ZIKV but not WNV. Transmission was exclusively observed at the higher temperature, and transmission efficiency was rather low, at 4.6% (CHIKV) or 4.7% (ZIKV). Using a whole virome analysis, a novel mosquito-associated virus, designated Wiesbaden virus (WBDV), was identified in Ae. koreicus. Linking the WBDV infection status of single specimens to their transmission capability for the arboviruses revealed no influence on ZIKV transmission. In contrast, a coinfection of WBDV and CHIKV likely has a boost effect on CHIKV transmission. Due to its current distribution, the risk of arbovirus transmission by Ae. koreicus in Europe is rather low but might gain importance, especially in regions with higher temperatures. The impact of WBDV on arbovirus transmission should be analyzed in more detail.
Collapse
|
50
|
Viswanatha R, Mameli E, Rodiger J, Merckaert P, Feitosa-Suntheimer F, Colpitts TM, Mohr SE, Hu Y, Perrimon N. Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos. Nat Commun 2021; 12:6825. [PMID: 34819517 PMCID: PMC8613219 DOI: 10.1038/s41467-021-27129-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mosquito-borne diseases present a worldwide public health burden. Current efforts to understand and counteract them have been aided by the use of cultured mosquito cells. Moreover, application in mammalian cells of forward genetic approaches such as CRISPR screens have identified essential genes and genes required for host-pathogen interactions, and in general, aided in functional annotation of genes. An equivalent approach for genetic screening of mosquito cell lines has been lacking. To develop such an approach, we design a new bioinformatic portal for sgRNA library design in several mosquito genomes, engineer mosquito cell lines to express Cas9 and accept sgRNA at scale, and identify optimal promoters for sgRNA expression in several mosquito species. We then optimize a recombination-mediated cassette exchange system to deliver CRISPR sgRNA and perform pooled CRISPR screens in an Anopheles cell line. Altogether, we provide a platform for high-throughput genome-scale screening in cell lines from disease vector species.
Collapse
Affiliation(s)
- Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Pierre Merckaert
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Tonya M Colpitts
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- HHMI, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|