1
|
Tan L, Li J, Duan Y, Liu J, Zheng S, Liang X, Fang C, Zuo M, Tian G, Yang Y. Current knowledge on the epidemiology and prevention of Avian leukosis virus in China. Poult Sci 2024; 103:104009. [PMID: 39002365 PMCID: PMC11298916 DOI: 10.1016/j.psj.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Avian leukosis virus (ALV) is an enveloped retrovirus with a single-stranded RNA genome, belonging to the genus Alpharetrovirus within the family Retroviridae. The disease (Avian leukosis, AL) caused by ALV is mainly characterized by tumor development and immunosuppression in chickens, which increases susceptibility to other pathogens and leads to significant economic losses in the Chinese poultry industry. The government and poultry industry have made lots of efforts to eradicate ALV, but the threat of which remains not vanished. This review provides a summary of the updated understanding of ALV in China, which mainly focuses on genetic and molecular biology, epidemiology, and diagnostic methods. Additionally, promising antiviral agents and ALV eradication strategies performed in China are also included.
Collapse
Affiliation(s)
- Lei Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China; Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China
| | - Juan Li
- Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Yuqing Duan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Jing Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Shiling Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Xiongyan Liang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Mengting Zuo
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Guangming Tian
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| | - Yuying Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| |
Collapse
|
2
|
Wang Z, Liu L, Dou J, Li L, Lu Q, Jin X, Shao H, Cheng Z, Zhang T, Luo Q, Bei W. Identification of a New B-Cell Epitope on the Capsid Protein of Avian Leukosis Virus and Its Application. Curr Issues Mol Biol 2024; 46:5866-5880. [PMID: 38921021 PMCID: PMC11202774 DOI: 10.3390/cimb46060350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Avian leukosis virus (ALV) is an avian oncogenic retrovirus that can impair immunological function, stunt growth and decrease egg production in avian flocks. The capsid protein (P27) is an attractive candidate for ALV diagnostics. In the present study, a new hybridoma cell (1F8) stably secreting an anti-P27 monoclonal antibody (mAb) was developed. The mAb exhibited a high affinity constant (Ka) of 8.65 × 106.0 L/mol, and it could be used for the detection of ALV-A/B/J/K strains. Moreover, a total of eight truncated recombinant proteins and five synthetic polypeptides were utilized for the identification of the B-cell epitopes present on P27. The results revealed that 218IIKYVLDRQK227 was the minimal epitope recognized by 1F8, which had never been reported before. Additionally, the epitopes could strongly react with different ALV subgroup's specific positive serum and had a complete homology among all the ALV subgroups strains. Finally, a new sandwich ELISA method was created for the detection of ALV antigens, demonstrating increased sensitivity compared to a commercially available ELISA kit. These results offer essential knowledge for further characterizing the antigenic composition of ALV P27 and will facilitate the development of diagnostic reagents for ALV.
Collapse
Affiliation(s)
- Zui Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (L.L.); (Q.L.); (X.J.)
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Lina Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Junfeng Dou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Li Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (L.L.); (Q.L.); (X.J.)
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Qin Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (L.L.); (Q.L.); (X.J.)
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xinxin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (L.L.); (Q.L.); (X.J.)
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Zhengyu Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.L.); (J.D.); (H.S.); (Z.C.); (T.Z.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (L.L.); (Q.L.); (X.J.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| |
Collapse
|
3
|
Zhang F, Li H, Lin C, Wei Y, Zhang W, Wu Y, Kang Z. Detection and genetic diversity of subgroup K avian leukosis virus in local chicken breeds in Jiangxi from 2021 to 2023. Front Microbiol 2024; 15:1341201. [PMID: 38389530 PMCID: PMC10882074 DOI: 10.3389/fmicb.2024.1341201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024] Open
Abstract
Avian leukosis virus subgroup K (ALV-K) is a new subgroup of avian leukosis virus (ALV) that was first identified in Chinese native chickens in recent years. To further understand the molecular epidemiology and evolutionary diversity of ALV-K, this study investigated the molecular epidemiology of 73,664 chicken plasma samples collected from Jiangxi native chicken flocks. The results showed that ALV-J was the most predominant ALV subtype in Jiangxi native chickens, with a high positivity rate of 4.34%. From 2021 to 2023, there was a gradual upward trend in the proportion of positive numbers of ALV-K among ALV-positive samples, and there was a trend of outbreaks. ALV-J and ALV-K were the main co-infection patterns. Genetic evolutionary analysis based on ALV-K gp85 gene showed that the isolated ALV-K in this study were distributed in various branches of the evolutionary tree with genetic diversity. The homology results showed that the amino acid homology of the isolated ALV-K gp85 gene ranged from 33.9 to 88.1% with the reference strains of subtypes A, B, C, D, E, and J, and from 91.9 to 100% with the other ALV-K reference strains. Multiple mutations were present in the ALV-K gp85, and especially significant mutations were found in the highly variable region hr2. The results of ALV-K replication efficiency showed that the replication efficiency of ALV-K was significantly lower than that of ALV-J. These results enriched the genome sequence data of ALV-K in Chinese geoducks, and laid the foundation for further research on the pathogenesis and prevention of ALV-K.
Collapse
Affiliation(s)
- Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Cui Lin
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yue Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Weihong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yanping Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
4
|
Wang P, Wang J, Wang N, Xue C, Han Z. The coinfection of ALVs causes severe pathogenicity in Three-Yellow chickens. BMC Vet Res 2024; 20:41. [PMID: 38302973 PMCID: PMC10832069 DOI: 10.1186/s12917-024-03896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
The coinfection of ALVs (ALV-J plus ALV-A or/and ALV-B) has played an important role in the incidence of tumors recently found in China in local breeds of yellow chickens. The study aims to obtain a better knowledge of the function and relevance of ALV coinfection in the clinical disease of avian leukosis, as well as its unique effect on the pathogenicity in Three-yellow chickens. One-day-old Three-yellow chicks (one day old) were infected with ALV-A, ALV-B, and ALV-J mono-infections, as well as ALV-A + J, ALV-B + J, and ALV-A + B + J coinfections, via intraperitoneal injection, and the chicks were then grown in isolators until they were 15 weeks old. The parameters, including the suppression of body weight gain, immune organ weight, viremia, histopathological changes and tumor incidence, were observed and compared with those of the uninfected control birds. The results demonstrated that coinfection with ALVs could induce more serious suppression of body weight gain (P < 0.05), damage to immune organs (P < 0.05) and higher tumor incidences than monoinfection, with triple infection producing the highest pathogenicity. The emergence of visible tumors and viremia occurred faster in the coinfected birds than in the monoinfected birds. These findings demonstrated that ALV coinfection resulted in considerably severe pathogenic and immunosuppressive consequences.
Collapse
Affiliation(s)
- Peikun Wang
- Institute of Microbe and Host Health, Linyi University, Linyi, 276000, Shandong, China.
| | - Jing Wang
- Animal Epidemic Disease Anticipatory Control Center, Lanshan District, Linyi, 276005, Shandong, China
| | - Na Wang
- Institute of Microbe and Host Health, Linyi University, Linyi, 276000, Shandong, China
| | - Cong Xue
- Institute of Microbe and Host Health, Linyi University, Linyi, 276000, Shandong, China
| | - Zhaoqing Han
- Institute of Microbe and Host Health, Linyi University, Linyi, 276000, Shandong, China
| |
Collapse
|
5
|
Dou J, Wang Z, Li L, Lu Q, Jin X, Ling X, Cheng Z, Zhang T, Shao H, Zhai X, Luo Q. A Multiplex Quantitative Polymerase Chain Reaction for the Rapid Differential Detection of Subgroups A, B, J, and K Avian Leukosis Viruses. Viruses 2023; 15:1789. [PMID: 37766196 PMCID: PMC10535029 DOI: 10.3390/v15091789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Avian leukosis (AL), caused by avian leukosis virus (ALV), is a contagious tumor disease that results in significant economic losses for the poultry industry. Currently, ALV-A, B, J, and K subgroups are the most common in commercial poultry and cause possible coinfections. Therefore, close monitoring is necessary to avoid greater economic losses. In this study, a novel multiplex quantitative polymerase chain reaction (qPCR) assay was developed to detect ALV-A, ALV-B, ALV-J, and ALV-K with limits of detection of 40, 11, 13.7, and 96 copies/µL, respectively, and no cross-reactivity with other ALV subtypes and avian pathogens. We detected 852 cell cultures inoculated with clinical samples using this method, showing good consistency with conventional PCR and ELISA. The most prevalent ALV strain in Hubei Province, China, was still ALV-J (11.74%). Although single infections with ALV-A, ALV-B, and ALV-K were not found, coinfections with different subgroup strains were identified: 0.7% for ALV-A/J, 0.35% for ALV-B/J, 0.25% for ALV-J/K, and 0.12% for ALV-A/B/K and ALV-A/B/J. Therefore, our novel multiplex qPCR may be a useful tool for molecular epidemiology, clinical detection of ALV, and ALV eradication programs.
Collapse
Affiliation(s)
- Junfeng Dou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
- Department of Animal Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zui Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Li Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xinxin Jin
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xiaochun Ling
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Zhengyu Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xinguo Zhai
- Department of Animal Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| |
Collapse
|
6
|
Guo J, Deng Q, Zhu W, Fu F, Liu L, Wei T, Wei P. The phylogenetic analysis of the new emerging ALV-K revealing the co-prevailing of multiple clades in chickens and a proposal for the classification of ALV-K. Front Vet Sci 2023; 10:1228109. [PMID: 37576830 PMCID: PMC10416628 DOI: 10.3389/fvets.2023.1228109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Subgroup K avian leukosis virus (ALV-K) is a new subgroup of avian leukosis virus (ALV) that was first defined in 2012 and has been become prevalent in Chinese native chickens in recent years. An in-depth analysis of the genetic diversity of ALV-K was performed in the study. By Blast analysis, the env gene and the sequences of the 25 ALV-K isolates we isolated were found to be closely related to the isolates from Guangdong, Hebei, Jiangsu, and Hubei provinces, China. Further eighty-nine sequences of the gp85 gene of ALV-K strains available were used in the phylogenetic and genetic distance analyses for the classification. ALV-K was divided into two second-order clades (Clades 1.1 and 1.2) and three third-order clades (Clades 1.2.1, 1.2.2, and 1.2.3), indicating that not only 1.1 and 1.2.3, the two old clades which are prevalent in Japan, but also two new clades (1.2.1, 1.2.2), are co-prevalent in China. The representative strains of each clade were defined for the first time. Notably, Clade 1.2.2 was found to have a deletion of an amino acid residue in the gp85 gene, which was obviously different from Clades 1.1, 1.2.1, and 1.2.3. The proposed classification method will facilitate future studies of ALV-K epidemiology and the comparison of sequences obtained across the world. The first global comprehensive molecular epidemiological analysis was accomplished on the emerging ALV-K.
Collapse
Affiliation(s)
- Jinhan Guo
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qiaomu Deng
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Weiyu Zhu
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Fumei Fu
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Linmin Liu
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Tianchao Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Fandiño S, Gomez-Lucia E, Benítez L, Doménech A. Avian Leukosis: Will We Be Able to Get Rid of It? Animals (Basel) 2023; 13:2358. [PMID: 37508135 PMCID: PMC10376345 DOI: 10.3390/ani13142358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Avian leukosis viruses (ALVs) have been virtually eradicated from commercial poultry. However, some niches remain as pockets from which this group of viruses may reemerge and induce economic losses. Such is the case of fancy, hobby, backyard chickens and indigenous or native breeds, which are not as strictly inspected as commercial poultry and which have been found to harbor ALVs. In addition, the genome of both poultry and of several gamebird species contain endogenous retroviral sequences. Circumstances that support keeping up surveillance include the detection of several ALV natural recombinants between exogenous and endogenous ALV-related sequences which, combined with the well-known ability of retroviruses to mutate, facilitate the emergence of escape mutants. The subgroup most prevalent nowadays, ALV-J, has emerged as a multi-recombinant which uses a different receptor from the previously known subgroups, greatly increasing its cell tropism and pathogenicity and making it more transmissible. In this review we describe the ALVs, their different subgroups and which receptor they use to infect the cell, their routes of transmission and their presence in different bird collectivities, and the immune response against them. We analyze the different systems to control them, from vaccination to the progress made editing the bird genome to generate mutated ALV receptors or selecting certain haplotypes.
Collapse
Affiliation(s)
- Sergio Fandiño
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Esperanza Gomez-Lucia
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Doménech
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Residues E53, L55, H59, and G70 of the cellular receptor protein Tva mediate cell binding and entry of the novel subgroup K avian leukosis virus. J Biol Chem 2023; 299:102962. [PMID: 36717079 PMCID: PMC9974445 DOI: 10.1016/j.jbc.2023.102962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
Subgroup K avian leukosis virus (ALV-K) is a novel subgroup of ALV isolated from Chinese native chickens. As for a retrovirus, the interaction between its envelope protein and cellular receptor is a crucial step in ALV-K infection. Tva, a protein previously determined to be associated with vitamin B12/cobalamin uptake, has been identified as the receptor of ALV-K. However, the molecular mechanism underlying the interaction between Tva and the envelope protein of ALV-K remains unclear. In this study, we identified the C-terminal loop of the LDL-A module of Tva as the minimal functional domain that directly interacts with gp85, the surface component of the ALV-K envelope protein. Further point-mutation analysis revealed that E53, L55, H59, and G70, which are exposed on the surface of Tva and are spatially adjacent, are key residues for the binding of Tva and gp85 and facilitate the entry of ALV-K. Homology modeling analysis indicated that the substitution of these four residues did not significantly impact the Tva structure but impaired the interaction between Tva and gp85 of ALV-K. Importantly, the gene-edited DF-1 cell line with precisely substituted E53, L55, H59, and G70 was completely resistant to ALV-K infection and did not affect vitamin B12/cobalamin uptake. Collectively, these findings not only contribute to a better understanding of the mechanism of ALV-K entry into host cells but also provide an ideal gene-editing target for antiviral study.
Collapse
|
9
|
Chen X, Wang X, Yang Y, Fang C, Liu J, Liang X, Yang Y. Enhanced pathogenicity by up-regulation of A20 after avian leukemia subgroup a virus infection. Front Vet Sci 2022; 9:1031480. [PMID: 36452148 PMCID: PMC9702354 DOI: 10.3389/fvets.2022.1031480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 09/01/2024] Open
Abstract
Avian leukemia virus subgroup A (ALV-A) infection slows chicken growth, immunosuppression, and tumor occurrence, causing economic loss to the poultry industry. According to previous findings, A20 has a dual role in promoting and inhibiting tumor formation but has rarely been studied in avians. In this study, A20 overexpression and shRNA interference recombinant adenoviruses were constructed and inoculated into chicken embryos, and ALV-A (rHB2015012) was inoculated into 1-day-old chicks. Analysis of body weight, organ index, detoxification, antibody production, organ toxin load, and Pathological observation revealed that A20 overexpression could enhance ALV-A pathogenicity. This study lays the foundation for subsequent exploration of the A20-mediated tumorigenic mechanism of ALV-A.
Collapse
Affiliation(s)
- Xueyang Chen
- College of Animal Science, Yangtze University, Jingzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Xingming Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yuxin Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Chun Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jing Liu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
11
|
Chen X, Wang X, Yang Y, Fang C, Liu J, Liang X, Yang Y. A20 Enhances the Expression of the Proto-Oncogene C-Myc by Downregulating TRAF6 Ubiquitination after ALV-A Infection. Viruses 2022; 14:v14102210. [PMID: 36298765 PMCID: PMC9607361 DOI: 10.3390/v14102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Hens infected with avian leukosis virus subgroup A (ALV-A) experience stunted growth, immunosuppression, and potentially, lymphoma development. According to past research, A20 can both promote and inhibit tumor growth. In this study, DF-1 cells were infected with ALV-A rHB2015012, and Gp85 expression was measured at various time points. A recombinant plasmid encoding the chicken A20 gene and short hairpin RNA targeting chicken A20 (A20-shRNA) was constructed and transfected into DF-1 cells to determine the effect on ALV-A replication. The potential signaling pathways of A20 were explored using bioinformatics prediction, co-immunoprecipitation, and other techniques. The results demonstrate that A20 and ALV-A promoted each other after ALV-A infection of DF-1 cells, upregulated A20, inhibited TRAF6 ubiquitination, and promoted STAT3 phosphorylation. The phosphorylated-STAT3 (p-STAT3) promoted the expression of proto-oncogene c-myc, which may lead to tumorigenesis. This study will help to further understand the tumorigenic process of ALV-A and provide a reference for preventing and controlling ALV.
Collapse
Affiliation(s)
- Xueyang Chen
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xingming Wang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Yuxin Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Chun Fang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Jing Liu
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| | - Yuying Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| |
Collapse
|
12
|
Chen H, Diao Y, Sun X, Wang Y. Isolation, identification and pathogenicity of a ALV-K strain from Chinese indigenous chicken breed. Poult Sci 2022; 101:102116. [PMID: 36081235 PMCID: PMC9463579 DOI: 10.1016/j.psj.2022.102116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Subgroup K avian leukosis virus (ALV-K) is a new subgroup of avian leukosis virus (ALV) first identified in Chinese indigenous chickens in recent years. In this study, an ALV-K strain was isolated from Luhua chicken in Shandong province, China, and designated SD20LH01. The full-length genomic sequence of SD20LH01 was 7491 bp, which had the highest homology with ALV-K reference strains GDFX0601, GDFX0602 and GDFX0603. The nucleotide homology of env gene of SD20LH01 with reference strains of subgroup A, B, C, D, E, and J was ranged from 57.1 to 93.2%, while 94.1 to 99.4% with other ALV-K reference strains. The nucleotide difference of SD20LH01 mainly clustered with gp85 gene and U3 sequence when compared with the reference strain of ALV-K. In order to investigate the pathogenicity of SD20LH01, SPF chicken embryos were infected by yolk sac inoculation, and 1-day-old chickens were infected by intraperitoneal inoculation of SD20LH01. The results showed that yolk sac inoculation of SD20LH01 could induce persistent viremia, growth retardation and reduce the immune response to NDV and AIV-H9 vaccines. However, intraperitoneal inoculation in 1-day-old chickens could only induce a low level of viremia. In addition, no tumors were found in infected chickens during the animal experiments. This study enriched the genomic sequence data of ALV-K isolated in Chinese indigenous chickens, and laid a foundation for further study on the pathogenesis and prevention of ALV-K.
Collapse
Affiliation(s)
- Hao Chen
- College of Agricultural Technology, Shandong Agriculture and Engineering University, Jinan, China; Liaocheng Engineering Technology Research Center for Broiler Healthy Breeding, Liaocheng, China
| | - Youjiang Diao
- College of Agricultural Technology, Shandong Agriculture and Engineering University, Jinan, China
| | - Xiaolong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
13
|
Borodin AM, Emanuilova ZV, Smolov SV, Ogneva OA, Konovalova NV, Terentyeva EV, Serova NY, Efimov DN, Fisinin VI, Greenberg AJ, Alekseev YI. Eradication of avian leukosis virus subgroups J and K in broiler cross chickens by selection against infected birds using multilocus PCR. PLoS One 2022; 17:e0269525. [PMID: 35749432 PMCID: PMC9231750 DOI: 10.1371/journal.pone.0269525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
The avian leukosis virus (ALV) is a serious threat to sustainable and economically viable commercial poultry management world-wide. Active infections can result in more than 20% flock loss, resulting in significant economic damage. ALV detection and elimination from flocks and breeding programs is complicated by high sequence variability and the presence of endogenous virus copies which show up as false positives in assays. Previously-developed approaches to virus detection are either too labor-intensive to implement on an industrial scale or suffer from high false negative or positive rates. We developed a novel multi-locus multiplex quantitative real-time PCR system to detect viruses belonging to the J and K genetic subgroups that are particularly prevalent in our region. We used this system to eradicate ALV from our broiler breeding program comprising thousands of individuals. Our approach can be generalized to other ALV subgroups and other highly genetically diverse pathogens.
Collapse
Affiliation(s)
- Alexander M. Borodin
- Breeding and Genetic Center Smena, Ministry of Science and Higher Education of the Russian Federation, Bereznyaki, Russia
- Institute of Medical and Biological Research, Nizhnii Novgorod, Russia
| | - Zhanna V. Emanuilova
- Breeding and Genetic Center Smena, Ministry of Science and Higher Education of the Russian Federation, Bereznyaki, Russia
| | - Sergei V. Smolov
- Breeding and Genetic Center Smena, Ministry of Science and Higher Education of the Russian Federation, Bereznyaki, Russia
| | - Olga A. Ogneva
- Breeding and Genetic Center Smena, Ministry of Science and Higher Education of the Russian Federation, Bereznyaki, Russia
| | | | | | - Natalia Y. Serova
- All-Russian Research Veterinary Institute of Poultry Science Branch of the Federal Scientific Center All-Russian Research and Technological Poultry Institute Russian Academy of Science, St. Petersburg, Russia
| | - D. N. Efimov
- Federal Scientific Center All-Russian Research and Technological Poultry Institute Russian Academy of Science, Sergiev Posad, Russia
| | - V. I. Fisinin
- Federal Scientific Center All-Russian Research and Technological Poultry Institute Russian Academy of Science, Sergiev Posad, Russia
| | | | - Yakov I. Alekseev
- Syntol LLC, Moscow, Russia
- Institute for Analytical Instrumentation Russian Academy of Science, St. Petersburg, Russia
- * E-mail: (AJG); (YIA)
| |
Collapse
|
14
|
Wang Q, Su Q, Liu B, Li Y, Sun W, Liu Y, Xue R, Chang S, Wang Y, Zhao P. Enhanced Antiviral Ability by a Combination of Zidovudine and Short Hairpin RNA Targeting Avian Leukosis Virus. Front Microbiol 2022; 12:808982. [PMID: 35250911 PMCID: PMC8889011 DOI: 10.3389/fmicb.2021.808982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis virus (ALV) causes tumor diseases in poultry and is circulating all over the world, leading to significant economic losses. In addition, mixed infection of ALV with other viruses is very common and is often reported to contaminate live vaccines. At present, there is no effective method to suppress the replication of ALV in vitro, so it is very difficult to remove it in mixed infection. As a retrovirus, the replication of ALV can be limited by reverse transcriptase (RT) inhibitors like zidovudine (AZT), but it also causes nontargeted cytotoxicity. To find the optimal solution in cytotoxicity and inhibition efficiency in vitro culture system, we firstly designed a combination therapy of AZT and short hairpin RNA (shRNA) targeting ALV and then verified its efficiency by multiple biological methods. Results showed that shRNA can effectively inhibit the expression of RT and then limit the replication of ALV. The combination of AZT and shRNA can significantly improve the antiviral efficiency in viral replication, shedding, and provirus assembly under the condition of low cytotoxicity. Overall, in this study, the combination therapy of AZT and shRNA targeting ALV showed excellent antiviral performance against ALV in vitro culture system. This method can be applied to multiple scenarios, such as the removal of ALV in mixed infection or the purification of contaminated vaccine strains.
Collapse
Affiliation(s)
- Qun Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Qi Su
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Bowen Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yan Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Wanli Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yanxue Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Ruyu Xue
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| |
Collapse
|
15
|
Li Y, Liu Y, Lin Z, Cui S, Chang S, Cui Z, Zhao P, Wang Y. Role of env gene and LTR sequence in the pathogenesis of subgroup K avian leukosis virus. J Gen Virol 2022; 103. [PMID: 35130137 DOI: 10.1099/jgv.0.001719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian leukosis virus (ALV) is a retrovirus that induces tumours in infected birds; ALV is divided into different subgroups according to the env gene and cellular tropism. In general, ALV subgroup J (ALV-J) is considered to be the most pathogenic and prevalent subgroup while subgroup K (ALV-K), a newly identified subgroup, only causes mild symptoms. To illuminate the roles of the env viral gene and LTR sequence in pathogenic differences between ALV-J and ALV-K, rescued ALV-J strain rSDAU1005, rescued ALV-K strain rJS11C1, and recombinant strains rENV(J)-LTR(K) and rENV(K)-LTR(J) were characterized and investigated in this study. Among rescued viruses, rSDAU1005 had the highest replication efficiency while rJS11C1 replicated the slowest (replication efficiency rankings were rSDAU1005 >rENV(K)-LTR(J)>rENV(J)-LTR(K)>rJS11 C1). The luciferase reporter gene assay results showed that the promoter activity of ALV-K LTR was lower than that of the ALV-J LTR promoter, which may have accounted for the slower replication efficiency of ALV-K. Pathogenicity of the four rescued viruses was determined via inoculating the yolk sacs of specific-pathogen-free chickens. The results demonstrated that all four viruses were pathogenic; rSDAU1005 caused the most severe growth retardation and immunosuppression. rENV(J)-LTR(K) was more pathogenic when compared to rENV(K)-LTR(J), indicating that env and the LTR sequence play important roles in pathogenicity between ALV-K and ALV-J. Additionally, env seemed to especially play a role in ALV-K pathogenesis. This study provided scientific data and insight to improve detection methods and judgement criteria in ALV clearance and surveillance.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China.,China Animal Health and Epidemiology Center, Qingdao, PR China
| | - Yi Liu
- China Animal Disease Control Centre, Beijing, PR China
| | - Zhanye Lin
- Ministry of Agriculture and Rural Affairs of China, Animal Husbandry and Veterinary Bureau, Beijing, PR China
| | - Shuai Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Zhizhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| |
Collapse
|
16
|
Xu M, Hang F, Qian K, Shao H, Ye J, Qin A. Chicken hepatomegaly and splenomegaly associated with novel subgroup J avian leukosis virus infection. BMC Vet Res 2022; 18:32. [PMID: 35027055 PMCID: PMC8756617 DOI: 10.1186/s12917-022-03139-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
Background Subgroup J avian leukosis virus (ALV-J) is an oncovirus which can induce multiple types of tumors in chicken. In this report, we found novel ALV-J infection is closely associated with serious hepatomegaly and splenomegaly in chicken. Case presentation The layer chickens from six flocks in Jiangsu province, China, showed serious hemoperitoneum, hepatomegaly and splenomegaly. Histopathological results indicated focal lymphocytic infiltration, cell edema and congestion in the liver, atrophy and depletion of lymphocyte in the spleen. Tumor cells were not detected in all the organs. avian hepatitis E virus (aHEV), which is thought to be the cause of a very similar disease, big liver and spleen disease (BLS), was not detected. Other viruses causing tumors or liver damage including Marek’s disease virus (MDV), reticuloendotheliosis virus (REV), fowl adenovirus (FAdV) and chicken infectious anemia virus (CIAV) were also proved negative by either PCR or RT-PCR. However, we did detect ALV-J in those chickens using PCR. Only novel ALV-J strains were efficiently isolated from these chicken livers. Conclusions This is the first report that chicken hepatomegaly and splenomegaly disease was closely associated with novel ALV-J, highlighting the importance of ALV-J eradication program in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03139-1.
Collapse
|
17
|
Liu J, Gao K, Li D, Zeng Y, Chen X, Liang X, Fang C, Gu Y, Wang C, Yang Y. Recombinant invasive Lactobacillus plantarum expressing the J subgroup avian leukosis virus Gp85 protein induces protection against avian leukosis in chickens. Appl Microbiol Biotechnol 2021; 106:729-742. [PMID: 34971411 DOI: 10.1007/s00253-021-11699-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022]
Abstract
Avian leukosis, caused by avian leukosis virus (ALV), is an infectious tumor disease and severely hinders the development of the poultry industry. The use of Lactobacillus plantarum (L. plantarum) could effectively alleviate viremia in the early period of J subgroup ALV (ALV-J) infection. In this study, an invasive L. plantarum NC8 expressing Gp85 protein of ALV-J was constructed. After chickens were orally administered the recombinant invasive NC8, the levels of expression of CD4+ and CD8+ T lymphocytes in peripheral blood and spleen by flow cytometry and the proliferation ability of splenocytes by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were examined, and the contents of cytokines, the anti-ALV-J antibody in serum, and mucosal antibody sIgA in intestinal lavage fluid were detected by enzyme-linked immunosorbent assay (ELISA). The immunoprotective efficiency was evaluated by monitoring the infection rate, the percent of cloacal swabs and survival, body weight gain, the organ indexes, and relative virus loads after challenge with ALV-J. The results showed that the recombinant invasive strain (FnBPA-gp85) could promote the expression levels of the CD8+T cells in peripheral blood and spleen, the proliferation of splenocytes, the secretions of cytokines interleukin 2 (IL-2) and γ-interferon (IFN-γ), and the production of IgG and sIgA compared with the PBS and FnBPA control groups in chickens. The FnBPA-gp85 group was exhibited the highest immune protection against ALV-J infection. The above results indicated that the recombinant invasive NC8 could promote the cellular immunity, humoral immunity, and mucosal immunity responses in chicken and provide a new method for exploring the live vaccine against ALV-J.Key points• The FnBPA-gp85 strain could enhance cellular immunity response.• The FnBPA-gp85 strain could improve the immune protection against ALV-J infection.
Collapse
Affiliation(s)
- Jing Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Keli Gao
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Dingwei Li
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yang Zeng
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Xueyang Chen
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Chun Fang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yufang Gu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
18
|
Li X, Yu Y, Ma M, Chang F, Muhammad F, Yu M, Ren C, Bao Y, Zhang Z, Liu A, Pan Q, Gao L, Qi X, Li K, Liu C, Zhang Y, Cui H, Wang X, Gao Y. Molecular characteristic and pathogenicity analysis of a novel multiple recombinant ALV-K strain. Vet Microbiol 2021; 260:109184. [PMID: 34311270 DOI: 10.1016/j.vetmic.2021.109184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/17/2021] [Indexed: 11/30/2022]
Abstract
Avian leukosis virus (ALV) can induce various tumors and cause serious production problems. ALVs isolated from chickens were divided into six subgroups (A-J). In 2012, a strain of a putative novel subgroup of ALVs was isolated from Chinese native chickens in Jiangsu Province and named as ALV-K. In this study, three ALV-K strains (JS14LH01, JS13LH14, and JS15SG01) were isolated from chickens with suspected ALV infection in Jiangsu Province. Their complete genomes were amplified, sequenced, and analyzed systematically. The results showed that JS14LH01 and JS13LH14 were ALV-K and ALV-E recombinant strains. Whereas JS15SG01 is an ALV-K, ALV-E, and ALV-J multiple recombinant strain containing the U3 region of ALV-J. The pathogenicity test of JS15SG01 revealed that, compared with previous ALV-K strains, the viremia and viral shedding level of JS15SG01-infected chickens were significantly increased, reaching 100 % and 59 %, respectively. More important, JS15SG01 induced significant proliferation of gliocytes in the cerebral cortex of infected chickens, accompanied by the neurotropic phenomenon. This is the first report about a multiple recombinant ALV-K strain that could invade and injure the brain tissue of chickens in China. Our findings enriched the epidemiologic data of ALV and helped to reveal the evolution of ALV strains prevalent in chicken fields.
Collapse
Affiliation(s)
- Xinyi Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Yan Yu
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, PR China
| | - Meige Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Fangfang Chang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Farooque Muhammad
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Mengmeng Yu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Chaoqi Ren
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Yuanling Bao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Zhuo Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Aijing Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| |
Collapse
|
19
|
Wang H, Chen X, Zhu L, Fang X, Gao K, Fang C, Liu J, Gu Y, Liang X, Yang Y. Preparation of a novel monoclonal antibody against Avian leukosis virus subgroup J Gp85 protein and identification of its epitope. Poult Sci 2021; 100:101108. [PMID: 34116348 PMCID: PMC8192869 DOI: 10.1016/j.psj.2021.101108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that has caused huge economic losses in the poultry industry due to its great pathogenicity and transmission ability. However, the continuous emergence of new strains would bring challenges to diagnosis and control of ALV-J. .This study focuses on preparing the monoclonal antibody (MAb) against ALV-J Gp85 and identifying its epitope. The truncated ALV-J gp85 gene fragment was amplified and then cloned into expression vectors. Purified GST-Gp85 was used to immune mice and His-Gp85 was used to screen MAb. Finally, a hybridoma cell line named J16 that produced specific MAb against the ALV-J. Immunofluorescence assay showed that MAb J16 specifically recognized ALV-J rather than ALV-A or ALV-K infected DF-1 cells. To identify the epitope recognized by MAb J16, fourteen partially overlapping ALV-J Gp85 fragments were prepared and tested by Western blot. The results indicated that peptide 150-LIRPYVNQ-157 was the minimal epitope of ALV-J Gp85 recognized by MAb J16. Alignment analysis of Gp85 from different ALV subgroups showed that the epitope keep high conservation among 36 ALV-J strains, but significant different from that of ALV subgroup A, B, C, D, E and K. Overall, we prepared a MAb specific against ALV-J and identified peptide 150-LIRPYVNQ-157 as a novel specific epitope of ALV-J Gp85, which may assist in laying the foundation for specific ALV-J detection methods.
Collapse
Affiliation(s)
- Houkun Wang
- School of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xueyang Chen
- School of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Lilin Zhu
- School of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiaowei Fang
- School of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Keli Gao
- School of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Chun Fang
- School of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Jing Liu
- School of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Yufang Gu
- School of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiongyan Liang
- School of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Yuying Yang
- School of Animal Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
20
|
Li H, Tan M, Zhang F, Ji H, Zeng Y, Yang Q, Tan J, Huang J, Su Q, Huang Y, Kang Z. Diversity of Avian leukosis virus subgroup J in local chickens, Jiangxi, China. Sci Rep 2021; 11:4797. [PMID: 33637946 PMCID: PMC7910287 DOI: 10.1038/s41598-021-84189-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
Avian leukosis caused by avian leukosis virus (ALV) is one of the most severe diseases endangering the poultry industry. When the eradication measures performed in commercial broilers and layers have achieved excellent results, ALV in some local chickens has gradually attracted attention. Since late 2018, following the re-outbreak of ALV-J in white feather broilers in China, AL-like symptoms also suddenly broke out in some local flocks, leading to great economic losses. In this study, a systematic epidemiological survey was carried out in eight local chicken flocks in Jiangxi Province, China, and 71 strains were finally isolated from 560 samples, with the env sequences of them being successfully sequenced. All of those new isolates belong to subgroup J but they have different molecular features and were very different from the strains that emerged in white feature broilers recently, with some strains being highly consistent with those previously isolated from commercial broilers, layers and other flocks or even isolated from USA and Russian, suggesting these local chickens have been acted as reservoirs to accumulate various ALV-J strains for a long time. More seriously, phylogenetic analysis shows that there were also many novel strains emerging and in a separate evolutionary branch, indicating several new mutated ALVs are being bred in local chickens. Besides, ALV-J strains isolated in this study can be further divided into ten groups, while there were more or fewer groups in different chickens, revealing that ALV may cross propagate in those flocks. The above analyses explain the complex background and future evolution trend of ALV-J in Chinese local chickens, providing theoretical support for the establishment of corresponding prevention and control measures.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Huayuan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Qun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China.
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China.
| |
Collapse
|
21
|
Chen X, Wang H, Fang X, Gao K, Fang C, Gu Y, Gao Y, Wang X, Huang H, Liang X, Yang Y. Identification of a novel epitope specific for Gp85 protein of avian leukosis virus subgroup K. Vet Immunol Immunopathol 2020; 230:110143. [PMID: 33129191 DOI: 10.1016/j.vetimm.2020.110143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
During the past two decades, avian leukosis virus (ALV) caused tremendous economic losses to poultry industry in China. ALV-K as a newly found subgroup in recent years, which made the control and eradication of ALV more difficult as they were originated from the recombination of different subgroups. To date, specific rapid detection methods refer to ALV-K are still missing. Gp85 is the main structural protein of the virus, which mediates the invasion of host cells by the virus and determinates the classification of subgroups. In this study, we prepared a monoclonal antibody (Mab) named Km3 against Gp85 of ALV-K. Immunofluorescence assay showed that Km3 specifically recognized the strains of ALV-K rather than the strains of ALV-A or ALV-J. To explain the subgroups specificity of Km3, the epitope cognized by the Mab was identified by Western blotting using 15 overlapping fragments spanning the Gp85. Finally, the peptide 129AFGPRSIDTLSDWSRPQ145 was identified as the minimal linear epitope recognized by Km3. Alignment of Gp85 from different subgroups showed that the epitope was highly conserved among ALV-K strains, which was quite different from that of the strains from ALV -A, -B and -J. In conclusion, the Mab Km3 may serve as a useful reagent for ALV-K detection and diagnosis in the future.
Collapse
Affiliation(s)
- Xueyang Chen
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Houkun Wang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xiaowei Fang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Keli Gao
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Chun Fang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Yufang Gu
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678, Haping Road, Harbin, China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678, Haping Road, Harbin, China
| | - Hongsheng Huang
- Canadian Food Inspection Agency, Ottawa Laboratory (Fallowfield), 3851 Fallowfield Road, Ottawa, Ontario, K2H 8P9, Canada
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China.
| | - Yuying Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China.
| |
Collapse
|
22
|
Su Q, Cui Z, Zhang Z, Cui Z, Chang S, Zhao P. Whole-genome analysis of an emerging recombinant avian leukosis virus in yellow chickens, south China. Transbound Emerg Dis 2020; 67:2254-2258. [PMID: 32302467 DOI: 10.1111/tbed.13574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/21/2020] [Accepted: 04/01/2020] [Indexed: 11/28/2022]
Abstract
Avian leukosis virus (ALV) is the cause of a variety of tumour diseases in poultry, causing huge economic losses all over the world. As a retrovirus, its genome is highly variable and easily recombined between different subgroups. Previous studies found several recombinant events among subgroup A, B and E, but few data show that in subgroup J, which is the most prevalent and pathogenic in chickens. This study identified and sequenced an emerging recombinant ALV from yellow chicken, and analysis showed that the homology between the env gene of the new isolate and the representative strain (BR119) of subgroup J is as high as 98.7%, while its long terminal repeat (LTR) was highly consistent with some representative strains of subgroup E (94.9%-98.4%). This study also found that such LTR has appeared in some published strains of subgroup B and subgroup K, indicating that it can combine with the coding region of many different subgroups of ALV, thus forming natural recombinant strains. At the same time, a pair of polymerase chain reaction primers were selected according to the sequence, which can specifically detect the recombinant strains in wild, facilitating the future ALV eradication program. Overall, this study reminds us to pay more attention to tracking the genome variation of ALV in the future.
Collapse
Affiliation(s)
- Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Zhenyu Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
- College of Veterinary Medicine, Guangxi University, Guangxi, China
| | - Zhihui Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| |
Collapse
|
23
|
Sun T, Wang X, Han W, Ma X, Yin W, Fang B, Lin X, Li Y. Complete genome sequence of a novel recombinant avian leukosis virus isolated from a three-yellow chicken. Arch Virol 2020; 165:2615-2618. [DOI: 10.1007/s00705-020-04764-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
|
24
|
Zhang X, Liao Z, Wu Y, Yan Y, Chen S, Lin S, Chen F, Xie Q. gga-microRNA-375 negatively regulates the cell cycle and proliferation by targeting Yes-associated protein 1 in DF-1 cells. Exp Ther Med 2020; 20:530-542. [PMID: 32537011 PMCID: PMC7281959 DOI: 10.3892/etm.2020.8711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) serve a key role in regulating the cell cycle and inducing tumorigenesis. Subgroup J of the avian leukosis virus (ALV-J) belongs to the family Retroviridae, subfamily Orthoretrovirinae and genus Alpharetrovirus that causes tumors in susceptible chickens. gga-miR-375 is downregulated and Yes-associated protein 1 (YAP1) is upregulated in ALV-J-induced tumors in the livers of chickens, and it has been further identified that YAP1 is the direct target gene of gga-miR-375. In the present study, it was found that ALV-J infection promoted the cell cycle and proliferation in DF-1 cells. As the cell cycle and cell proliferation are closely associated with tumorigenesis, further experiments were performed to determine whether gga-miR-375 and YAP1 were involved in these cellular processes. It was demonstrated that gga-miR-375 significantly inhibited the cell cycle by inhibiting G1 to S/G2 stage transition and decreasing cell proliferation, while YAP1 significantly promoted the cell cycle and proliferation. Furthermore, these cellular processes in DF-1 cells were affected by gga-miR-375 through the targeting of YAP1. Collectively, the present results suggested that gga-miR-375, downregulated by ALV-J infection, negatively regulated the cell cycle and proliferation via the targeting of YAP1.
Collapse
Affiliation(s)
- Xinheng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Zhihong Liao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Yu Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Yiming Yan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Shaoli Lin
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Qingmei Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|