1
|
Mahajan R, Sharma G, Chadha P, Saini HS. Evaluating efficacy of Pseudomonas sp. EN-4 to lower the toxic potential of 4-bromophenol and assessing its competency in simulated microcosm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123990. [PMID: 38631447 DOI: 10.1016/j.envpol.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
An indigenous bacterium Pseudomonas sp. EN-4 had been reported earlier for its ability to co-metabolise 4-bromophenol (4-BP), in presence of phenol (100 mg/L) as co-substrate. The present study was undertaken to validate the efficacy of biotransformation by comparing the toxicity profiles of untreated and EN-4 transformed samples of 4-BP, using both plant and animal model. The toxicity studies in Allium cepa (A. cepa) indicated to lowering of mitotic index (MI) from 12.77% (water) to 3.33% in A. cepa bulbs exposed to 4-BP + phenol, which reflects the cytotoxic nature of these compounds. However, the MI value significantly improves to 11.36% in its biologically treated counterpart, indicating normal cell growth. This was further supported by significant reduction in chromosomal aberrations in A. cepa root cells exposed to biologically treated samples of 4-BP as compared to untreated controls. The oxidative stress assessed by comparing the activity profiles of different marker enzymes showed that the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) were reduced by 56%, 72%, and 37% respectively, in EN-4 transformed samples of 4-BP + phenol compared to its untreated counterpart. Similar trends were evident in the comet assay of fish (Channa punctatus) blood cells exposed to untreated and biologically treated samples of 4-BP. The comparative studies showed significant reduction in tail length (72.70%) and % tail intensity (56.15%) in fish blood cells exposed to EN-4 treated 4-BP + phenol, compared to its untreated counterpart. The soil microcosm studies validated the competency of the EN-4 cells to establish and transform 4-BP in soil polluted with 4-BP (20 mg/kg) and 4-BP + phenol (20 + 100 mg/kg). The isolate EN-4 achieved 98.08% transformation of 4-BP in non-sterile microcosm supplemented with phenol, indicating to potential of EN-4 cells to establish along with indigenous microflora.
Collapse
Affiliation(s)
- Rohit Mahajan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab-143005 India.
| | - Geetika Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab-143005 India.
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab-143005 India.
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab-143005 India.
| |
Collapse
|
2
|
Grzywaczyk A, Smułek W, Olejnik A, Guzik U, Nowak A, Kaczorek E. Co-interaction of nitrofuran antibiotics and the saponin-rich extract on gram-negative bacteria and colon epithelial cells. World J Microbiol Biotechnol 2023; 39:221. [PMID: 37273071 DOI: 10.1007/s11274-023-03669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
Large-scale use of nitrofurans is associated with a number of risks related to a growing resistance to these compounds and the toxic effects following from their increasing presence in wastewater and the environment. The aim of the study was to investigate an impact of natural surfactant, saponins from Sapindus mukorossi, on antimicrobial properties of nitrofuran antibiotics. Measurements of bacterial metabolic activity indicated a synergistic bactericidal effect in samples with nitrofurantoin or furazolidone, to which saponins were added. Their addition led to more than 50% greater reduction in viable cells than in the samples without saponins. On the other hand, no toxic effect against human colon epithelial cell was observed. It was found that exposure to antibiotics and surfactants caused the cell membranes to be dominated by branched fatty acids. Moreover, the presence of saponins reduced the hydrophobicity of the cell surface making them almost completely hydrophilic. The results have confirmed a high affinity of saponins to the cells of Pseudomonas strains. Their beneficial synergistic effect on the action of antibiotics from the nitrofuran group was also demonstrated. This result opens promising prospects for the use of saponins from S. mukorossi as an adjuvant to reduce the emission of antibiotics into the environment.
Collapse
Affiliation(s)
- Adam Grzywaczyk
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695, Poznan, Poland
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695, Poznan, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego, 48, 60-627, Poznań, Poland
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Agnieszka Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695, Poznan, Poland.
| |
Collapse
|
3
|
Szentgyörgyi F, Benedek T, Fekete D, Táncsics A, Harkai P, Kriszt B. Development of a bacterial consortium from Variovorax paradoxus and Pseudomonas veronii isolates applicable in the removal of BTEX. AMB Express 2022; 12:4. [PMID: 35075552 PMCID: PMC8787013 DOI: 10.1186/s13568-022-01349-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, we report on the development of a novel bacterial consortium, consisting of Variovorax paradoxus and Pseudomonas veronii isolates, applicable in the biodegradation of all six BTEX compounds (benzene, toluene, ethylbenzene, o-, m- and p-xylene) and the bioremediation of contaminated sites. The co-cultivability of the selected bacterial isolates was determined in nutrient-rich medium, as well as in BTEX amended mineral salts solution using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and CFU determinations. BTEX biodegradation capacity of the two-strain consortium was assessed in mineral salts solution, where a series of BTEX depletions and supplementations occurred, as well as in a real, BTEX polluted environmental sample (contaminated groundwater) in the presence of the autochthonous bacterial community. The obtained results indicated that the developed bacterial consortium is very efficient in BTEX biodegradation. Under laboratory conditions, the acclimatized bacterial consortium completely degraded the BTEX mixture with a concentration as high as 20 mg l-1 in a mineral salt medium within a short span of 6 h. Close to in situ groundwater conditions (incubated at 15 °C under static conditions in the absence of light), groundwater microcosms containing the autochthonous bacterial community inoculated with the developed bacterial consortium showed more efficient toluene, o-, m-and p-xylene biodegradation capacity than microcosms containing solely the native microbial population originally found in the groundwater. In the inoculated microcosms, after 115 h of incubation the concentration (~ 1.7 mg l-1 each) of o-, m- and p-xylene decreased to zero, whereas in the non-inoculated microcosms the concentration of xylene isomers was still 0.2, 0.3 and 0.3 mg l-1, respectively. The allochthonous bioaugmentation of the contaminated groundwater with the obtained inoculant was successful and manifested in a better BTEX degradation rate. Our results suggest that the obtained bacterial consortium can be a new, stable and efficient bioremediation agent applicable in the synergistic elimination of BTEX compounds from contaminated sites.
Collapse
|
4
|
Zhang L, Wang M, Cui H, Qiao J, Guo D, Wang B, Li X, Huang H. How humic acid and Tween80 improve the phenanthrene biodegradation efficiency: Insight from cellular characteristics and quantitative proteomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126685. [PMID: 34332485 DOI: 10.1016/j.jhazmat.2021.126685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic and recalcitrant pollutants, with an urgent need for bioremediation. Systematic biodegradation studies show that surfactant-mediated bioremediation is still poorly understood. Here, we investigated a comprehensive cellular response pattern of the PAH degrading strain B. subtilis ZL09-26 to (non-)green surfactants at the cellular and proteomic levels. Eight characteristic cellular factor investigations and detailed quantitative proteomics analyses were performed to understand the highly enhanced phenanthrene (PHE) degradation efficiency (2.8- to 3-fold improvement) of ZL09-26 by humic acid (HA) or Tween80. The commonly upregulated pathway and proteins (Arginine generation, LacI-family transcriptional regulator, and Lactate dehydrogenase) and various metabolic pathways (such as phenanthrene degradation upstream pathway and central carbon metabolism) jointly govern the change of cellular behaviors and improvement of PHE transport, emulsification, and degradation in a network manner. The obtained molecular knowledge empowers engineers to expand the application of surfactants in the biodegradation of PAHs and other pollutants.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China; College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany; DWI-Leibniz Institut für Inateraktive Materialien, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Dongsheng Guo
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Biao Wang
- Petroleum Engineering Technology Research Institute of Jiangsu Oilfield Company, SINOPEC, Yangzhou 225009, People's Republic of China; Research Center of Oil and Gas Microbial Engineering of Jiangsu, Yangzhou 225009, People's Republic of China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - He Huang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
5
|
Nowak A, Żur-Pińska J, Piński A, Pacek G, Mrozik A. Adaptation of phenol-degrading Pseudomonas putida KB3 to suboptimal growth condition: A focus on degradative rate, membrane properties and expression of xylE and cfaB genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112431. [PMID: 34146980 DOI: 10.1016/j.ecoenv.2021.112431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Detailed characterization of new Pseudomonas strains that degrade toxic pollutants is required and utterly necessary before their potential use in environmental microbiology and biotechnology applications. Therefore, phenol degradation by Pseudomonas putida KB3 under suboptimal temperatures, pH, and salinity was examined in this study. Parallelly, adaptive mechanisms of bacteria to stressful growth conditions concerning changes in cell membrane properties during phenol exposure as well as the expression level of genes encoding catechol 2,3-dioxygenase (xylE) and cyclopropane fatty acid synthase (cfaB) were determined. It was found that high salinity and the low temperature had the most significant effect on the growth of bacteria and the rate of phenol utilization. Degradation of phenol (300 mg L-1) proceeded 12-fold and seven-fold longer at 10 °C and 5% NaCl compared to the optimal conditions. The ability of bacteria to degrade phenol was coupled with a relatively high activity of catechol 2,3-dioxygenase. The only factor that inhibited enzyme activity by approximately 80% compared to the control sample was salinity. Fatty acid methyl ester (FAMEs) profiling, membrane permeability measurements, and hydrophobicity tests indicated severe alterations in bacteria membrane properties during phenol degradation in suboptimal growth conditions. The highest values of pH, salinity, and temperature led to a decrease in membrane permeability. FAME analysis showed fatty acid saturation indices and cyclopropane fatty acid participation at high temperature and salinity. Genetic data showed that suboptimal growth conditions primarily resulted in down-regulation of xylE and cfaB gene expression.
Collapse
Affiliation(s)
- Agnieszka Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Joanna Żur-Pińska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Gabriela Pacek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
6
|
Zhang L, Li X, Zuo W, Li S, Sun G, Wang W, Yu Y, Huang H. Root exuded low-molecular-weight organic acids affected the phenanthrene degrader differently: A multi-omics study. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125367. [PMID: 33677320 DOI: 10.1016/j.jhazmat.2021.125367] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
As a class of highly toxic and persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) are an increasingly urgent environmental problem. Low-molecular-weight organic acids (LMWOAs) are important factors that regulate the degradation of PAHs by plant rhizosphere microorganisms, which affect the absorption of PAHs by plant roots. However, the comprehensive mechanisms by which LMWOAs influence the biodegradation of PAHs at cellular and omics levels are still unknown. Here, we systematically analyzed the roles of citric, glutaric and oxalic acid in the PAH-degradation process, and investigated the mechanisms through which these three LMWOAs enhance phenanthrene (PHE) biodegradation by B. subtilis ZL09-26. The results showed that LMWOAs can improve the solubility and biodegradation of PHE, enhance cell growth and activity, and relieve membrane and oxidative stress. Citric acid enhanced PHE biodegradation mainly by improving the strain's cell proliferation and activity, while glutaric and oxalic acid accelerated PHE biodegradation mainly by improving the expression of enzymes and providing energy for the cells of B. subtilis ZL09-26. This study provides new insights into rhizospheric bioremediation mechanisms, which may enable the development of new biostimulation techniques to improve the bioremediation of PAHs.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China; College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Wenlu Zuo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China; College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Gangzheng Sun
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257067, People's Republic of China
| | - Weidong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257067, People's Republic of China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China; College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China; College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
7
|
Lu B, Wang L, Zheng X, Hu Z, Pan Z. Co-metabolic biodegradation of 4-chlorophenol by photosynthetic bacteria. ENVIRONMENTAL TECHNOLOGY 2021; 42:2361-2371. [PMID: 31846595 DOI: 10.1080/09593330.2019.1701567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
ABSTRACTEnvironmental contamination by 4-chlorophenol (4-CP) is a major concern. Photosynthetic bacteria have the ability to biodegrade 4-CP under dark aerobic conditions. In this study, we found that using different carbon sources (i.e. glucose, sodium acetate, sodium propionate sucrose, and malic acid) as co-metabolic substrates accelerated the biodegradation of 4-CP, and this acceleration was especially pronounced in the glucose treatment. A maximum degradation rate of 96.99% was reached under a concentration of 3.0 g·L-1 after 6 days of culture. The optimum conditions were pH 7.5, a temperature of 30°C, and a rotation speed of 135 rpm. The biodegradation of 4-CP was achieved at a range of salinities (0-3.0% NaCl, w/v). The biodegradation kinetics agreed with the Haldane model, and the kinetic constants were rmax = 0.14 d-1, Km = 33.9 mg·L-1, and Ki = 159.6 mg·L-1. Additionally, the coexistence of phenol or 2,4-dichlorophenol (2, 4-DCP) had a certain impact on the degradation of 4-CP under dark aerobic conditions. When the coexisting phenol concentration reached 100 mg·L-1, the maximum degradation rate of 4-CP reached 90.20%. The degradation rate of 4-CP decreased as the concentration of coexisting 2, 4-DCP increased.
Collapse
Affiliation(s)
- Binchao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Liang Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhongce Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Zamule SM, Dupre CE, Mendola ML, Widmer J, Shebert JA, Roote CE, Das P. Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111814. [PMID: 33360286 DOI: 10.1016/j.ecoenv.2020.111814] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Thiamethoxam (THM) and imidacloprid (IMI), are environmentally persistent neonicotinoid insecticides which have become increasingly favored in the past decade due to their specificity as insect neurotoxicants. However, neonicotinoids have been implicated as a potential contributing factor in Colony Collapse Disorder (CCD) which affects produce production on a global scale. The present study characterizes the bioremediation potential of six bacterial species: Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas aeruginosa, Alcaligenes faecalis, Escherichia coli, and Streptococcus lactis. In Phase I, we evaluated the utilization of IMI or THM as the sole carbon or nitrogen source by P. fluorescens, P. putida, and P. aeruginosa. All three species were better able to utilize THM over IMI as their sole carbon or nitrogen source. Thus, further studies proceeded with THM only. In Phase II, we assessed the kinetics of THM removal from aqueous media by the six species. Significant (p < 0.0001) reductions in 70 mg/L THM concentration were observed for P. fluorescens (67%), P. putida (65%), P. aeruginosa (52%), and A. faecalis (39%) over the 24-day study period, and for E. coli (60%) and S. lactis (12%) over the 14-day study period. The THM removal by all species followed a first-order kinetic reaction. HPLC chromatograms of P. fluorescens, P. putida, and E. coli cultures revealed that as the area of the THM peak decreased over time, the area of an unidentified metabolite peak increased. In Phase III, we examined the effect of temperature on the transformation capacity of the bacterial species which was observed at 2 ℃, 22 ℃, and 30 ℃. Maximal THM removal occurred at 30 °C for all bacterial species assessed. Identification of the metabolite is currently underway. If the metabolite is found to be less hazardous than THM, further testing will follow to evaluate the use of this bioremediation technique in the field.
Collapse
Affiliation(s)
- Stephanie M Zamule
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Cassandra E Dupre
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Meghan L Mendola
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Julia Widmer
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Jane A Shebert
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Carol E Roote
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Padmini Das
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA.
| |
Collapse
|
9
|
Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation. Microorganisms 2020; 9:microorganisms9010003. [PMID: 33374976 PMCID: PMC7822026 DOI: 10.3390/microorganisms9010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.
Collapse
|
10
|
Nowak A, Mrozik A. Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 215:216-229. [PMID: 29573672 DOI: 10.1016/j.jenvman.2018.03.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination with chlorophenols is a serious problem all over the world due to their common use in different branches of industry and agriculture. The objective of this study was to determine whether bioaugmenting soil with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2 and additional carbon sources such as phenol (P) and sodium benzoate (SB) could enhance the degradation of 4-chlorophenol (4-CP). During the degradation experiment, the number of bacteria as well as the structural and functional diversity of the soil microbial communities were determined. It was found that the most effective degradation of 4-CP in the soil was observed after it was inoculated with CF600 and the addition of SB. The biodegradation of five doses of 4-CP in this soil proceeded within 100 days. At the same time, the rate of the disappearance of 4-CP in the soil that had been bioaugmented with CF600 and contaminated with 4-CP and P was 5-6.5 times lower compared to its rate of disappearance in the soil that had been contaminated with 4-CP. The biodegradation of 4-CP in all of the treated and untreated soils was accompanied by a systematic decrease in the number of heterotrophic bacteria (THB) ranging between 13 and 40%. It was also proven that the tested aromatic compounds affected the soil microbial community structure through an increase in the marker fatty acids for Gram-negative bacteria (BG-) and fungi (F). The essential changes in the patterns of the fatty acid methyl esters (FAMEs) for the polluted soil included an increase in the fatty acid saturation and hydroxy fatty acid abundance. The obtained results also indicated that the introduction of CF600 into the soil contaminated with 4-CP and SB or P caused an increase in the functional diversity of the soil microorganisms. In contrast, in the soil that had been inoculated with KB2 and in the non-inoculated soil, the addition of 4-CP and P decreased the microbial activity. In conclusion, the inoculation of both strains into contaminated soil with aromatic compounds caused irreversible changes in the functional and structural diversity of the soil microbial communities.
Collapse
Affiliation(s)
- Agnieszka Nowak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Agnieszka Mrozik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
11
|
Xu B, Xu B, Shan S, Xue G, Wang T, Qiu X, Zhan C. Co-metabolic degradation of iomeprol by a Pseudomonas sp. and its application in biological aerated filter systems. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:310-316. [PMID: 29215947 DOI: 10.1080/10934529.2017.1401385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
The non-ionic water-soluble X-ray contrast agent iomeprol (IOM) enters the water supply through sewage treatment plants, which can cause considerable environmental harm. In this study, Pseudomonas sp. I-24 (I-24) was tested for its ability to remove IOM from water via co-metabolic pathways. The optimum removal rate of IOM by I-24 was 38.43% ± 3.70% when starch served as the source of external carbon, and its co-metabolism of IOM conformed to the first-order kinetics. The highest activity of intracellular enzyme (degrading enzyme) extracted from I-24 was 0.143 ± 0.005 mU in starch condition. The Michaelis constant of the degrading enzyme was found to be 91.08 μmol L-1. However, glucose and maltose showed the best promotive effects on the growth and electron transport activity of I-24, indicating that overgrowth may result in competitive inhibition and a reduced degradation rate of IOM. Adding I-24 and degrading enzymes to biological aerated filters increased IOM removal rates without affecting CODMn removal.
Collapse
Affiliation(s)
- Bingjie Xu
- a College of Chemistry and Environmental Engineering , Jiujiang University , Jiujiang , China
- b Jiangxi Province Engineering Research Center of Ecological Chemical Industry , Jiujiang University , Jiujiang , China
- c College of Environmental Science and Engineering , Donghua University , Shanghai , China
| | - Bin Xu
- d Sinopec Jiujiang Company , Jiujiang , China
| | - Shiwei Shan
- a College of Chemistry and Environmental Engineering , Jiujiang University , Jiujiang , China
| | - Gang Xue
- c College of Environmental Science and Engineering , Donghua University , Shanghai , China
| | - Tianfeng Wang
- a College of Chemistry and Environmental Engineering , Jiujiang University , Jiujiang , China
| | - Xiuwen Qiu
- a College of Chemistry and Environmental Engineering , Jiujiang University , Jiujiang , China
| | - Changchao Zhan
- a College of Chemistry and Environmental Engineering , Jiujiang University , Jiujiang , China
| |
Collapse
|
12
|
Marchlewicz A, Guzik U, Smułek W, Wojcieszyńska D. Exploring the Degradation of Ibuprofen by Bacillus thuringiensis B1(2015b): The New Pathway and Factors Affecting Degradation. Molecules 2017; 22:molecules22101676. [PMID: 28991215 PMCID: PMC6151734 DOI: 10.3390/molecules22101676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/06/2017] [Indexed: 11/29/2022] Open
Abstract
Ibuprofen is one of the most often detected pollutants in the environment, particularly at landfill sites and in wastewaters. Contamination with pharmaceuticals is often accompanied by the presence of other compounds which may influence their degradation. This work describes the new degradation pathway of ibuprofen by Bacillus thuringiensis B1(2015b), focusing on enzymes engaged in this process. It is known that the key intermediate which transformation limits the velocity of the degradation process is hydroxyibuprofen. As the degradation rate also depends on various factors, the influence of selected heavy metals and aromatic compounds on ibuprofen degradation by the B1(2015b) strain was examined. Based on the values of non-observed effect concentration (NOEC) it was found that the toxicity of tested metals increases from Hg(II) < Cu(II) < Cd(II) < Co(II) < Cr(VI). Despite the toxic effect of metals, the biodegradation of ibuprofen was observed. The addition of Co2+ ions into the medium significantly extended the time necessary for the complete removal of ibuprofen. It was shown that Bacillus thuringiensis B1(2015b) was able to degrade ibuprofen in the presence of phenol, benzoate, and 2-chlorophenol. Moreover, along with the removal of ibuprofen, degradation of phenol and benzoate was observed. Introduction of 4-chlorophenol into the culture completely inhibits degradation of ibuprofen.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
13
|
Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E, Alkorta I. Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Front Microbiol 2017; 8:1966. [PMID: 29062312 PMCID: PMC5640721 DOI: 10.3389/fmicb.2017.01966] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest.
Collapse
Affiliation(s)
- Carlos Garbisu
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| | - Olatz Garaiyurrebaso
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Lur Epelde
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| | | | - Itziar Alkorta
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| |
Collapse
|
14
|
Wei K, Yin H, Peng H, Liu Z, Lu G, Dang Z. Characteristics and proteomic analysis of pyrene degradation by Brevibacillus brevis in liquid medium. CHEMOSPHERE 2017; 178:80-87. [PMID: 28319745 DOI: 10.1016/j.chemosphere.2017.03.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/07/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely spread in various ecosystems and are of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Bioremediation has been proposed as an effective approach to remove PAHs. In this study, the physiological responses and proteome of Brevibacillus brevis under exposure to pyrene, a four-ring compound from PAHs family, were investigated. The changes of cell viability of B. brevis were observed during the degradation of pyrene by means of flow cytometry. The results indicated that pyrene stimulated superoxide dismutase (SOD) activity from 93.9 to 100.6 U mg-1 prot, whereas inhibited catalase (CAT) activity from 29.1 to 20.3 U mg-1 prot. The main compositions of B. brevis changed during pyrene degradation, with the proportion of unsaturated fatty acids increased by 13.4%. In addition, we performed a proteomic approach (two-dimensional gel electrophoresis and MALDI-TOF/TOF-MS) in order to explore how B. brevis survived upon treatment with pyrene. It was showed that the expression of 13 proteins increased whereas 10 other decreased after pyrene-treatment. The differentially expressed proteins were identified and the results indicated that they were involved in multiple biological processes including energy metabolism, biosynthesis, transmembrane transport and oxidative stress. Overall, these findings offered a new insights into the cellular response strategy developed by B. brevis to overcome the pyrene stress.
Collapse
Affiliation(s)
- Kun Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
15
|
Changes in fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols. World J Microbiol Biotechnol 2016; 32:198. [PMID: 27757793 PMCID: PMC5069324 DOI: 10.1007/s11274-016-2160-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/14/2016] [Indexed: 11/14/2022]
Abstract
The changes in the cellular fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols in the presence of phenol as well as its adaptive mechanisms to these compounds were studied. It was found that bacteria were capable of degrading 4-chlorophenol (4-CP) completely in the presence of phenol, while 2-chlorophenol (2-CP) and 3-chlorophenol (3-CP) they degraded partially. The analysis of the fatty acid profiles indicated that adaptive mechanisms of bacteria depended on earlier exposure to phenol, which isomer they degraded, and on incubation time. In bacteria unexposed to phenol the permeability and structure of their membranes could be modified through the increase of hydroxylated and cyclopropane fatty acids, and straight-chain and hydroxylated fatty acids under 2-CP, 3-CP and 4-CP exposure, respectively. In the exposed cells, regardless of the isomer they degraded, the most important changes were connected with the increase of the contribution of branched fatty acid on day 4 and the content of hydroxylated fatty acids on day 7. The changes, particularly in the proportion of branched fatty acids, could be a good indicator for assessing the progress of the degradation of monochlorophenols by S. maltophilia KB2. In comparison, in phenol-degrading cells the increase of cyclopropane and straight-chain fatty acid content was established. These findings indicated the degradative potential of the tested strain towards the co-metabolic degradation of persistent chlorophenols, and extended the current knowledge about the adaptive mechanisms of these bacteria to such chemicals.
Collapse
|