1
|
Xiong L, Ma R, Yin F, Fu C, Peng L, Liu Y, Lu X, Li C. Simulation and optimisation of magnetic and experimental study of magnetic field coupling constructed wetland. ENVIRONMENTAL TECHNOLOGY 2024; 45:5083-5103. [PMID: 37955936 DOI: 10.1080/09593330.2023.2283801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
This study developed a novel constructed wetland (CW) coupled with a magnetic field for treating domestic wastewater, and the magnetic field distribution was solved and optimised by the finite element method. Herein, we investigated the effects of optimising magnetic field optimisation and studied its impact on CW treatment performance and the responses of a microbial community. The optimisation results showed that the average magnetic field strength of the CW unit increases from 3 to 8 mT, and the proportion of areas with magnetic field strength greater than 5 mT also increases from 30% to 74%. The water quality analysis results showed that the removal of chemical oxygen demand (COD) and NH4+-N (p < 0.01) was significantly increased by the magnetic field (average 3 mT), increasing by 12.2% and 8.49%, respectively. Moreover, the removal of COD and NH4+-N (p < 0.01) was more significantly increased by M-VFCW(O) (average 8 mT), increasing by 15.58% and 49.1%, respectively. The magnetic field application shifted significantly the abundance of dominant bacteria in CWs. Relative abundance of dominant bacteria such as Proteobacteria (63.3%), Firmicutes (4.72%) and Actinobacteria (2.11%) that played an important role in organics removal and nitrification and denitrification-related bacteria such as Nitrospirae (1.48%) and Planctomycetes (9.58%) significantly promoted in M-VFCW(O). These results suggest that introducing a magnetic field into CWs may improve organics and nitrogen removal via the biological process, and the optimisation of the magnetic field was significant in enhancing the performance of VFCWs.
Collapse
Affiliation(s)
- Liechao Xiong
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Rong Ma
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Fajin Yin
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Chuandong Fu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Liping Peng
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Yungen Liu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Xiuxiu Lu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Chengrong Li
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
2
|
Hu X, Zhang S, Liu G, Wang J, Wang Y. Promoting mechanism of nitrogen removal by Fe 3O 4 magnetic particles during the start-up phase in sequencing batch reactor. Bioprocess Biosyst Eng 2024; 47:851-862. [PMID: 38676738 DOI: 10.1007/s00449-024-03006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
In this paper, a magnetic sequencing batch reactor (SBR) was constructed, and the influence rule of magnetic particle dosing performance of denitrification was investigated. The diversity, structure, and potential functions of the microbial community were comprehensively explored. The results showed that the particle size and the dosage of Fe3O4 magnetic particles were the main parameters affecting the sedimentation performance of activated sludge. The start-up phase of the SBR reactor with Fe3O4 magnetic particles was 5 days less than the control. Moreover, total nitrogen removal efficiency during the start-up phase was improved, with the maximum value reaching 91.93%, surpassing the control by 9.7% with the Fe3O4 dosage of 1.2 g L-1. In addition, the activated sludge concentration and dehydrogenase activity were improved, compared to the control. High-throughput sequencing showed that the denitrifying bacterium Saccharimonadales dominated the reactor and was enriched by magnetic particles. According to predicted functions, the abundance of genes for denitrification increased with the addition of magnetic particles, suggesting the capacity of nitrogen removal was enhanced in the microbial community. Overall, the Fe3O4 magnetic particles provide great potential for enhanced wastewater nitrogen removal.
Collapse
Affiliation(s)
- Xiaoyu Hu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Shuai Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Jiabin Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Yue Wang
- Shuifa Water Holding Group Limited, Jinan, 250000, China
| |
Collapse
|
3
|
Asgari G, Seid-Mohammadi A, Shokoohi R, Samarghandi MR, Daigger GT, Malekolkalami B, Khoshniyat R. Exposure of the static magnetic fields on the microbial growth rate and the sludge properties in the complete-mix activated sludge process (a Lab-scale study). Microb Cell Fact 2023; 22:195. [PMID: 37759209 PMCID: PMC10523802 DOI: 10.1186/s12934-023-02207-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND In this study, the effect of static magnetic fields (SMFs) on improving the performance of activated sludge process to enhance the higher rate of microbial growth biomass and improve sludge settling characteristics in real operation conditions of wastewater treatment plants has been investigated. The effect of SMFs (15 mT), hydraulic retention time, SRT, aeration time on mixed liquor suspended solids (MLSS) concentrations, mixed liquor volatile suspended solids (MLVSS) concentrations, α-factor, and pH in the complete-mix activated sludge (CMAS) process during 30 days of the operation, were evaluated. RESULTS There were not any differences between the concentration of MLSS in the case (2148.8 ± 235.6 mg/L) and control (2260.1 ± 296.0 mg/L) samples, however, the mean concentration of MLVSS in the case (1463.4 ± 419.2 mg/L) was more than the control samples (1244.1 ± 295.5 mg/L). Changes of the concentration of MLVSS over time, follow the first and second-order reaction with and without exposure of SMFs respectively. Moreover, the slope of the line and, the mean of α-factor in the case samples were 6.255 and, - 0.001 higher than the control samples, respectively. Changes in pH in both groups of the reactors were not observed. The size of the sluge flocs (1.28 µm) and, the spectra of amid I' (1440 cm-1) and II' (1650 cm-1) areas related to hydrogenase bond in the case samples were higher than the control samples. CONCLUSIONS SMFs have a potential to being considered as an alternative method to stimulate the microbial growth rate in the aeration reactors and produce bioflocs with the higher density in the second clarifiers.
Collapse
Affiliation(s)
- Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Faculty of Public Health, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolmotaleb Seid-Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Shokoohi
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Samarghandi
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI, 48109, USA
| | - Behrooz Malekolkalami
- Department of Physics, University of Kurdistan, P.O. Box 66177-15175, Sanandaj, Iran
| | - Ramin Khoshniyat
- Social Determinants of Health Research Center (SDHRC), Faculty of Public Health, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Li C, Feng L, Lian J, Yu X, Fan C, Hu Z, Wu H. Enhancement of organics and nutrient removal and microbial mechanism in vertical flow constructed wetland under a static magnetic field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117192. [PMID: 36621318 DOI: 10.1016/j.jenvman.2022.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Low and unstable pollutant removal is regarded as the bottleneck problem in constructed wetlands (CWs) for wastewater treatment. This study investigated the effect of static magnetic field (MF) on enhancing the purification efficiency and microbial mechanism in vertical flow CW systems for treating domestic wastewater. The results showed that MF-CWs outperformed control systems in terms of treatment performance, with average removal efficiencies of COD, NH4+-N, TN, and TP reaching 92.58%, 73.58%, 72.53%, and 95.83%, respectively. The change of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) activity indicated that MF application was beneficial for plant health. Additionally, higher ammonia monooxygenase (AMO) activity in MF-CWs suggested the removal of NH4+-N was facilitated. The high-throughput sequencing results demonstrated that MF application could enrich the functional bacteria such as Patescibacteria phylum, mainly, including Gammaproteobacteria, Betaproteobacteria, and Alphaproteobacteria, which further accelerated pollutants transformation. These findings would be beneficial in understanding pollutant removal processes and their mechanism in CWs with MF application.
Collapse
Affiliation(s)
- Cong Li
- School of Geography and Environment, Liaocheng University, Liaocheng 252059, PR China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jianjun Lian
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, PR China
| | - Xiaoting Yu
- Liaocheng City Ecological Environment Bureau, Liaocheng 252000, PR China
| | - Chunzhen Fan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
5
|
The use of the electromagnetic field in microbial process bioengineering. ADVANCES IN APPLIED MICROBIOLOGY 2022; 121:27-72. [PMID: 36328731 DOI: 10.1016/bs.aambs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An electromagnetic field (EMF) has been shown to have various stimulatory or inhibitory effects on microorganisms. Over the years, growing interest in this topic led to numerous discoveries suggesting the potential applicability of EMF in biotechnological processes. Among these observations are stimulative effects of this physical influence resulting in intensified biomass production, modification of metabolic activity, or pigments secretion. In this review, we present the current state of the art and underline the main findings of the application of EMF in bioprocessing and their practical meaning in process engineering using examples selected from studies on bacteria, archaea, microscopic fungi and yeasts, viruses, and microalgae. All biological data are presented concerning the classification of EMF. Furthermore, we aimed to highlight missing parts of contemporary knowledge and indicate weak spots in the approaches found in the literature.
Collapse
|
6
|
Li M, Zhang J, Liang S, Li M, Wu H. Novel magnetic coupling constructed wetland for nitrogen removal: Enhancing performance and responses of plants and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152040. [PMID: 34856252 DOI: 10.1016/j.scitotenv.2021.152040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Vertical flow constructed wetlands (VFCWs) have been widely applied worldwide due to their small footprint and large hydraulic load, however, its sustainable operation and application is still challenging because of the unsatisfactory nitrogen removal. This study developed a novel CW coupled with a magnetic field for treating simulated wastewater, and investigated the effects of magnetic field on enhancing treatment performance and responses of wetland plants and microbial community. The results showed that the magnetic field (average 110 mT) had a significantly intensifying effect on organics and nitrogen removal. The removal efficiencies of NH4+-N and TN in CW exposed to magnetic field (MF-CW) were 10.14% and 9.16% higher than those in control CW (C-CW), and an increased COD removal was also found in MF-CW. Biochemical characteristics of plants indicated that the MF did not cause a severe stress for wetland plants, while MF application shifted significantly the microbial community in CWs. Relative abundances of nitrifying bacteria such as Nitrospira (2.36%), Dokdonella (0.27%) and Nitrosomonas (0.17%) had been significantly promoted due to MF exposure, and nitrification-related microbial enzyme (AMO) activity was also increased by 63%. It can be concluded that introducing MF into CWs could intensify organics and nitrogen removal via the biological process, which would contribute to a better understanding of magnetic coupling mechanism.
Collapse
Affiliation(s)
- Mengqi Li
- College of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jian Zhang
- College of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Shuang Liang
- College of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Ming Li
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Haiming Wu
- College of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
7
|
Hu B, Gu X, Wang Y, Leng J, Zhang K, Zhao J, Wu P, Li X, Wan C, Xu J. Revealing the effects of static magnetic field on the anoxic/oxic sequencing batch reactor from the perspective of electron transport and microbial community shifts. BIORESOURCE TECHNOLOGY 2022; 345:126535. [PMID: 34896533 DOI: 10.1016/j.biortech.2021.126535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The effects of static magnetic field (SMF) on an anoxic/oxic sequencing batch reactor were investigated from the perspective of electron transport via determining the variations of reduced/oxidized nicotinamide adenine dinucleotide (NADH/NAD+) ratio, NADH concentration, electron transport system activity (ETSA), poly-β-hydroxybutyrate (PHB), extracellular polymeric substances (EPS), as well as the gene expression under different conditions. Moreover, the shifts of microbial community were also analyzed. The application of SMF with an appropriate intensity significantly improved the performance of the process, the abundance of the anoxic denitrifiers, and the activity of the aerobic denitrifiers. The NADH content, as well as ETSA were also enhanced, therefore, the total nitrogen removal efficiency of the process was increased. However, the overhigh SMF intensity resulted in the change of microbial community, meanwhile, had negative effects on the metabolism of microorganisms. Selecting a proper intensity is crucial for the SMF-enhanced biological wastewater treatment process.
Collapse
Affiliation(s)
- Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China.
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Bureau of Housing and Urban-Rural Development of Chencang District, Baoji City, China
| | - Juntong Leng
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Kai Zhang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China; School of Water and Environment, Chang' an University, Xi'an, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Xiaoling Li
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Chengjie Wan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Jingtong Xu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| |
Collapse
|
8
|
Chen L, Zhang K, Wang M, Zhang Z, Feng Y. Enhancement of magnetic field on fermentative hydrogen production by Clostridium pasteurianum. BIORESOURCE TECHNOLOGY 2021; 341:125764. [PMID: 34438289 DOI: 10.1016/j.biortech.2021.125764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial fermentation plays important roles in hydrogen production. Various methods to promote hydrogen production are being developed. Here, different magnetic field intensities (2.7 mT, 3.2 mT and 9.1 mT) were applied to the glucose fermentation system of Clostridium pasteurianum to evaluate the feasibility and effect of statistic magnetic field on hydrogen production. The results showed that the magnetic field intensity of 3.2 mT effectively enhanced the hydrogen production. The total glucose consumption reached 0.64 ± 0.010 mmol, the maximum hydrogen yield reached 2.34 ± 0.020 mol H2/mol glucose, and the maximum hydrogen production rate reached 0.065 ± 0.002 mmol/h. Compared with the control, the maximum biomass, carbon conversion efficiency and energy conversion efficiency were elevated by 366%, 114%, and 26.8%, respectively. Our results provide a new way for promotion of hydrogen production, better understanding of the interaction mechanism between magnetic field and microorganisms and for optimizing the hydrogen production.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Ke Zhang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mingpeng Wang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
9
|
Static Magnetic Fields Effects on Polysaccharides Production by Different Microalgae Strains. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microalgae are able to produce many valuable biomolecules, such as polysaccharides, that presents a large diversity of biochemical structures and functions as antioxidant, antifungal, anticancer, among others. Static magnetic fields (SMF) influence the metabolism of microorganisms and has been shown as an alternative to increase microalgae biomass, yield and compounds production. Especially, some studies have highlighted that SMF application could enhance carbohydrate content. This study aimed to evaluate different conditions of SMF on Spirulina and Chlorella in indoor and outdoor conditions, in order to confirm the influence of SMF on polysaccharides production, evaluating which polysaccharidic fraction could be enhanced by SMF and highlighting a possible modification in EPS composition. Starch from Chlorella and exopolysaccharides (EPS) from Spirulina were quantified and characterized. SMF increased the starch content in Chorella fusca biomass. EPS productions from A. platensis and Spirulina sp. were not significantly increased, and global composition appeared similar to the controls (constituted basically of 80–86% neutral sugars and 13–19% uronic acids). However, the monosaccharide composition analysis revealed a significant modification of composition, i.e., the amount of fucose, arabinose, rhamnose, galactose and glucuronic acid was increased, while the glucose content was decreased. SMF application led to significant modification of polysaccharides production and this study demonstrate that combining the outdoor conditions with SMF, the starch content and EPS composition was positively affected.
Collapse
|
10
|
Zhu YM, Ji H, Ren H, Geng J, Xu K. Enhancement of static magnetic field on nitrogen removal at different ammonium concentrations in a sequencing batch reactor: Performance and biological mechanism. CHEMOSPHERE 2021; 268:128794. [PMID: 33139049 DOI: 10.1016/j.chemosphere.2020.128794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/14/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the effects and biological mechanism of external static magnetic fields (SMFs) on enhancing nitrogen removal at different influent ammonium nitrogen (NH4+) concentrations. Four sequential batch reactors (SBRs) with SMFs of 0, 15, 30, and 50 mT were operated continuously for 196 days, during which the influent NH4+-N concentration increased stepwise as 50, 100, 350, and 600 mg L-1. The results showed that 50 mT had optimum effects on enhancing nitrogen removal, especially at high NH4+-N concentrations (350 and 600 mg L-1). The biological mechanism by which SMF influences nitrogen removal varies depending on the NH4+ concentration. At low NH4+-N concentrations (50 and 100 mg L-1), a field of 50 mT increased key enzyme activities and corresponding functional gene abundances. Additionally, it further improved functional bacterial abundances, which involved nitrifying and denitrifying bacteria at high NH4+ concentrations. These findings could provide guidance for the selection of optimum SMF intensity at different influent NH4+ concentrations.
Collapse
Affiliation(s)
- Yuan-Mo Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongmin Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
11
|
Experimental Study and Data Analysis of the Effects of Ions in Water on Evaporation Under Static Magnetic Conditions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05519-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zieliński M, Zielińska M, Cydzik-Kwiatkowska A, Rusanowska P, Dębowski M. Effect of static magnetic field on microbial community during anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 323:124600. [PMID: 33373801 DOI: 10.1016/j.biortech.2020.124600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Dairy wastewater is characterized by high concentration of organic compounds and is commonly used for energy production. Methods for enhancement of biogas production include application of magnetizers on the digester to induce static magnetic field (SMF). The study aimed at investigation of Bacteria and Archaea communities during anaerobic digestion of model dairy wastewater exposed to SMF. Magnetic field caused a significant increase in methane production to 373.2 mL/g VS compared to 200.2 mL/g VS in a control reactor and methane content to 56.8% compared to 49.1% in a control reactor. In both reactors, the biomass was dominated by Trichococcus sp. The relative abundance of lactic acid bacteria was of about 10% higher in the reactor exposed to SMF. This higher number of Lactobacillales resulted from a higher acetate production, which additionally caused enhanced growth of Methanosarcinacaea in the reactor exposed to SMF. SMF also stimulated the growth of hydrogenotrophic methanogens.
Collapse
Affiliation(s)
- Marcin Zieliński
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska 117, 10-720 Olsztyn, Poland
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Paulina Rusanowska
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska 117, 10-720 Olsztyn, Poland.
| | - Marcin Dębowski
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska 117, 10-720 Olsztyn, Poland
| |
Collapse
|
13
|
Hu B, Wang Y, Quan J, Huang K, Gu X, Zhu J, Yan Y, Wu P, Yang L, Zhao J. Effects of static magnetic field on the performances of anoxic/oxic sequencing batch reactor. BIORESOURCE TECHNOLOGY 2020; 309:123299. [PMID: 32289656 DOI: 10.1016/j.biortech.2020.123299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Two anoxic/oxic (A/O) sequencing batch reactor (SBR) processes were utilized to study the effects of static magnetic field (SMF) on biological wastewater treatment process. Except for conventional indices, the reduced nicotinamide adenine dinucleotide (NADH)/oxidized nicotinamide adenine dinucleotide (NAD+) ratio and electron transport system activity (ETSA), as well as poly-beta-hydroxybutyrate (PHB) and extracellular polymetric substance (EPS) contents in two reactors which were with and without SMF under two cyclic times (12 h and 8 h) were monitored. When the process was enhanced by SMF, the total nitrogen removal efficiency can be improved (>80%), and the NADN/NAD+ ratio, ESTA, the maximum EPS content and the maximum PHB content in the reactor with SMF were higher. Besides, SMF can reduce the microorganism community diversity and make species distribute more even and abundant. SMF can promote the performance of A/O SBR process via improving electron transport and microbial community.
Collapse
Affiliation(s)
- Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China.
| | - Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Jianing Quan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Kun Huang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Jitao Zhu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Yi Yan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; School of Water and Environment, Chang' an University, Xi'an, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, China
| |
Collapse
|
14
|
Xu D, Ji H, Ren H, Geng J, Li K, Xu K. Inhibition effect of magnetic field on nitrous oxide emission from sequencing batch reactor treating domestic wastewater at low temperature. J Environ Sci (China) 2020; 87:205-212. [PMID: 31791493 DOI: 10.1016/j.jes.2019.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
This study aims to investigate the effect of a magnetic field on nitrous oxide (N2O) emission from a sequencing batch reactor treating low-strength domestic wastewater at low temperature (10°C). After running for 124 days in parallel, results indicated that the conversion rate of N2O for a magnetic field-sequencing batch reactor (MF-SBR) decreased by 34.3% compared to that of a conventional SBR (C-SBR). Meanwhile, the removal efficiencies for total nitrogen (TN) and ammonia nitrogen (NH4-N) of the MF-SBR were 22.4% and 39.5% higher than those of the C-SBR. High-throughput sequencing revealed that the abundances of AOB (Nitrosomonas), NOB (Nitrospira) and denitrifiers (Zoogloea), which could reduce N2O to N2, were promoted significantly in the MF-SBR. Enzyme activities (Nir) and gene abundances (nosZ nirS and nirK) for denitrification in the MF-SBR were also notably higher compared to C-SBR. Our study shows that application of a magnetic field is a useful approach for inhibiting the generation of N2O and promoting the nitrogen removal efficiency by affecting the microbial characteristics of sludge in an SBR treating domestic wastewater at low temperature.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongmin Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Gu S, Lian F, Yan K, Zhang W. Application of polymeric ferric sulfate combined with cross-frequency magnetic field in the printing and dyeing wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1562-1570. [PMID: 31961818 DOI: 10.2166/wst.2019.401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymeric ferric sulfate (PFS) was pretreated with a self-made alternating frequency magnetic field for coagulation printing and dyeing (PD) wastewater treatment. The effects of PFS dosage, magnetization intensity, frequency, and time on the removal of chemical oxygen demand (COD), color and turbidity of PD wastewater were investigated. The results indicated that the magnetized PFS significantly improved the removal efficiency in wastewater treatment. When the initial COD, color and turbidity of printing and dyeing wastewater was 464 mg/L, 180 degrees, and 54.8 NTU respectively, the maximum removal rate of COD, color and turbidity was 87.9%, 80.1%, and 95.2% respectively, under the condition of cross frequency magnetic field magnetization PFS. Moreover, the PFS treatment combined with cross-frequency magnetic field could greatly reduce the pollution of iron ions released from iron-based coagulant during wastewater treatment. Characterization of magnetized PFS flocculant by fourier transform infrared spectroscopy, ultraviolet and visible spectrophotometry, and scanning electron microscopy suggested that magnetic crystal with larger size can be formed on the surface of PFS particles.
Collapse
Affiliation(s)
- Shiguo Gu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China E-mail:
| | - Fei Lian
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China E-mail:
| | - Kejun Yan
- Yancheng Institute of Technology, Yancheng 224051, China
| | - Wei Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China E-mail:
| |
Collapse
|
16
|
Jia W, Zhang J, Lu Y, Li G, Yang W, Wang Q. Response of nitrite accumulation and microbial characteristics to low-intensity static magnetic field during partial nitrification. BIORESOURCE TECHNOLOGY 2018; 259:214-220. [PMID: 29558719 DOI: 10.1016/j.biortech.2018.03.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Static magnetic field (SMF) with the intensity of 15 mT was applied during partial nitrification (PN) process to evaluate the impacts on nitrogen transformation and microbial characteristics. Results showed that the startup period of PN process at ambient temperature was markedly shortened by SMF, and the nitrite accumulation increased by 18% due to SMF exposure. The ammonia oxidizing bacteria (AOB) amoA gene copy numbers in the reactor with SMF exposure were 40% higher than that without SMF exposure, indicating the AOB abundance was enriched by SMF exposure. The characteristics of extracellular polymeric substances (EPS) changed accordingly. The extracellular protein increased by 30% due to SMF exposure, and it favored the aggregation of sludge flocs. The activated sludge with SMF exposure had a more compact structure, which was in favor of partial nitrification.
Collapse
Affiliation(s)
- Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yumiao Lu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangchao Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
17
|
Chibowski E, Szcześ A. Magnetic water treatment-A review of the latest approaches. CHEMOSPHERE 2018; 203:54-67. [PMID: 29605749 DOI: 10.1016/j.chemosphere.2018.03.160] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/22/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Understanding of magnetic field (MF) effects observed during and after its action on water and aqueous solutions is still a controversial issue although the effects have been reported for at least half of century. The purpose of this paper was a brief review of the literature which deals with the magnetic force treatment effects. However, it is especially focused on the latest approaches, published mostly in the last decade which have developed our understanding of the mechanisms accompanying the field action. Generally, the changes in water structure via hydrogen bonding changes, as well as in intraclusters and between interclusters were taken into account, but the most remarkable progress was achieved in 2012 by Coey who applied the non-classical theory of nucleation mechanism of the formation of dynamically ordered liquid like oxyanion polymers (DOLLOP) to explain the magnetic field action. His criterion for the magnetic field effect to occur was experimentally verified. It was also proved that the gradient of the magnetic field is more important than the magnetic field strength itself. Some interesting approaches explaining an enhanced evaporation rate of water by MF are also discussed. More experimental results are needed for further verification of the DOLLOP theory to achieve a more profound understanding of the MF effects.
Collapse
Affiliation(s)
- Emil Chibowski
- Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| | - Aleksandra Szcześ
- Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| |
Collapse
|
18
|
Zieliński M, Rusanowska P, Dębowski M, Hajduk A. Influence of static magnetic field on sludge properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:738-742. [PMID: 29306162 DOI: 10.1016/j.scitotenv.2017.12.226] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 05/15/2023]
Affiliation(s)
- Marcin Zieliński
- University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska St. 117A, 11-041 Olsztyn, Poland
| | - Paulina Rusanowska
- University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska St. 117A, 11-041 Olsztyn, Poland
| | - Marcin Dębowski
- University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska St. 117A, 11-041 Olsztyn, Poland.
| | - Anna Hajduk
- University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska St. 117A, 11-041 Olsztyn, Poland
| |
Collapse
|