1
|
Show S, Akhter R, Paul I, Das P, Bal M, Bhattacharya R, Bose D, Mondal A, Saha S, Halder G. Efficacy of exopolysaccharide in dye-laden wastewater treatment: A comprehensive review. CHEMOSPHERE 2024; 355:141753. [PMID: 38531498 DOI: 10.1016/j.chemosphere.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
The discharge of dye-laden wastewater into the water streams causes severe water and soil pollution, which poses a global threat to aquatic ecosystems and humans. A diverse array of microorganisms such as bacteria, fungi, and algae produce exopolysaccharides (EPS) of different compositions and exhibit great bioflocculation potency to sustainably eradicate dyes from water bodies. Nanomodified chemical composites of EPS enable their recyclability during dye-laden wastewater treatment. Nevertheless, the selection of potent EPS-producing strains and physiological parameters of microbial growth and the remediation process could influence the removal efficiency of EPS. This review will intrinsically discuss the fundamental importance of EPS from diverse microbial origins and their nanomodified chemical composites, the mechanisms in EPS-mediated bioremediation of dyes, and the parametric influences on EPS-mediated dye removal through sorption/bioflocculation. This review will pave the way for designing and adopting futuristic green and sustainable EPS-based bioremediation strategies for dye-laden wastewater in situ and ex situ.
Collapse
Affiliation(s)
- Sumona Show
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Ramisa Akhter
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Riya Bhattacharya
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Debajyoti Bose
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Amita Mondal
- Department of Chemistry, Vedanta College, Kolkata, 700054, West Bengal, India
| | - Shouvik Saha
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India.
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
2
|
Yang L, Chen Z, Zhang Y, Lu F, Liu Y, Cao M, He N. Hyperproduction of extracellular polymeric substance in Pseudomonas fluorescens for efficient chromium (VI) absorption. BIORESOUR BIOPROCESS 2023; 10:17. [PMID: 38647825 PMCID: PMC10992911 DOI: 10.1186/s40643-023-00638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 04/25/2024] Open
Abstract
A novel extracellular polymeric substance (EPS) with flocculating activity produced by Pseudomonas fluorescein isolated from soil was studied in this paper. Firstly, atmospheric and room temperature plasma (ARTP) was applied to get a mutant of P. fluorescein with higher EPS production. A mutant T4-2 exhibited a 106.48% increase in flocculating activity compared to the original strain. The maximum EPS yield from T4-2 was enhanced up to 6.42 g/L, nearly 10 times higher than the original strain on a 3.6-L bioreactor with optimized fermentation conditions. Moreover, the flocculating activity of the mutant reached 3023.4 U/mL, 10.96-fold higher than that of T4. Further identification showed that EPS from mutant T4-2 was mainly composed of polysaccharide (76.67%) and protein (15.8%) with a molecular weight of 1.17 × 105 Da. The EPS showed excellent adsorption capacities of 80.13 mg/g for chromium (VI), which was much higher than many reported adsorbents such as chitosan and cellulose. The adsorption results were described by Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic parameters (ΔG0, ΔH0 and ΔS0) revealed that the adsorption process was spontaneous and exothermic. Adsorption mechanisms were speculated to be electrostatic interaction, reduction, and chelation.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Ying Zhang
- Shandong Institute of Commerce and Technology, Jinan, 251000, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
3
|
Bioflocculant produced by Bacillus velezensis and its potential application in brewery wastewater treatment. Sci Rep 2022; 12:10945. [PMID: 35768624 PMCID: PMC9243052 DOI: 10.1038/s41598-022-15193-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
This study was designed to evaluate the potential of bioflocculant producing strains isolated from wastewater sludge. According to the Plackett–Burman design, the response surface revealed glucose, magnesium sulfate, and ammonium sulfate as critical media components of the nutritional source, whereas the central composite design affirmed an optimum concentration of the critical nutritional source as 16.0 g/l (glucose), 3.5 g/l magnesium sulfate heptahydrate (MgSO4.7H2O), and 1.6 g/l ammonium sulfate ( (NH4)2SO4), yielding an optimal flocculation activity of 96.8%. Fourier Transformer Infrared Spectroscopy (FTIR) analysis confirmed the presence of hydroxyl, carboxyl and methoxyl in the structure of the bioflocculant. Additionally, chemical analysis affirmed the presence of mainly a polysaccharide in the main backbone of the purified bioflocculant with no detection of protein. Energy Dispersive X-ray analysis affirmed the presence of chlorine, phosphorous, oxygen and chlorine as representatives of elemental composition. Thermogravimetric (TGA) analysis revealed over 60% weight was retained at a temperature range of 700 °C. The purified bioflocculant remarkably removed chemical oxygen demand, biological oxygen demand and turbidity in brewery wastewater. This study suggested that the bioflocculant might be an alternate candidate for wastewater treatment.
Collapse
|
4
|
Using a novel polysaccharide BM2 produced by Bacillus megaterium strain PL8 as an efficient bioflocculant for wastewater treatment. Int J Biol Macromol 2020; 162:374-384. [DOI: 10.1016/j.ijbiomac.2020.06.167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
|
5
|
Evaluation of Fresh Water Actinomycete Bioflocculant and Its Biotechnological Applications in Wastewaters Treatment and Removal of Heavy Metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183337. [PMID: 31510036 PMCID: PMC6765771 DOI: 10.3390/ijerph16183337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 11/28/2022]
Abstract
This study evaluated the potential of a biopolymeric flocculant produced by Terrabacter sp. isolated from Sterkfontein Dam, South Africa. Microbial flocculants aid the aggregation of suspended solutes in solutions, thus, suggesting its alternative application to inorganic and synthetic organic flocculants, which are associated with health-related problems. The 16S rDNA analysis revealed the bacteria to have 98% similarity to Terrabacter sp. MUSC78T and the sequence was deposited in the Genbank as Terrabacter sp. with accession number KF682157.1. A series of experimental parameters such as bioflocculant dosage, cations concentrations, pH, and application of the purified bioflocculant in wastewaters treatment were investigated. In the presence of glucose as a sole carbon source, Ca2+ as cation at pH 8, the optimal flocculating activity attained was 85%. Optimum bioflocculant dosage of 0.5 mg/mL was able to remove chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solids (SS), nitrate, and turbidity in dairy wastewater. In addition, the tested bioflocculant exhibited higher flocculating efficiency as compared to polyaluminum chloride, polyethylenime, and alum. Inductible coupled plasma optical emission spectroscopy (ICP-OES) analyses confirmed significant removal of 77.7% Fe, 74.8% Al, 61.9% Mn, and 57.6% Zn as representatives of heavy metals from treated dairy wastewater. Fourier transform infrared spectroscopy (FTIR) indicated the presence of carboxyl, hydroxyl, and amino groups in the purified bioflocculant which could be responsible for flocculation. Findings from this study showed the prospect of the studied bioflocculant as an alternative candidate in wastewater treatment and remediating of heavy metals.
Collapse
|
6
|
Culture optimization for production and characterization of bioflocculant by Aspergillus flavus grown on chicken viscera hydrolysate. World J Microbiol Biotechnol 2019; 35:121. [DOI: 10.1007/s11274-019-2696-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
7
|
Wang L, Yu T, Ma F, Vitus T, Bai S, Yang J. Novel self-immobilized biomass mixture based on mycelium pellets for wastewater treatment: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:93-100. [PMID: 30735302 DOI: 10.1002/wer.1026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Mycelial pellets, as a novel biomass material, can adsorb pollutants as a biosorbent, or combine other substances and organisms to form self-immobilized biomixture (SIB) to remove pollutants from wastewater. The pellets are eco-friendly, have a good self-immobilization capacity, and are easy to filter. In addition, some mycelial fungi can remove the pollutants in water through biodegradation. This study reviewed biomixture based on mycelial pellets and the two ways, through which SIB remove pollutants in water: pure pellets and the pellets with other materials. The characteristics and functions of each part of SIB were discussed. The study also highlighted the shortcomings of the technology and provided recommendations for further development of this technology.
Collapse
Affiliation(s)
- Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Tianmiao Yu
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Tankpa Vitus
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Shanshan Bai
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jixian Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
8
|
Lasiosan, a new exopolysaccharide from Lasiodiplodia sp. strain B2 (MTCC 6000): Structural characterization and biological evaluation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Agunbiade MO, Van Heerden E, Pohl CH, Ashafa AT. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol 2017; 17:51. [PMID: 28606076 PMCID: PMC5469021 DOI: 10.1186/s12896-017-0375-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 11/14/2022] Open
Abstract
Background The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. Results Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. Conclusions The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.
Collapse
Affiliation(s)
- Mayowa Oladele Agunbiade
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjabha, 9866, South Africa. .,Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa.
| | - Esta Van Heerden
- Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Anofi Tom Ashafa
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjabha, 9866, South Africa
| |
Collapse
|
10
|
Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI. Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 2016; 5:177-211. [PMID: 26914994 PMCID: PMC4831466 DOI: 10.1002/mbo3.334] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up‐to‐date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation‐independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Stanley A Okoli
- GenØK - Centre for Biosafety, Science Park, University of Tromsø, Tromsø, 9291, Norway
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
11
|
Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. ENVIRONMENTAL TECHNOLOGY 2016; 37:1829-1842. [PMID: 26797258 DOI: 10.1080/09593330.2015.1133717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study assessed the bioflocculant (named MBF-W7) production potential of a bacterial isolate obtained from Algoa Bay, Eastern Cape Province of South Africa. The 16S ribosomal deoxyribonucleic acids gene sequence analysis showed 98% sequence similarity to Bacillus licheniformis strain W7. Optimum culture conditions for MBF-W7 production include 5% (v/v) inoculum size, maltose and NH4NO3 as carbon and nitrogen sources of choice, medium pH of 6 as the initial pH of the growth medium. Under these optimal conditions, maximum flocculating activity of 94.9% was attained after 72 h of cultivation. Chemical composition analyses showed that the purified MBF-W7 was a glycoprotein which was predominantly composed of polysaccharides 73.7% (w/w) and protein 6.2% (w/w). Fourier transform infrared spectroscopy revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups identified in the bioflocculant molecules. Thermogravimetric analyses showed the thermal decomposition profile of MBF-W7. Scanning electron microscopy imaging revealed that bridging played an important role in flocculation. MBF-W7 exhibited excellent flocculating activity for kaolin clay suspension at 0.2 mg/ml over a wide pH range of 3-11; with the maximal flocculation rate of 85.8% observed at pH 3 in the presence of Mn(2+). It maintained and retained high flocculating activity of over 70% after heating at 100°C for 60 min. MBF-W7 showed good turbidity removal potential (86.9%) and chemical oxygen demand reduction efficiency (75.3%) in Tyume River. The high flocculating rate of MBF-W7 makes it an attractive candidate to replace chemical flocculants utilized in water treatment.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Uchechukwu U Nwodo
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Leonard V Mabinya
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Arinze S Okoli
- c GenØK Centre for Biosafety , Forskningsparken i Breivika , Tromsø , Norway
| | - Anthony I Okoh
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| |
Collapse
|
12
|
Karthiga devi K, Natarajan K. Production and characterization of bioflocculants for mineral processing applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.minpro.2015.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Wang Z, Shen L, Zhuang X, Shi J, Wang Y, He N, Chang YI. Flocculation Characterization of a Bioflocculant from Bacillus licheniformis. Ind Eng Chem Res 2015. [DOI: 10.1021/ie5050204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi Wang
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Liang Shen
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Xiaoling Zhuang
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jiangshui Shi
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuanpeng Wang
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Ning He
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - You-Im Chang
- Department
of Chemical and Material Engineering, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
14
|
Medium Optimization to Improve the Flocculation Rate of a Novel Compound Bioflocculant, CBF-256, Using Response Surface Methodology and Flocculation Characters. Biosci Biotechnol Biochem 2014; 77:2242-7. [DOI: 10.1271/bbb.130479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Surendhiran D, Vijay M. Exploration on bioflocculation of Nannochloropsis oculata using response surface methodology for biodiesel production. ScientificWorldJournal 2014; 2014:202659. [PMID: 24683320 PMCID: PMC3933552 DOI: 10.1155/2014/202659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022] Open
Abstract
Harvesting of algal biomass in biodiesel production involves high energy input and cost incurred process. In order to overcome these problems, bioflocculation process was employed and the efficiency of this process was further improved by the addition of a cationic inducer. In this work marine Bacillus subtilis was used for bioflocculation of Nannochloropsis oculata and ZnCl2 as cationic inducer. This study worked under the principle of divalent cationic bridging (DCB) theory. Under temperature stress and high pH, the bacterium produced exopolysaccharide that bound with microalga Nannochloropsis oculata and flocculated them. A maximum efficiency of 95.43% was observed with the optimised RSM parameters-temperature 30.78°C, pH 10.8, flocculation time 6.7 h, bioflocculant size 0.38 mL, and cationic inducer concentration 0.035 mM. The present investigation focused on the cost effective harvesting of microalga on a larger scale for biodiesel production than using toxic, ecofriendly chemical flocculants.
Collapse
Affiliation(s)
- Duraiarasan Surendhiran
- Bioelectrochemical Laboratory, Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Mani Vijay
- Bioelectrochemical Laboratory, Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| |
Collapse
|
16
|
Kumar CG, Sujitha P. Kocuran, an exopolysaccharide isolated from Kocuria rosea strain BS-1 and evaluation of its in vitro immunosuppression activities. Enzyme Microb Technol 2013; 55:113-20. [PMID: 24411453 DOI: 10.1016/j.enzmictec.2013.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
Abstract
In an ongoing survey for bioactive potential of microorganisms from different biosphere zones of India, a promising Kocuria rosea strain BS-1 was identified which produced an exopolysaccharide (designated as Kocuran) exhibiting in vitro antioxidant and immunosuppression properties. Kocuran was characterized as a heteropolysaccharide with repeating monosaccharide residues of glucose, galactose, mannose and glucuronic acid with an average molecular mass of 51.2 kDa. In RAW 264.7 macrophages, Kocuran significantly downregulated the LPS-stimulated ROS, NO, TNF-α, IL-6 and C3 complement component secretion to 4.71±0.08%, 4.11±0.06%, 11.19±0.06 pg ml⁻¹, 9.12±0.07 pg ml⁻¹ and 20.81±0.06 ng/10⁶ cells ml⁻¹, respectively. Furthermore, it inhibited the PHA-stimulated proliferation of human peripheral blood mononuclear cells with IC₅₀ of 100.13±2.1 μg ml⁻¹. In addition, the classical and alternative pathway mediated hemolysis was also inhibited with CH₅₀ and AH₅₀ of 100.96±1.75 and 98.60±1.93 μg ml⁻¹, respectively. Kocuran did not inhibit the LPS-induced LAL enzyme and the binding of FITC-LPS to macrophages suggesting that Kocuran does not neutralize the LPS activity. These results demonstrate the in vitro suppression of activation and macrophage-derived inflammatory cytokines and complement mediated hemolysis indicating its in vitro immunosuppression activity.
Collapse
Affiliation(s)
- C Ganesh Kumar
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| | - Pombala Sujitha
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
17
|
Cosa S, Ugbenyen AM, Mabinya LV, Rumbold K, Okoh AI. Characterization and flocculation efficiency of a bioflocculant produced by a marine Halobacillus. ENVIRONMENTAL TECHNOLOGY 2013; 34:2671-2679. [PMID: 24527629 DOI: 10.1080/09593330.2013.786104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We reported earlier on the bioflocculant production potential of Halobacillus sp. Mvuyo, a marine bacteria isolated from Algoa Bay sediment samples. In this paper we report on the detailed characterization of the purified bioflocculant composed of polysaccharide and protein. The optimum dose of the purified bioflocculant for the clarification of 4 g l(-1) kaolin clay suspension was 0.2 mg ml(-1) at neutral pH. Scanning electron micrograph (SEM) revealed the bioflocculant to have an amorphous structure. The Fourier transform infrared (FTIR) spectrum exhibited the presence of hydroxyl, carboxyl and amino groups in its structure. The bioflocculant was thermostable with relative bioflocculant activity residue of 74.4% after heat treatment at 100 degrees C. Moreover thermogravimetric analysis (TGA) exhibited a degradation temperature (Td) of - 140 degrees C. The flocculation efficiency of the bioflocculant was 86.2% compared with 82.6%, 74.5% and 70.9% for polyethylimine, ferric chloride and alum, respectively. This bioflocculant has immense promise as a substitute to inorganic and synthetic flocculants in view of their hazard implications.
Collapse
Affiliation(s)
- Sekelwa Cosa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony M Ugbenyen
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Leonard V Mabinya
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Karl Rumbold
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
18
|
Luvuyo N, Nwodo UU, Mabinya LV, Okoh AI. Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor. BMC Biotechnol 2013; 13:62. [PMID: 23915393 PMCID: PMC3750929 DOI: 10.1186/1472-6750-13-62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/25/2013] [Indexed: 12/03/2022] Open
Abstract
Background Bioflocculants effect the aggregation of suspended solutes in solutions thus, a viable alternative to inorganic poly-ionic and synthetic organic flocculants which are associated with deleterious health problems. Consequently, a consortium of two bacteria species were evaluated for optimized bioflocculant yield following the inadequacies of axenic cultures. Results 16S rDNA nucleotide sequencing and BLAST analysis of nucleotide sequences were used to identify the bacterial species, carbon and nitrogen sources optimally supporting bioflocculant production were assessed and the purified bioflocculant characterized. Nucleotide sequences showed 97% and 96% similarity to Methylobacterium sp. AKB-2008-KU9 and Methylobacterium sp. strain 440. The second isolate, likewise, showed 98% similarity to Actinobacterium OR-221. The sequences were deposited in GenBank as Methylobacterium sp. Obi [accession number HQ537130] and Actinobacterium sp. Mayor [accession number JF799090]. Flocculating activity of 95% was obtained in the presence of Ca2+ and heat-stability was exhibited with retention of above 70% activity at 100°C in 30 min. In addition, bioflocculant yield was about 8.203 g/l. A dose of 1 mg/ml of purified bioflocculant was optimal for the clarification of Kaolin suspension (100 ml) following Jar test. FTIR spectrum revealed the presence of carboxyl and hydroxyl functional groups amongst others. Conclusions The mixed culture produced bioflocculant with high flocculating activity and an improved yield. The efficiency observed with jar test may imply industrial applicability.
Collapse
|
19
|
Jindal N, Pal Singh D, Singh Khattar J. Optimization, characterization, and flow properties of exopolysaccharides produced by the cyanobacteriumLyngbya stagnina. J Basic Microbiol 2013; 53:902-12. [DOI: 10.1002/jobm.201200201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/25/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Namita Jindal
- Department of Botany; Punjabi University; Patiala India
| | | | | |
Collapse
|
20
|
Sajna KV, Sukumaran RK, Gottumukkala LD, Jayamurthy H, Dhar KS, Pandey A. Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. Int J Biol Macromol 2013; 59:84-9. [PMID: 23597707 DOI: 10.1016/j.ijbiomac.2013.04.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/09/2013] [Accepted: 04/09/2013] [Indexed: 11/27/2022]
Abstract
The aim of this work was to study the production of exopolysaccharide (EPS) from a novel ustilaginomycetes yeast strain Pseudozyma sp. NII 08165. The culture produced 3.5g/l EPS on fourth day of fermentation in a glucose-based medium. The structural characterization revealed that the EPS was a polymer of glucose, galactose and mannose in the ratio of 2.4:5.0:2.6 with a molecular weight of 1.7MDa. The pseudoplastic behaviour of aqueous EPS with a thermal stability up to 220°C indicated its potential utility as a thickening or gelling agent in food industry. SEM studies of the EPS showed that it had compact film-like structure, which could make it a useful in preparing plasticized films. The AFM studies showed that EPS had spike-shaped microstructure. Physical properties of the exopolysaccharide determined further indicated its possible potential in different industrial applications.
Collapse
Affiliation(s)
- Kuttuvan Valappil Sajna
- Biotechnology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, India
| | | | | | | | | | | |
Collapse
|
21
|
Distribution of chitin/chitosan-like bioflocculant-producing potential in the genus Citrobacter. Appl Microbiol Biotechnol 2013; 97:9569-77. [PMID: 23321910 DOI: 10.1007/s00253-012-4668-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Some strains belonging to the genera Citrobacter and Enterobacter have been reported to produce chitin/chitosan-like bioflocculants (BFs) from acetate. In this study, to investigate the distribution of the BF-producing potential in the genus Citrobacter and to screen stably and highly BF-producing strains, we obtained 36 Citrobacter strains from different culture collection centers, which were distributed among seven species in the genus, and tested for the flocculating activities of their culture supernatants using a kaolin suspension method. As a result, 21 strains belonging to C. freundii (17 strains in 23 strains tested), C. braakii (two in two), C. youngae (one in one), and C. werkmanii (one in two) showed flocculating activity, but this ability was limited to cells grown on acetate. Gas chromatography/mass spectrometry (GC/MS) analysis of the hydrolysates from the BFs of five selected strains indicated that they consisted of glucosamine and/or N-acetylglucosamine, such as the chitin/chitosan-like BF (BF04) produced by Citrobacter sp. TKF04 (Fujita et al. J Biosci Bioeng 89: 40-46, 2000). Gel filtration chromatography using a high-performance liquid chromatography system revealed that the molecular weight ranges of these BFs varied, but the average sizes were all above 1.66 × 10⁶Da.
Collapse
|
22
|
Kumar CG, Mamidyala SK, Sujitha P, Muluka H, Akkenapally S. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants fromPseudomonas aeruginosaBS-161R. Biotechnol Prog 2012; 28:1507-16. [DOI: 10.1002/btpr.1634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/23/2012] [Indexed: 01/08/2023]
|
23
|
Assessment of bioflocculant production by Bacillus sp. Gilbert, a marine bacterium isolated from the bottom sediment of Algoa Bay. Mar Drugs 2011; 9:1232-1242. [PMID: 21822413 PMCID: PMC3148500 DOI: 10.3390/md9071232] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022] Open
Abstract
The bioflocculant-producing potentials of a marine bacteria isolated from the bottom sediment of Algoa Bay was investigated using standard methods. The 16S rDNA sequence analysis revealed 98% similarity to that of Bacillus sp. HXG-C1 and the nucleotide sequence was deposited in GenBank as Bacillus sp. Gilbert with accession number HQ537128. Bioflocculant was optimally produced when sucrose (72% flocculating activity) and ammonium chloride (91% flocculating activity) were used as sole sources of carbon and nitrogen, respectively; an initial pH 6.2 of the production medium; and Mg2+ as cation. Chemical analysis of the purified bioflocculant revealed the compound to be a polysaccharide.
Collapse
|
24
|
Flocculating Properties of the Novel Bioflocculant Poly(γ-Glutamic Acid) and its Use in Jean Dyeing Wastewater Treatment. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.183-185.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied a novel bioflocculant poly(γ-glutamic acid) (PGA). With the addition of 4mg/L PGA (Mw=9×105Da) and 12 Mm CaCl2, the optimal temperature for flocculation performance of PGA in the kaolin suspension was about 30°C, giving the highest flocculating activity of 98%, respectively. Studies of the flocculating properties revealed that it was stable at 30-90°C and pH 7-11. With treatment of jean dyeing wastewater flocculation, PGA showed that the color, COD, NH3-N, alkalinity and hardness removal ratios were 90%, 91.7%, 73.3%, 65 % and 86 %, respectively. Bioflocculant PGA may find possible application as an alternative for textile dyeing industry and environmental bioremediation.
Collapse
|
25
|
Sam S, Kucukasik F, Yenigun O, Nicolaus B, Oner ET, Yukselen MA. Flocculating performances of exopolysaccharides produced by a halophilic bacterial strain cultivated on agro-industrial waste. BIORESOURCE TECHNOLOGY 2011; 102:1788-1794. [PMID: 20970999 DOI: 10.1016/j.biortech.2010.09.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 09/05/2010] [Accepted: 09/06/2010] [Indexed: 05/30/2023]
Abstract
This study reports the first systematic investigation of the flocculation dynamics of exopolysaccharides (EPSs) produced by a halophilic bacterial strain grown on pretreated molasses as fermentation substrate. The potential use of these EPSs as an easily biodegradable, natural alternative for synthetic polyelectrolytes which are widely used and contain toxic and carcinogenic monomers was investigated. Flocculating activities of the EPS samples in synthetic water, synthetic sea water and natural sea water media which were used as model raw waters were monitored via the Photometric Dispersion Analyser (PDA 2000) instrument and removals were determined by measuring residual turbidities. One of the six EPS specimens, which formed the largest flocs thus performed highest turbidity removal, exhibited flocculation performance and particle removal efficiency comparable with commercial cationic, nonionic and anionic synthetic polyelectrolytes.
Collapse
Affiliation(s)
- Serdar Sam
- Marmara University, Department of Environmental Engineering, 34722 Kadikoy, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
26
|
Patil SV, Patil CD, Salunke BK, Salunkhe RB, Bathe GA, Patil DM. Studies on Characterization of Bioflocculant Exopolysaccharide of Azotobacter indicus and Its Potential for Wastewater Treatment. Appl Biochem Biotechnol 2010; 163:463-72. [DOI: 10.1007/s12010-010-9054-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 08/02/2010] [Indexed: 11/29/2022]
|
27
|
Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl Environ Microbiol 2010; 76:2778-82. [PMID: 20208025 DOI: 10.1128/aem.02558-09] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A bacterium producing an extracellular bioflocculant was isolated from contaminated LB medium and identified as Bacillus licheniformis by 16S rRNA gene sequencing and its biochemical/physiological characteristics. The optimum culture conditions for flocculant production were an initial medium pH of 7.2 and an inoculum size of 4% (vol/vol). The maximum flocculating activity (700 U/ml) was obtained after cultivation at 37 degrees C for 48 h. Chemical analyses of the purified bioflocculant revealed that it was a proteoglycan composed of 89% carbohydrate and 11% protein (wt/wt). The mass ratio of neutral sugar, amino sugar, and uronic acid was measured at 7.9:4:1. Infrared spectrometry further indicated the presence of carboxyl, hydroxyl, and amino groups, typical of heteropolysaccharide. The average mass of the bioflocculant was calculated to be 1.76 x 10(6) Da. Scanning electron microscopy (SEM) images of the bioflocculant showed an irregular structure with netted texture. Its efficient flocculation capabilities suggest potential applications in industry.
Collapse
|
28
|
Characteristics and flocculating mechanism of a novel bioflocculant HBF-3 produced by deep-sea bacterium mutant Halomonas sp. V3a’. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0281-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Bioflocculant exopolysaccharide production by Azotobacter indicus using flower extract of Madhuca latifolia L. Appl Biochem Biotechnol 2009; 162:1095-108. [PMID: 19921493 DOI: 10.1007/s12010-009-8820-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/11/2009] [Indexed: 10/20/2022]
Abstract
Efficacy of Azotobacter indicus ATCC 9540 strain for production exopolysaccharide (EPS) bioflocculant was investigated. Mahua flower extract (Madhuca latifolia L), a natural substrate at the concentration of 20 g L(-1), gave maximum recovery of EPS followed by sucrose and mannitol as compared to other carbon sources after 172 h. Yeast extract was found to be the most effective nitrogen source as compared to beef extract, sodium nitrate, ammonium sulfate, casein hydrolysate, and urea for the production of EPS. EPS production was increased in presence of nitrogen (5.51 g L(-1)) as compared to nitrogen-free medium (3.51 g L(-1)), and fermentation time was also reduced by 28 h. Maximum EPS production (6.10 g L(-1)) was found in the presence of 20 g L(-1) flower extract and 0.5 g L(-1) yeast extract containing Ashby's media with 180 rpm at 30 degrees C at 144 h, under controlled conditions in 2.5 L fermenter using optimized medium. The isolated EPS showed cation-dependent flocculating activity. Concentration of EPS played an important role in bioflocculating activity which increased in a concentration-dependent manner up to a certain limit, with the maximum flocculation of 72% at 500 mg L(-1) concentration but remained almost static after this concentration. Extracted polymer was characterized by different chemical tests, FT-IR spectroscopy, and TLC which showed presence of uronic acids, O-acetyl groups, and Orcinol with suggestive indication of alginate like polymer. This study suggests that use of M. latifolia L. flowers can be a potential alternative bioresource for production of exopolysaccharide.
Collapse
|
30
|
Ojeda JJ, Romero-González ME, Banwart SA. Analysis of Bacteria on Steel Surfaces Using Reflectance Micro-Fourier Transform Infrared Spectroscopy. Anal Chem 2009; 81:6467-73. [DOI: 10.1021/ac900841c] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús J. Ojeda
- Cell-Mineral Research Center, Kroto Research Institute, The University of Sheffield, Broad Lane, Sheffield S3 7HQ, U.K
| | - María E. Romero-González
- Cell-Mineral Research Center, Kroto Research Institute, The University of Sheffield, Broad Lane, Sheffield S3 7HQ, U.K
| | - Steven A. Banwart
- Cell-Mineral Research Center, Kroto Research Institute, The University of Sheffield, Broad Lane, Sheffield S3 7HQ, U.K
| |
Collapse
|
31
|
Zheng Y, Ye ZL, Fang XL, Li YH, Cai WM. Production and characteristics of a bioflocculant produced by Bacillus sp. F19. BIORESOURCE TECHNOLOGY 2008; 99:7686-91. [PMID: 18358717 DOI: 10.1016/j.biortech.2008.01.068] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 05/22/2023]
Abstract
A bioflocculant-producing bacterium isolated from soil was identified as Bacillus sp. and the bioflocculant produced was named MBFF19. Effects of physico-chemical conditions including pH, carbon sources and nitrogen sources on MBFF19 production were studied. Chemical analyses of the purified bioflocculant MBFF19 indicated that it was a sugar-protein derivative, composed of neutral sugar (3.6%, w/w), uronic acid (37.0%, w/w), amino sugars (0.5%, w/w) and protein (16.4%, w/w). The two neutral sugar components were mannose and glucose and the molar ratio was 1.2:1. Infrared spectrophotometry analysis revealed that MBFF19 contained carboxyl, hydroxyl and methoxyl groups in its structural. Flocculating properties of bioflocculant MBFF19 was examined using kaolin, activated carbon and fly coal suspension. Cation supplement had no positive effects on the flocculating activity whereas the presence of Fe3+ inhibited flocculation. Influences of pH and bioflocculant dosage on the flocculation were also examined.
Collapse
Affiliation(s)
- Yan Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
32
|
Wang SG, Gong WX, Liu XW, Tian L, Yue QY, Gao BY. Production of a novel bioflocculant by culture of Klebsiella mobilis using dairy wastewater. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.02.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Gao J, Bao HY, Xin MX, Liu YX, Li Q, Zhang YF. Characterization of a bioflocculant from a newly isolated Vagococcus sp. W31. J Zhejiang Univ Sci B 2006; 7:186-92. [PMID: 16502504 PMCID: PMC1419059 DOI: 10.1631/jzus.2006.b0186] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Screening of microorganisms producing flocculating substances was carried out. A strain secreting a large amount of bioflocculant was isolated from wastewater samples collected from the Little Moon River in Beijing. Based on the morphological properties and 16S rDNA sequence analysis, the isolate (designated W31) was classified as Vagococcus sp. A bioflocculant (named MBFW31) produced by W31 was extracted from the culture broth by ethanol precipitation and purified by gel chromatography. MBFW31 was heat-stable and had strong flocculating activity in a wide range of pH with relatively low dosage requirement. MBFW31 was identified as a polysaccharide with molecular weight over 2 x 10(6). It contained neutral sugar and uronic acid as its major and minor components, respectively. Infrared spectra showed the presence of hydroxyl, carboxyl and methoxyl group in its molecules. The present results suggested that MBFW31 had potential application in wastewater treatment.
Collapse
Affiliation(s)
- Jie Gao
- School of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hua-Ying Bao
- School of Chemistry, Beijing Normal University, Beijing 100875, China
- †E-mail:
| | - Ming-Xiu Xin
- School of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yuan-Xia Liu
- School of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qian Li
- School of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yan-Fen Zhang
- School of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|