1
|
S. Hirao A, Kumata A, Takagi T, Sasaki Y, Shigihara T, Kimura E, Kaneko S. Japanese “nameko” mushrooms (<i>Pholiota microspora</i>) produced via sawdust-based cultivation exhibit severe genetic bottleneck associated with a single founder. MYCOSCIENCE 2022; 63:79-87. [PMID: 37089630 PMCID: PMC10012341 DOI: 10.47371/mycosci.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022]
Abstract
Pholiota microspora ("nameko" in Japanese) is one of the most common edible mushrooms, especially in Japan, where sawdust-based cultivation is the most dominant method accounting for 99% of the production. The current strains for sawdust cultivation in Japan are considered to have been derived from a single wild strain collected from Fukushima, Japan, implying that commercial nameko mushrooms are derived from a severe genetic bottleneck. We tested this single founder hypothesis by developing 14 microsatellite markers for P. microspora to evaluate the genetic diversity of 50 cultivars and 73 wild strains isolated from across Japan. Microsatellite analysis demonstrated that sawdust-cultivated strains from Japan were significantly less genetically diverse than the wild strains, and the former displayed a significant bottleneck signature. Analyzing the genetic relationships among all genotypes also revealed that the sawdust-cultivated samples clustered into one monophyletic subgroup. Moreover, the sawdust-cultivated samples in Japan were more closely related than full-sibs. These results were consistent with the single founder hypothesis that suggests that all commercial nameko mushrooms produced in Japan are descendants of a single ancestor. Therefore, we conclude that cultivated P. microspora originated from a single domestication event that substantially reduced the diversity of commercial nameko mushrooms in Japan.
Collapse
Affiliation(s)
- Akira S. Hirao
- Faculty of Symbiotic Systems Science, Fukushima University
| | | | | | | | | | | | - Shingo Kaneko
- Faculty of Symbiotic Systems Science, Fukushima University
| |
Collapse
|
2
|
Yu H, Zhang L, Shang X, Peng B, Li Y, Xiao S, Tan Q, Fu Y. Chromosomal genome and population genetic analyses to reveal genetic architecture, breeding history and genes related to cadmium accumulation in Lentinula edodes. BMC Genomics 2022; 23:120. [PMID: 35144543 PMCID: PMC8832684 DOI: 10.1186/s12864-022-08325-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lentinula edodes (Berk.) is the second most productive mushroom in the world. It contains compounds effective for antiviral, antitumor, antioxidant and immune regulation. Although genomes have previously been reported for this species, a high-quality chromosome-level reference for L. edodes is unavailable. This hinders detailed investigation of population genetics, breeding history of strains and genes related to environmental stress responses. RESULTS A high-quality chromosome-level genome was constructed. We separated a monokaryon from protoplasts of the commercial L. edodes strain L808 and assembled the genome of L. edodes using PacBio long-read and Illumina short-read sequencing, along with the high-throughput chromatin conformation capture (Hi-C) technique. We assembled a 45.87 Mb genome, and 99% of the sequences were anchored onto 10 chromosomes. The contig and scaffold N50 length were 2.17 and 4.94 Mb, respectively. Over 96% of the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) were identified, and 9853 protein-coding genes were predicted. We performed population genome resequencing using 34 wild strains and 65 commercial cultivars of L. edodes originating from China, Japan, the United States and Australia. Based on whole-genome variants, we showed substantial differences in the Chinese wild population, which divided into different branches according to the main areas of their geographical distribution. We also determined the breeding history of L. edodes at the molecular level, and demonstrated that the cultivated strains in China mainly originated from wild strains from China and Northeast Asia. Phenotypic analysis showed that 99 strains exhibited differences on the Cd accumulation. Three significant loci in the of L. edodes genome were identified using the genome-wide association study (GWAS) of Cd accumulation traits. Functional genes associated with Cd accumulation traits were related to DNA ligase and aminoacyl tRNA synthetase, indicating that DNA damage repair and in vivo protein translation may be responses to Cd stress. CONCLUSIONS A high-quality chromosome-level genome and population genetic data of L. edodes provide genetic resources for functional genomic, evolutionary and artificial breeding studies for L. edodes.
Collapse
Affiliation(s)
- Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China
| | - Bing Peng
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China
| | - Yu Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China
| | - Shijun Xiao
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China.
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing, 314000, China.
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, 201403, China.
| | - Yongping Fu
- Internationally Cooperative Research Center of China for New Germplasm Breading of Edible Mushroom, Jilin Agricultural University, Changchun, 130018, China.
| |
Collapse
|
3
|
Lin WR, Wang PH. The conservation strategy of a short lifespan and small genet fungus after thinning. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2021.126112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
An H, Lee HY, Shin H, Bang JH, Han S, Oh YL, Jang KY, Cho H, Hyun TK, Sung J, So YS, Jo IH, Chung JW. Evaluation of Genetic Diversity and Population Structure Analysis among Germplasm of Agaricus bisporus by SSR Markers. MYCOBIOLOGY 2021; 49:376-384. [PMID: 34512081 PMCID: PMC8409946 DOI: 10.1080/12298093.2021.1940746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Agaricus bisporus is a popular edible mushroom that is cultivated worldwide. Due to its secondary homothallic nature, cultivated A. bisporus strains have low genetic diversity, and breeding novel strains is challenging. The aim of this study was to investigate the genetic diversity and population structure of globally collected A. bisporus strains using simple sequence repeat (SSR) markers. Agaricus bisporus strains were divided based on genetic distance-based groups and model-based subpopulations. The major allele frequency (MAF), number of genotypes (NG), number of alleles (NA), observed heterozygosity (HO), expected heterozygosity (HE), and polymorphic information content (PIC) were calculated, and genetic distance, population structure, genetic differentiation, and Hardy-Weinberg equilibrium (HWE) were assessed. Strains were divided into two groups by distance-based analysis and into three subpopulations by model-based analysis. Strains in subpopulations POP A and POP B were included in Group I, and strains in subpopulation POP C were included in Group II. Genetic differentiation between strains was 99%. Marker AB-gSSR-1057 in Group II and subpopulation POP C was confirmed to be in HWE. These results will enhance A. bisporus breeding programs and support the protection of genetic resources.
Collapse
Affiliation(s)
- Hyejin An
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Hwa-Yong Lee
- Department of Forest Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyeran Shin
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jun Hyoung Bang
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Seahee Han
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Youn-Lee Oh
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Eumseong, Republic of Korea
| | - Kab-Yeul Jang
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Eumseong, Republic of Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jwakyung Sung
- Department of Crop Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Yoon-Sup So
- Department of Crop Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Eumseong, Republic of Korea
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
5
|
Zhang C, Lei Z, Li Y, Yi L, Shang Y. Identification of Tps2 Used as an Endogenous Reference Gene in Qualitative and Real-time Quantitative PCR Detection of Flammulina velutipes. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02043-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Li J, Liu XB, Zhao ZW, Yang ZL. Genetic diversity, core collection and breeding history of Pleurotus ostreatus in China. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Hasan HA, Almomany AM, Hasan S, Al-Abdallat AM. Assessment of Genetic Diversity among Pleurotus spp. Isolates from Jordan. J Fungi (Basel) 2018; 4:jof4020052. [PMID: 29710838 PMCID: PMC6023295 DOI: 10.3390/jof4020052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
Pleurotus is considered an important genus that belongs to the family Pleurotaceae and includes the edible King Oyster mushroom (Pleurotus eryngii). In the present study, 19 Pleurotus isolates were collected from two locations in the north of Jordan (Tell ar-Rumman and Um-Qais). The morphological characteristics among collected isolates revealed that there was a morphological similarity among the collected isolates. Nucleotide sequence analysis of the internal transcribed spacer (ITS1⁻5.8S rDNA⁻ITS4 region) and 28S nuclear large subunit (nLSU) in the ribosomal DNA gene of the isolated stains showed that all of them share over 98% sequence similarity with P. eryngii. Genetic diversity among the collected strains was assessed using inter simple sequence repeat (ISSR) analysis using 18 different primer pairs. Using this approach, 141 out of 196 bands obtained were considered polymorphic and the highest percentage of polymorphism was observed using primer UBC827 (92.3%) with an overall Polymorphism Information Content (PIC) value of 70.56%. Cluster analysis showed that the Jordanian Pleurotus isolates fall into two main clades with a coefficient of similarity values ranging from 0.59 to 0.74 with a clear clustering based on collection sites. The results of the present study reveal that molecular techniques of ISSR and rDNA sequencing can greatly aid in classification and identification of Pleurotus spp. in Jordan.
Collapse
Affiliation(s)
- Hanan Aref Hasan
- Department of Plant Production and Protection, Faculty of Agriculture, Jeresh University, Jeresh 26150, Jordan.
| | - Ahmad Mohamad Almomany
- Department of Plant Protection, Faculty of Agriculture, The University of Jordan, Amman 11942, Jordan.
| | - Shireen Hasan
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan, .
| | - Ayed M Al-Abdallat
- Department of Horticulture and Crop science, Faculty of Agriculture, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
8
|
Lu T, Bau T. De novo assembly and characterization of the transcriptome of a wild edible mushroom Leucocalocybe mongolica and identification of SSR markers. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1383187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Tie Lu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Institute of Mycology, Jilin Agricultural University, Changchun, PR China
| | - Tolgor Bau
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Institute of Mycology, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
9
|
Liu XB, Li J, Yang ZL. Genetic diversity and structure of core collection of winter mushroom ( Flammulina velutipes) developed by genomic SSR markers. Hereditas 2017; 155:3. [PMID: 28690478 PMCID: PMC5496253 DOI: 10.1186/s41065-017-0038-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/22/2017] [Indexed: 11/22/2022] Open
Abstract
Background A core collection is a subset of an entire collection that represents as much of the genetic diversity of the entire collection as possible. The establishment of a core collection for crops is practical for efficient management and use of germplasm. However, the establishment of a core collection of mushrooms is still in its infancy, and no established core collection of the economically important species Flammulina velutipes has been reported. Results We established the first core collection of F. velutipes, containing 32 strains based on 81 genetically different F. veltuipes strains. The allele retention proportion of the core collection for the entire collection was 100%. Moreover, the genetic diversity parameters (the effective number of alleles, Nei’s expected heterozygosity, the number of observed heterozygosity, and Shannon’s information index) of the core collection showed no significant differences from the entire collection (p > 0.01). Thus, the core collection is representative of the genetic diversity of the entire collection. Genetic structure analyses of the core collection revealed that the 32 strains could be clustered into 6 groups, among which groups 1 to 3 were cultivars and groups 4 to 6 were wild strains. The wild strains from different locations harbor their own specific alleles, and were clustered stringently in accordance with their geographic origins. Genetic diversity analyses of the core collection revealed that the wild strains possessed greater genetic diversity than the cultivars. Conclusion We established the first core collection of F. velutipes in China, which is an important platform for efficient breeding of this mushroom in the future. In addition, the wild strains in the core collection possess favorable agronomic characters and produce unique bioactive compounds, adding value to the platform. More attention should be paid to wild strains in further strain breeding. Electronic supplementary material The online version of this article (doi:10.1186/s41065-017-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Bin Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jing Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan 650091 China
| | - Zhu L Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| |
Collapse
|
10
|
Lee HY, Moon S, Shim D, Hong CP, Lee Y, Koo CD, Chung JW, Ryu H. Development of 44 Novel Polymorphic SSR Markers for Determination of Shiitake Mushroom (Lentinula edodes) Cultivars. Genes (Basel) 2017; 8:genes8040109. [PMID: 28338645 PMCID: PMC5406856 DOI: 10.3390/genes8040109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 11/16/2022] Open
Abstract
The shiitake mushroom (Lentinulaedodes) is one of the most popular edible mushrooms in the world and has attracted attention for its value in medicinal and pharmacological uses. With recent advanced research and techniques, the agricultural cultivation of the shiitake mushroom has been greatly increased, especially in East Asia. Additionally, demand for the development of new cultivars with good agricultural traits has been greatly enhanced, but the development processes are complicated and more challenging than for other edible mushrooms. In this study, we developed 44 novel polymorphic simple sequence repeat (SSR) markers for the determination of shiitake mushroom cultivars based on a whole genome sequencing database of L. edodes. These markers were found to be polymorphic and reliable when screened in 23 shiitake mushroom cultivars. For the 44 SSR markers developed in this study, the major allele frequency ranged from 0.13 to 0.94; the number of genotypes and number of alleles were each 2-11; the observed and expected heterozygosity were 0.00-1.00 and 0.10-0.90, respectively; and the polymorphic information content value ranged from 0.10 to 0.89. These new markers can be used for molecular breeding, the determination of cultivars, and other applications.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Forest Science, Chungbuk National University, Cheongju 28644, Korea.
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea.
| | - Suyun Moon
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea.
| | - Donghwan Shim
- Department of Forest Genetic Resources, National Institute of Forest Science, Suwon 16631, Korea.
| | | | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea.
| | - Chang-Duck Koo
- Department of Forest Science, Chungbuk National University, Cheongju 28644, Korea.
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea.
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
11
|
Liu XB, Feng B, Li J, Yan C, Yang ZL. Genetic diversity and breeding history of Winter Mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers. Gene 2016; 591:227-235. [DOI: 10.1016/j.gene.2016.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 07/03/2016] [Indexed: 01/07/2023]
|
12
|
Genetic diversity and population structure of Chinese Lentinula edodes revealed by InDel and SSR markers. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1183-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Kettleborough G, Dicks J, Roberts IN, Huber KT. Reconstructing (Super)Trees from Data Sets with Missing Distances: Not All Is Lost. Mol Biol Evol 2015; 32:1628-42. [DOI: 10.1093/molbev/msv027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
14
|
Wadud MA, Nara K, Lian C, Ishida TA, Hogetsu T. Genet dynamics and ecological functions of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji. MYCORRHIZA 2014; 24:551-563. [PMID: 24718965 DOI: 10.1007/s00572-014-0571-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
To understand the reproduction of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji, Japan, the in situ genet dynamics of sporocarps were analysed. Sporocarps of the two Laccaria species were sampled at fine and large scales for 3 and 2 consecutive years, respectively, and were genotyped using microsatellite markers. In the fine-scale analysis, we found many small genets, the majority of which appeared and disappeared annually. The high densities and annual renewal of Laccaria genets indicate frequent turnover by sexual reproduction via spores. In the large-scale analysis, we found positive spatial autocorrelations in the shortest distance class. An allele-clustering analysis also showed that several alleles were distributed in only a small, localised region. These results indicate that Laccaria spores contributing to sexual reproduction may be dispersed only short distances from sporocarps that would have themselves been established via rare, long-distance spore dispersal. This combination of rare, long-distance and frequent, short-distance Laccaria spore dispersal is reflected in the establishment pattern of seeds of their host, Salix reinii.
Collapse
Affiliation(s)
- Md Abdul Wadud
- Department of Agroforestry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | | | | | | |
Collapse
|
15
|
Gong WB, Liu W, Lu YY, Bian YB, Zhou Y, Kwan HS, Cheung MK, Xiao Y. Constructing a new integrated genetic linkage map and mapping quantitative trait loci for vegetative mycelium growth rate in Lentinula edodes. Fungal Biol 2014; 118:295-308. [PMID: 24607353 DOI: 10.1016/j.funbio.2014.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 12/01/2022]
Abstract
The most saturated linkage map for Lentinula edodes to date was constructed based on a monokaryotic population of 146 single spore isolates (SSIs) using sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), insertion-deletion (InDel) markers, and the mating-type loci. Five hundred and twenty-four markers were located on 13 linkage groups (LGs). The map spanned a total length of 1006.1 cM, with an average marker spacing of 2.0 cM. Quantitative trait loci (QTLs) mapping was utilized to uncover the loci regulating and controlling the vegetative mycelium growth rate on various synthetic media, and complex medium for commercial cultivation of L. edodes. Two and 13 putative QTLs, identified respectively in the monokaryotic population and two testcross dikaryotic populations, were mapped on seven different LGs. Several vegetative mycelium growth rate-related QTLs uncovered here were clustered on LG4 (Qmgr1, Qdgr1, Qdgr2 and Qdgr9) and LG6 (Qdgr3, Qdgr4 and Qdgr5), implying the presence of main genomic areas responsible for growth rate regulation and control. The QTL hotspot region on LG4 was found to be in close proximity to the region containing the mating-type A (MAT-A) locus. Moreover, Qdgr2 on LG4 was detected on different media, contributing 8.07 %-23.71 % of the phenotypic variation. The present study provides essential information for QTL mapping and marker-assisted selection (MAS) in L. edodes.
Collapse
Affiliation(s)
- Wen-Bing Gong
- Key Laboratory of Agro-Microbial Resource and Development (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China; Institute of Applied Mycology, Huazhong Agricultural University, Hubei Province 430070, PR China
| | - Wei Liu
- Institute of Applied Mycology, Huazhong Agricultural University, Hubei Province 430070, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Province 430072, PR China
| | - Ying-Ying Lu
- Institute of Applied Mycology, Huazhong Agricultural University, Hubei Province 430070, PR China; Institute of Crop Genetic Resource, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, PR China
| | - Yin-Bing Bian
- Key Laboratory of Agro-Microbial Resource and Development (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China; Institute of Applied Mycology, Huazhong Agricultural University, Hubei Province 430070, PR China
| | - Yan Zhou
- Key Laboratory of Agro-Microbial Resource and Development (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China; Institute of Applied Mycology, Huazhong Agricultural University, Hubei Province 430070, PR China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Yang Xiao
- Key Laboratory of Agro-Microbial Resource and Development (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China; Institute of Applied Mycology, Huazhong Agricultural University, Hubei Province 430070, PR China.
| |
Collapse
|
16
|
Zhao M, Huang C, Chen Q, Wu X, Qu J, Zhang J. Genetic variability and population structure of the mushroom Pleurotus eryngii var. tuoliensis. PLoS One 2013; 8:e83253. [PMID: 24349475 PMCID: PMC3861475 DOI: 10.1371/journal.pone.0083253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/30/2013] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of 123 wild strains of Pleurotus eryngii var. tuoliensis, which were collected from nine geographical locations in Yumin, Tuoli, and Qinghe counties in the Xinjiang Autonomous Region of China, was analysed using two molecular marker systems (inter-simple sequence repeat and start codon targeted). At the variety level, the percentage of polymorphic loci and Nei’s gene diversity index for P. eryngii var. tuoliensis was 96.32% and 0.238, respectively. At the population level, Nei’s gene diversity index ranged from 0.149 to 0.218 with an average of 0.186, and Shannon's information index ranged from 0.213 to 0.339 with an average of 0.284. These results revealed the abundant genetic variability in the wild resources of P. eryngii var. tuoliensis. Nei’s gene diversity analysis indicated that the genetic variance was mainly found within individual geographical populations, and the analysis of molecular variance revealed low but significant genetic differentiation among local and regional populations. The limited gene flow (Nm = 1.794) was inferred as a major reason for the extent of genetic differentiation of P. eryngii var. tuoliensis. The results of Mantel tests showed that the genetic distance among geographical populations of P. eryngii var. tuoliensis was positively correlated with the geographical distance and the longitudinal distances (rGo = 0.789 and rLn = 0.873, respectively), which indicates that geographical isolation is an important factor for the observed genetic differentiation. Nine geographical populations of P. eryngii var. tuoliensis were divided into three groups according to their geographical origins, which revealed that the genetic diversity was closely related to the geographical distribution of this wild fungus.
Collapse
Affiliation(s)
- Mengran Zhao
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Chenyang Huang
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Qiang Chen
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xiangli Wu
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jibin Qu
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jinxia Zhang
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
17
|
Yin Y, Liu Y, Wang S, Zhao S, Xu F. Examining genetic relationships of Chinese Pleurotus ostreatus cultivars by combined RAPD and SRAP markers. MYCOSCIENCE 2013. [DOI: 10.1016/j.myc.2012.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Wang S, Yin Y, Liu Y, Xu F. Evaluation of genetic diversity among Chinese Pleurotus eryngii cultivars by combined RAPD/ISSR marker. Curr Microbiol 2012; 65:424-31. [PMID: 22760248 DOI: 10.1007/s00284-012-0177-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/12/2012] [Indexed: 11/29/2022]
Abstract
Pleurotus eryngii (DC. Ex. Fr.) Quél is a rare precious edible fungus which belongs to the family Pleurotaceae. This mushroom has highly nutritional, pharmaceutical, economic and ecological values. In the present study, combined randomly amplified polymorphic DNA (RAPD)/inter-simple sequence repeat (ISSR) was used to assess the genetic diversity of P. eryngii strains cultivated in China. For the RAPD and ISSR analyses, 404 and 392 polymorphic bands were obtained from 32 P. eryngii strains using 28 and 24 selected primers, respectively. A combined RAPD/ISSR dendrogram grouped the 32 strains into five clades with coefficient of 0.770. The comparison of RAPD and ISSR was also elucidated in the present study. The results of our study obtained by combined RAPD/ISSR analysis contributed to a better understanding of the genetic relationships among the P. eryngii strains and provide orientation for the strain improvement of P. eryngii species.
Collapse
Affiliation(s)
- Shouxian Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Science, 9 Shuguanghuayuan Middle Rd, Haidian District, Beijing 100097, China
| | | | | | | |
Collapse
|
19
|
Li L, Fan XZ, Liu W, Xiao Y, Bian YB. Comparative analysis on the diversity of Auricularia auricula-judae by physiological characteristics, somatic incompatibility and TRAP fingerprinting. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0671-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Development of IRAP-SCAR marker for strain identification in Lentinula edodes. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0626-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Xiao Y, Liu W, Lu YY, Gong WB, Bian YB. Applying target region amplification polymorphism markers for analyzing genetic diversity of Lentinula edodes in China. J Basic Microbiol 2010; 50:475-83. [PMID: 20806249 DOI: 10.1002/jobm.201000018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The target region amplification polymorphism (TRAP) technique was utilized for assessing the genetic diversity of 55 wild strains and one cultivated strain of Lentinula edodes in China. From these strains, 932 DNA fragments were amplified using 12 primer combinations, 929 fragments (99.68%) of which were polymorphic between two or more strains. The average coefficient of pairwise genetic similarity was 0.696, within a range from 0.503 to 0.947. Cluster analysis and principal coordinate analysis separated the tested strains of L. edodes into two major groups. Group A was further divided into seven subgroups. In most cases, the strains from the same or adjoining regions could be preferentially clustered into small groups. The results from the average genetic similarity and the weighted average value of Shannon's Information Index among the tested strains of L. edodes from the same region revealed a vast genetic diversity in the natural germplasm found in China. Compared with the L. edodes strains from other regions, those found on the Yunnan Plateau, in the Hengduanshan Mountains, in Taiwan, South China, and Northeast China showed greater genetic diversity. The results of the present study indicated that the wild strains of L. edodes in China possessed abundant genetic variation, and the genetic relationships among them were highly associated with the geographic distribution. This is the first report demonstrating that TRAP markers were powerful for analyzing the genetic diversity of L. edodes, and the study lays the foundation for a further application of this remarkable technique to other fungi.
Collapse
Affiliation(s)
- Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|