1
|
Yan YS, Zou LS, Wei HG, Yang MY, Yang YQ, Li XF, Xia HY. An atypical two-component system, AtcR/AtcK, simultaneously regulates the biosynthesis of multiple secondary metabolites in Streptomyces bingchenggensis. Appl Environ Microbiol 2024; 90:e0130023. [PMID: 38112424 PMCID: PMC10807435 DOI: 10.1128/aem.01300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Streptomyces bingchenggensis is an industrial producer of milbemycins, which are important anthelmintic and insecticidal agents. Two-component systems (TCSs), which are typically situated in the same operon and are composed of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in Streptomyces. Here, an atypical TCS, AtcR/AtcK, in which the encoding genes (sbi_06838/sbi_06839) are organized in a head-to-head pair, was demonstrated to be indispensable for the biosynthesis of multiple secondary metabolites in S. bingchenggensis. With the null TCS mutants, the production of milbemycin and yellow compound was abolished but nanchangmycin was overproduced. Transcriptional analysis and electrophoretic mobility shift assays showed that AtcR regulated the biosynthesis of these three secondary metabolites by a MilR3-mediated cascade. First, AtcR was activated by phosphorylation from signal-triggered AtcK. Second, the activated AtcR promoted the transcription of milR3. Third, MilR3 specifically activated the transcription of downstream genes from milbemycin and yellow compound biosynthetic gene clusters (BGCs) and nanR4 from the nanchangmycin BGC. Finally, because NanR4 is a specific repressor in the nanchangmycin BGC, activation of MilR3 downstream genes led to the production of yellow compound and milbemycin but inhibited nanchangmycin production. By rewiring the regulatory cascade, two strains were obtained, the yield of nanchangmycin was improved by 45-fold to 6.08 g/L and the production of milbemycin was increased twofold to 1.34 g/L. This work has broadened our knowledge on atypical TCSs and provided practical strategies to engineer strains for the production of secondary metabolites in Streptomyces.IMPORTANCEStreptomyces bingchenggensis is an important industrial strain that produces milbemycins. Two-component systems (TCSs), which consist of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in Streptomyces. Coupled encoding genes of TCSs are typically situated in the same operon. Here, TCSs with encoding genes situated in separate head-to-head neighbor operons were labeled atypical TCSs. It was found that the atypical TCS AtcR/AtcK played an indispensable role in the biosynthesis of milbemycin, yellow compound, and nanchangmycin in S. bingchenggensis. This atypical TCS regulated the biosynthesis of specialized metabolites in a cascade mediated via a cluster-situated regulator, MilR3. Through rewiring the regulatory pathways, strains were successfully engineered to overproduce milbemycin and nanchangmycin. To the best of our knowledge, this is the first report on atypical TCS, in which the encoding genes of RR and HK were situated in separate head-to-head neighbor operons, involved in secondary metabolism. In addition, data mining showed that atypical TCSs were widely distributed in actinobacteria.
Collapse
Affiliation(s)
- Yu-Si Yan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - Li-Sha Zou
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - He-Geng Wei
- Zhejiang Yongtai Technology Co., LTD., Taizhou, Zhejiang, China
| | - Meng-Yao Yang
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - Yun-Qi Yang
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - Xiao-Fang Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - Hai-Yang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Thakur M, Kumar P, Rajput D, Yadav V, Dhaka N, Shukla R, Kumar Dubey K. Genome-guided approaches and evaluation of the strategies to influence bioprocessing assisted morphological engineering of Streptomyces cell factories. BIORESOURCE TECHNOLOGY 2023; 376:128836. [PMID: 36898554 DOI: 10.1016/j.biortech.2023.128836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Streptomyces genera serve as adaptable cell factories for secondary metabolites with various and distinctive chemical structures that are relevant to the pharmaceutical industry. Streptomyces' complex life cycle necessitated a variety of tactics to enhance metabolite production. Identification of metabolic pathways, secondary metabolite clusters, and their controls have all been accomplished using genomic methods. Besides this, bioprocess parameters were also optimized for the regulation of morphology. Kinase families were identified as key checkpoints in the metabolic manipulation (DivIVA, Scy, FilP, matAB, and AfsK) and morphology engineering of Streptomyces. This review illustrates the role of different physiological variables during fermentation in the bioeconomy coupled with genome-based molecular characterization of biomolecules responsible for secondary metabolite production at different developmental stages of the Streptomyces life cycle.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Punit Kumar
- Department of Morphology and Physiology, Karaganda Medical University, Karaganda 100008 Kazakhstan
| | - Deepanshi Rajput
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Namrata Dhaka
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Rishikesh Shukla
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura- 281406, U.P., India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
MilR3, a unique SARP family pleiotropic regulator in Streptomyces bingchenggensis. Arch Microbiol 2022; 204:631. [PMID: 36121479 DOI: 10.1007/s00203-022-03240-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
Abstract
Streptomyces bingchenggensis is the main industrial producer of milbemycins, which are a group of 16-membered macrocylic lactones with excellent insecticidal activities. In the past several decades, scientists have made great efforts to solve its low productivity. However, a lack of understanding of the regulatory network of milbemycin biosynthesis limited the development of high-producing strains using a regulatory rewiring strategy. SARPs (Streptomyces Antibiotic Regulatory Proteins) family regulators are widely distributed and play key roles in regulating antibiotics production in actinobacteria. In this paper, MilR3 (encoded by sbi_06842) has been screened out for significantly affecting milbemycin production from all the 19 putative SARP family regulators in S. bingchenggensis with the DNase-deactivated Cpf1-based integrative CRISPRi system. Interestingly, milR3 is about 7 Mb away from milbemycin biosynthetic gene cluster and adjacent to a putative type II PKS (the core minimal PKS encoding genes are sbi_06843, sbi_06844, sbi_06845 and sbi_06846) gene cluster, which was proved to be responsible for producing a yellow pigment. The quantitative real-time PCR analysis proved that MilR3 positively affected the transcription of specific genes within milbemycin BGC and those from the type II PKS gene cluster. Unlike previous "small" SARP family regulators that played pathway-specific roles, MilR3 was probably a unique SARP family regulator and played a pleotropic role. MilR3 was an upper level regulator in the MilR3-MilR regulatory cascade. This study first illustrated the co-regulatory role of this unique SARP regulator. This greatly enriches our understanding of SARPs and lay a solid foundation for milbemycin yield enhancement in the near future.
Collapse
|
4
|
Yan YS, Xia HY. Recent advances in the research of milbemycin biosynthesis and regulation as well as strategies for strain improvement. Arch Microbiol 2021; 203:5849-5857. [PMID: 34550409 DOI: 10.1007/s00203-021-02575-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 01/15/2023]
Abstract
Milbemycins, a group of 16-membered macrocylic lactones with excellent acaricidal, insecticidal and anthelmintic activities, can be produced by several Streptomyces species. For the reason that they have low toxicity in mammals, milbemycins and their derivatives are widely used in agricultural, medical and veterinary industries. Streptomyces bingchenggensis, one of milbemycin-producing strains, has been sequenced and intensively investigated in the past decades. In this mini-review, we comprehensively revisit the progress that has been made in research efforts to elucidate the biosynthetic pathways and regulatory networks for the cellular production of milbemycins. The advances in the development of production strains for milbemycin and its derivatives are discussed along the strain-generation technical approaches of random mutagenesis, metabolic engineering and combinatorial biosynthesis. The research progress made so far indicates that strain improvement and generation of novel milbemycin derivatives will greatly benefit from future development of enabling technologies and deeper understanding of the fundamentals of biosynthesis of milbemycin and the regulation of its production in S. bingchenggensis. This mini-review also proposes that the overproduction of milbemycins could be greatly enhanced by genome minimization, systematical metabolic engineering and synthetic biology approaches in the future.
Collapse
Affiliation(s)
- Yu-Si Yan
- Institute of Biopharmaceuticals, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, People's Republic of China
| | - Hai-Yang Xia
- Institute of Biopharmaceuticals, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Wang S, Lu F, Yang Z, Li Z, Tian Y. Combining Ribosomal Engineering with Heterologous Expression of a Regulatory Gene to Improve Milbemycin Production in Streptomyces
milbemycinicus A2079. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Liu Y, Wang H, Li S, Zhang Y, Cheng X, Xiang W, Wang X. Engineering of primary metabolic pathways for titer improvement of milbemycins in Streptomyces bingchenggensis. Appl Microbiol Biotechnol 2021; 105:1875-1887. [PMID: 33564920 DOI: 10.1007/s00253-021-11164-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Milbemycins are used commercially as insect repellents and acaricides; however, their high cost remains a significant challenge to commercial production. Hence, improving the titer of milbemycins for commercial application is an urgent priority. The present study aimed to effectively increase the titer of milbemycins using a combination of genome re-sequencing and metabolic engineering. First, 133 mutation sites were identified by genome re-sequencing in the mutagenized high-yielding strain BC04. Among them, three modifiable candidate genes (sbi_04868 encoding citrate synthase, sbi_06921 and sbi_06922 encoding alpha and beta subunits of acetyl-CoA carboxylase, and sbi_04683 encoding carbon uptake system gluconate transporter) related to primary metabolism were screened and identified. Next, the DNase-deactivated Cpf1-based integrative CRISPRi system was used in S. bingchenggensis to downregulate the transcription level of gene sbi_04868. Then, overexpression of the potential targets sbi_06921-06922 and sbi_04683 further facilitated milbemycin biosynthesis. Finally, those candidate genes were engineered to produce strains with combinatorial downregulation and overexpression, which resulted in the titer of milbemycin A3/A4 increased by 27.6% to 3164.5 mg/L. Our research not only identified three genes in S. bingchenggensis that are closely related to the production of milbemycins, but also offered an efficient engineering strategy to improve the titer of milbemycins using genome re-sequencing. KEY POINTS: • We compared the genomes of two strains with different titers of milbemycins. • We found three genes belonging to primary metabolism influence milbemycin production. • We improved titer of milbemycins by a combinatorial engineering of three targets.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xu Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
7
|
Mining and fine-tuning sugar uptake system for titer improvement of milbemycins in Streptomyces bingchenggensis. Synth Syst Biotechnol 2020; 5:214-221. [PMID: 32695892 PMCID: PMC7360889 DOI: 10.1016/j.synbio.2020.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 07/05/2020] [Indexed: 12/21/2022] Open
Abstract
Dramatic decrease of sugar uptake is a general phenomenon in Streptomyces at stationary phase, when antibiotics are extensively produced. Milbemycins produced by Streptomyces bingchenggensis are a group of valuable macrolide biopesticides, while the low yield and titer impede their broad applications in agricultural field. Considering that inadequate sugar uptake generally hinders titer improvement of desired products, we mined the underlying sugar uptake systems and fine-tuned their expression in this work. First, we screened the candidates at both genomic and transcriptomic level in S. bingchenggensis. Then, two ATP-binding cassette transporters named TP2 and TP5 were characterized to improve milbemycin titer and yield significantly. Next, the appropriate native temporal promoters were selected and used to tune the expression of TP2 and TP5, resulting in a maximal milbemycin A3/A4 titer increase by 36.9% to 3321 mg/L. Finally, TP2 and TP5 were broadly fine-tuned in another two macrolide biopesticide producers Streptomyces avermitilis and Streptomyces cyaneogriseus, leading to a maximal titer improvement of 34.1% and 52.6% for avermectin B1a and nemadectin, respectively. This work provides useful transporter tools and corresponding engineering strategy for Streptomyces.
Collapse
|
8
|
Wang H, Cheng X, Liu Y, Li S, Zhang Y, Wang X, Xiang W. Improved milbemycin production by engineering two Cytochromes P450 in Streptomyces bingchenggensis. Appl Microbiol Biotechnol 2020; 104:2935-2946. [PMID: 32043186 DOI: 10.1007/s00253-020-10410-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
Milbemycins and their semisynthetic derivatives are recognized as effective and eco-friendly pesticides, whereas the high price limits their widespread applications in agriculture. One of the pivotal questions is the accumulation of milbemycin-like by-products, which not only reduces the yield of the target products milbemycin A3/A4, but also brings difficulty to the purification. With other analogous by-products abolished, α9/α10 and β-family milbemycins remain to be eliminated. Herein, we solved these issues by engineering of post-modification steps. First, Cyp41, a CYP268 family cytochrome P450, was identified to participate in α9/α10 biosynthesis. By deleting cyp41, milbemycin α9/α10 was eliminated with an increase of milbemycin A3/A4 titer from 2382.5 ± 55.7 mg/L to 2625.6 ± 64.5 mg/L. Then, MilE, a CYP171 family cytochrome P450, was determined to be responsible for the generation of the furan ring between C6 and C8a of milbemycins. By further overexpression of milE, the production of β-family milbemycins was reduced by 77.2%. Finally, the titer of milbemycin A3/A4 was increased by 53.1% to 3646.9 ± 69.9 mg/L. Interestingly, overexpression of milE resulted in increased transcriptional levels of milbemycin biosynthetic genes and production of total milbemycins, which implied that the insufficient function of MilE was a limiting factor to milbemycin biosynthesis. Our research not only provides an efficient engineering strategy to improve the production of a commercially important product milbemycins, but also offers the clues for future study about transcriptional regulation of milbemycin biosynthesis.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Xu Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuqing Liu
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
9
|
Molecular Characterization of Streptomyces albogriseolus Excellent Mutants for Neomycin Production. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
The Application of Ribosome Engineering to Natural Product Discovery and Yield Improvement in Streptomyces. Antibiotics (Basel) 2019; 8:antibiotics8030133. [PMID: 31480298 PMCID: PMC6784132 DOI: 10.3390/antibiotics8030133] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/10/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Microbial natural product drug discovery and development has entered a new era, driven by microbial genomics and synthetic biology. Genome sequencing has revealed the vast potential to produce valuable secondary metabolites in bacteria and fungi. However, many of the biosynthetic gene clusters are silent under standard fermentation conditions. By rational screening for mutations in bacterial ribosomal proteins or RNA polymerases, ribosome engineering is a versatile approach to obtain mutants with improved titers for microbial product formation or new natural products through activating silent biosynthetic gene clusters. In this review, we discuss the mechanism of ribosome engineering and its application to natural product discovery and yield improvement in Streptomyces. Our analysis suggests that ribosome engineering is a rapid and cost-effective approach and could be adapted to speed up the discovery and development of natural product drug leads in the post-genomic era.
Collapse
|
11
|
He H, Ye L, Li C, Wang H, Guo X, Wang X, Zhang Y, Xiang W. SbbR/SbbA, an Important ArpA/AfsA-Like System, Regulates Milbemycin Production in Streptomyces bingchenggensis. Front Microbiol 2018; 9:1064. [PMID: 29875761 PMCID: PMC5974925 DOI: 10.3389/fmicb.2018.01064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Milbemycins, a group of 16-membered macrolide antibiotics, are used widely as insecticides and anthelmintics. Previously, a limited understanding of the transcriptional regulation of milbemycin biosynthesis has hampered efforts to enhance antibiotic production by engineering of regulatory genes. Here, a novel ArpA/AfsA-type system, SbbR/SbbA (SBI_08928/SBI_08929), has been identified to be involved in regulating milbemycin biosynthesis in the industrial strain S. bingchenggensis BC04. Inactivation of sbbR in BC04 resulted in markedly decreased production of milbemycin, while deletion of sbbA enhanced milbemycin production. Electrophoresis mobility shift assays (EMSAs) and DNase I footprinting studies showed that SbbR has a specific DNA-binding activity for the promoters of milR (the cluster-situated activator gene for milbemycin production) and the bidirectionally organized genes sbbR and sbbA. Transcriptional analysis suggested that SbbR directly activates the transcription of milR, while represses its own transcription and that of sbbA. Moreover, 11 novel targets of SbbR were additionally found, including seven regulatory genes located in secondary metabolite biosynthetic gene clusters (e.g., sbi_08420, sbi_08432, sbi_09158, sbi_00827, sbi_01376, sbi_09325, and sig24sbh) and four well-known global regulatory genes (e.g., glnRsbh, wblAsbh, atrAsbh, and mtrA/Bsbh). These data suggest that SbbR is not only a direct activator of milbemycin production, but also a pleiotropic regulator that controls the expression of other cluster-situated regulatory genes and global regulatory genes. Overall, this study reveals the upper-layer regulatory system that controls milbemycin biosynthesis, which will not only expand our understanding of the complex regulation in milbemycin biosynthesis, but also provide a basis for an approach to improve milbemycin production via genetic manipulation of SbbR/SbbA system.
Collapse
Affiliation(s)
- Hairong He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Lan Ye
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Chuang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowei Guo
- School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xiangjing Wang
- School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis. Microb Cell Fact 2017; 16:9. [PMID: 28095865 PMCID: PMC5240415 DOI: 10.1186/s12934-017-0626-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities. RESULTS The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D. CONCLUSIONS We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential.
Collapse
|
13
|
Zhang Y, He H, Liu H, Wang H, Wang X, Xiang W. Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis. Microb Cell Fact 2016; 15:152. [PMID: 27604457 PMCID: PMC5015266 DOI: 10.1186/s12934-016-0552-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Milbemycins, a group of 16-membered macrolides with potent anthelminthic and insecticidal activity, are produced by several Streptomyces and used widely in agricultural, medical and veterinary fields. Milbemycin A3 and A4, the main components produced by Streptomyces bingchenggensis, have been developed as an acaricide to control mites. The subsequent structural modification of milbemycin A3/A4 led to other commercial products, such as milbemycin oxime, lepimectin and latidectin. Despite its importance, little is known about the regulation of milbemycin biosynthesis, which has hampered efforts to enhance milbemycin production via engineering regulatory genes. RESULTS milR, a regulatory gene in the milbemycin (mil) biosynthetic gene cluster of S. bingchenggensis, encodes a large ATP-binding regulator of the LuxR family (LAL family), which contains an ATPase domain at its N-terminus and a LuxR-like DNA-binding domain at the C-terminus. Gene disruption and genetic complementation revealed that milR plays an important role in the biosynthesis of milbemycin. β-glucuronidase assays and transcriptional analysis showed that MilR activates the expression of the milA4-E operon and milF directly, and activates the other mil genes indirectly. Site-directed mutagenesis confirmed that the ATPase domain is indispensable for MilR's function, and particularly mutation of the conserved amino acids K37A, D122A and D123A, led to the loss of MilR function for milbemycin biosynthesis. Overexpression of an extra copy of milR under the control of its native promoter significantly increased production of milbemycin A3/A4 in a high-producing industrial strain S. bingchenggensis BC04. CONCLUSIONS A LAL regulator, MilR, was characterized in the mil gene cluster of S. bingchenggensis BC04. MilR could activate milbemycin biosynthesis through direct interaction with the promoter of the milA4-E operon and that of milF. Overexpression of milR increased milbemycin A3/A4 production by 38 % compared with the parental strain BC04, suggesting that genetic manipulation of this activator gene could enhance the yield of antibiotics.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Hairong He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Hui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China. .,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
14
|
Wang HY, Zhang J, Zhang YJ, Zhang B, Liu CX, He HR, Wang XJ, Xiang WS. Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis. Appl Microbiol Biotechnol 2014; 98:9703-12. [PMID: 25081559 DOI: 10.1007/s00253-014-5970-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 10/25/2022]
Abstract
Milbemycin oxime has been commercialized as effective anthelmintics in the fields of animal health, agriculture, and human infections. Currently, milbemycin oxime is synthesized by a two-step chemical reaction, which involves the ketonization of milbemycins A3/A4 to yield the intermediates 5-oxomilbemycins A3/A4 using CrO3 as catalyst. Due to the low efficiency and environmental unfriendliness of the ketonization of milbemycins A3/A4, it is imperative to develop alternative strategies to produce 5-oxomilbemycins A3/A4. In this study, the atmospheric and room temperature plasma (ARTP) mutation system was first employed to treat milbemycin-producing strain Streptomyces bingchenggensis, and a mutant strain BC-120-4 producing milbemycins A3, A4, B2, and B3 as main components was obtained, which favors the construction of genetically engineered strains producing 5-oxomilbemycins. Importantly, the milbemycins A3/A4 yield of BC-120-4 reached 3,890 ± 52 g/l, which was approximately two times higher than that of the initial strain BC-109-6 (1,326 ± 37 g/l). The subsequent interruption of the gene milF encoding a C5-ketoreductase responsible for the ketonization of milbemycins led to strain BCJ60 (∆milF) with the production of 5-oxomilbemycins A3/A4 and the elimination of milbemycins A3, A4, B2, and B3. The high 5-oxomilbemycins A3/A4 yield (3,470 ± 147 g/l) and genetic stability of BCJ60 implied the potential use in industry to prepare 5-oxomilbemycins A3/A4 for the semisynthesis of milbemycins oxime.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang J, An J, Wang JJ, Yan YJ, He HR, Wang XJ, Xiang WS. Genetic engineering of Streptomyces bingchenggensis to produce milbemycins A3/A4 as main components and eliminate the biosynthesis of nanchangmycin. Appl Microbiol Biotechnol 2013; 97:10091-101. [PMID: 24077727 DOI: 10.1007/s00253-013-5255-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 01/07/2023]
Abstract
Milbemycins A3/A4 are important 16-membered macrolides which have been commercialized and widely used as pesticide and veterinary medicine. However, similar to other milbemycin producers, the production of milbemycins A3/A4 in Streptomyces bingchenggensis is usually accompanied with undesired by-products such as C5-O - methylmilbemycins B2/B3 (α-class) and β1/β2 (β-class) together with nanchangmycin. In order to obtain high yield milbemycins A3/A4-producing strains that produce milbemycins A3/A4 as main components, milD, a putative C5-O-methyltransferase gene of S. bingchenggensis , was biofunctionally investigated by heterologous expression in Escherichia coli . Enzymatic analysis indicated that MilD can catalyze both α-class (A3/A4) and β-class milbemycins (β11) into C5-O-methylmilbemycins B2/B3 and β1, respectively, suggesting little effect of furan ring formed between C6 and C8a on the C5-O-methylation catalyzed by MilD. Deletion of milD gene resulted in the elimination of C5-Omethylmilbemycins B2/B3 and β1/β2 together with an increased yield of milbemycins A3/A4 in disruption strain BCJ13. Further disruption of the gene nanLD encoding loading module of polyketide synthase responsible for the biosynthesis of nanchangmycin led to strain BCJ36 that abolished the production of nanchangmycin. Importantly, mutant strain BCJ36 (ΔmilDΔnanLD) produced milbemycins A3/A4 as main secondary metabolites with a yield of 2312 ± 47 μg/ml, which was approximately 74 % higher than that of the initial strain S. bingchenggensis BC-109-6 (1326 ± 37 μg/ml).
Collapse
|
16
|
Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069. ACTA ACUST UNITED AC 2013; 40:877-89. [DOI: 10.1007/s10295-013-1280-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/25/2013] [Indexed: 11/30/2022]
Abstract
Abstract
Genome shuffling is an efficient approach for the rapid engineering of microbial strains with desirable industrial phenotypes. In this study, a strategy of incorporating streptomycin resistance screening into genome shuffling (GS-SR) was applied for rapid improvement of doramectin production by Streptomyces avermitilis NEAU1069. The starting mutant population was generated through treatment of the spores with N-methyl-N’-nitro-N-nitrosoguanidine and ultraviolet (UV) irradiation, respectively, and five mutants with higher productivity of doramectin were selected as starting strains for GS-SR. Finally, a genetically stable strain F4-137 was obtained and characterized to be able to yield 992 ± 4.4 mg/l doramectin in a shake flask, which was 7.3-fold and 11.2-fold higher than that of the starting strain UV-45 and initial strain NEAU1069, respectively. The doramectin yield by F4-137 in a 50-l fermentor reached 930.3 ± 3.8 mg/l. Furthermore, the factors associated with the improved doramectin yield were investigated and the results suggested that mutations in ribosomal protein S12 and the enhanced production of cyclohexanecarboxylic coenzyme A may contribute to the improved performance of the shuffled strains. The random amplified polymorphic DNA analysis showed a genetic diversity among the shuffled strains, which confirmed the occurrence of genome shuffling. In conclusion, our results demonstrated that GS-SR is a powerful method for enhancing the production of secondary metabolites in Streptomyces.
Collapse
|
17
|
Wu Q, Bai L, Liu W, Li Y, Lu C, Li Y, Lin Z, Wang M, Xue C, Chen J. Construction of Streptomyces lydicus A01 transformant with the chit33 gene from Trichoderma harzianum CECT2413 and its biocontrol effect on Fusaria. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5860-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea. J Microbiol 2013; 51:166-73. [PMID: 23625216 DOI: 10.1007/s12275-013-2321-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/13/2012] [Indexed: 10/26/2022]
Abstract
Streptomyces lydicus A01 and Trichoderma harzianum P1 are potential biocontrol agents of fungal diseases in plants. S. lydicus A01 produces natamycin to bind the ergosterol of the fungal cell membrane and inhibits the growth of Botrytis cinerea. T. harzianum P1, on the other hand, features high chitinase activity and decomposes the chitin in the cell wall of B. cinerea. To obtain the synergistic biocontrol effects of chitinase and natamycin on Botrytis cinerea, this study transformed the chit42 gene from T. harzianum P1 to S. lydicus A01. The conjugal transformant (CT) of S. lydicus A01 with the chit42 gene was detected using polymerase chain reaction (PCR). Associated chitinase activity and natamycin production were examined using the 3, 5-dinitrosalicylic acid (DNS) method and ultraviolet spectrophotometry, respectively. The S. lydicus A01-chit42 CT showed substantially higher chitinase activity and natamycin production than its wild type strain (WT). Consequently, the biocontrol effects of S. lydicus A01-chit42 CT on B. cinerea, including inhibition to spore germination and mycelial growth, were highly improved compared with those of the WT. Our research indicates that the biocontrol effect of Streptomyces can be highly improved by transforming the exogenous resistance gene, i.e. chit42 from Trichoderma, which not only enhances the production of antibiotics, but also provides a supplementary function by degrading the cell walls of the pathogens.
Collapse
|
19
|
Zhang BX, Zhang H, Wang XJ, Wang JD, Liu CX, Xiang WS. New milbemycins from mutant Streptomyces bingchenggensis X-4. J Antibiot (Tokyo) 2011; 64:753-6. [DOI: 10.1038/ja.2011.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|