1
|
Ben Slimene Debez I, Houmani H, Mahmoudi H, Mkadmini K, Garcia-Caparros P, Debez A, Tabbene O, Djébali N, Urdaci MC. Response Surface Methodology-Based Optimization of the Chitinolytic Activity of Burkholderia contaminans Strain 614 Exerting Biological Control against Phytopathogenic Fungi. Microorganisms 2024; 12:1580. [PMID: 39203422 PMCID: PMC11356717 DOI: 10.3390/microorganisms12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
As part of the development of alternative and environmentally friendly control against phytopathogenic fungi, Burkholderia cepacia could be a useful species notably via the generation of hydrolytic enzymes like chitinases, which can act as a biological control agent. Here, a Burkholderia contaminans S614 strain exhibiting chitinase activity was isolated from a soil in southern Tunisia. Then, response surface methodology (RSM) with a central composite design (CCD) was used to assess the impact of five factors (colloidal chitin, magnesium sulfate, dipotassium phosphate, yeast extract, and ammonium sulfate) on chitinase activity. B. contaminans strain 614 growing in the optimized medium showed up to a 3-fold higher chitinase activity. This enzyme was identified as beta-N-acetylhexosaminidase (90.1 kDa) based on its peptide sequences, which showed high similarity to those of Burkholderia lata strain 383. Furthermore, this chitinase significantly inhibited the growth of two phytopathogenic fungi: Botrytis cinerea M5 and Phoma medicaginis Ph8. Interestingly, a crude enzyme from strain S614 was effective in reducing P. medicaginis damage on detached leaves of Medicago truncatula. Overall, our data provide strong arguments for the agricultural and biotechnological potential of strain S614 in the context of developing biocontrol approaches.
Collapse
Affiliation(s)
- Imen Ben Slimene Debez
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (I.B.S.D.); (O.T.); (N.D.)
| | - Hayet Houmani
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (H.H.); (A.D.)
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture (ICBA), Academic City, Near Zayed University, Dubai P.O. Box 14660, United Arab Emirates
| | - Khaoula Mkadmini
- Useful Materials Valorization Laboratory, National Centre of Research in Materials Science, Technologic Park of Borj Cedria, BP 073, Soliman 8027, Tunisia;
| | - Pedro Garcia-Caparros
- Agronomy Department of Superior School Engineering, University of Almería, 04120 Almeria, Spain;
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (H.H.); (A.D.)
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (I.B.S.D.); (O.T.); (N.D.)
| | - Naceur Djébali
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (I.B.S.D.); (O.T.); (N.D.)
| | - Maria-Camino Urdaci
- Laboratoire de Microbiologie, Université de Bordeaux-Bordeaux Sciences Agro, UMR 5248, 1 Cours du Général de Gaulle, 33175 Gradignan, France;
| |
Collapse
|
2
|
Rabbee MF, Ali MS, Islam MN, Rahman MM, Hasan MM, Baek KH. Endophyte mediated biocontrol mechanisms of phytopathogens in agriculture. Res Microbiol 2024:104229. [PMID: 38992820 DOI: 10.1016/j.resmic.2024.104229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
The global human population is growing and demand for food is increasing. Global agriculture faces numerous challenges, including excessive application of synthetic pesticides, emergence of herbicide-and pesticide-resistant pathogenic microbes, and more frequent natural disasters associated with global warming. Searches for valuable endophytes have increased, with the aim of making agriculture more sustainable and environmentally friendly. Endophytic microbes are known to have a variety of beneficial effects on plants. They can effectively transfer nutrients from the soil into plants, promote plant growth and development, increase disease resistance, increase stress tolerance, prevent herbivore feeding, reduce the virulence of pathogens, and inhibit the growth of rival plant species. Endophytic microbes can considerably minimize the need for agrochemicals, such as fertilizers, fungicides, bactericides, insecticides, and herbicides in the cultivation of crop plants. This review summarizes current knowledge on the roles of endophytes focusing on their mechanisms of disease control against phytopathogens through the secretion of antimicrobial substances and volatile organic compounds, and the induction of systemic resistance in plants. Additionally, the beneficial roles of these endophytes and their metabolites in the control of postharvest diseases in plants have been summarized.
Collapse
Affiliation(s)
- Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, South Korea.
| | - Md Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md Nurul Islam
- Soil Resource Development Institute, Regional Office, Rajshahai 6000, Bangladesh
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Md Mohidul Hasan
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, South Korea.
| |
Collapse
|
3
|
Xiong Q, Yang J, Ni S. Microbiome-Mediated Protection against Pathogens in Woody Plants. Int J Mol Sci 2023; 24:16118. [PMID: 38003306 PMCID: PMC10671361 DOI: 10.3390/ijms242216118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens, especially invasive species, have caused significant global ecological, economic, and social losses in forests. Plant disease research has traditionally focused on direct interactions between plants and pathogens in an appropriate environment. However, recent research indicates that the microbiome can interact with the plant host and pathogens to modulate plant resistance or pathogen pathogenicity, thereby altering the outcome of plant-pathogen interactions. Thus, this presents new opportunities for studying the microbial management of forest diseases. Compared to parallel studies on human and crop microbiomes, research into the forest tree microbiome and its critical role in forest disease progression has lagged. The rapid development of microbiome sequencing and analysis technologies has resulted in the rapid accumulation of a large body of evidence regarding the association between forest microbiomes and diseases. These data will aid the development of innovative, effective, and environmentally sustainable methods for the microbial management of forest diseases. Herein, we summarize the most recent findings on the dynamic structure and composition of forest tree microbiomes in belowground and aboveground plant tissues (i.e., rhizosphere, endosphere, and phyllosphere), as well as their pleiotropic impact on plant immunity and pathogen pathogenicity, highlighting representative examples of biological control agents used to modulate relevant tree microbiomes. Lastly, we discuss the potential application of forest tree microbiomes in disease control as well as their future prospects and challenges.
Collapse
Affiliation(s)
- Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (S.N.)
| | | | | |
Collapse
|
4
|
Wu XL, Liu XW, Wang Y, Guo MY, Ye JR. Optimization of Constitutive Promoters Using a Promoter-Trapping Vector in Burkholderia pyrrocinia JK-SH007. Int J Mol Sci 2023; 24:ijms24119419. [PMID: 37298372 DOI: 10.3390/ijms24119419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Selecting suitable promoters to drive gene overexpression can provide significant insight into the development of engineered bacteria. In this study, we analyzed the transcriptome data of Burkholderia pyrrocinia JK-SH007 and identified 54 highly expressed genes. The promoter sequences were located using genome-wide data and scored using the prokaryotic promoter prediction software BPROM to further screen out 18 promoter sequences. We also developed a promoter trap system based on two reporter proteins adapted for promoter optimization in B. pyrrocinia JK-SH007: firefly luciferase encoded by the luciferase gene set (Luc) and trimethoprim (TP)-resistant dihydrofolate reductase (TPr). Ultimately, eight constitutive promoters were successfully inserted into the probe vector and transformed into B. pyrrocinia JK-SH007. The transformants were successfully grown on Tp antibiotic plates, and firefly luciferase expression was determined by measuring the relative light unit (RLU). Five of the promoters (P4, P9, P10, P14, and P19) showed 1.01-2.51-fold higher activity than the control promoter λ phage transcriptional promoter (PRPL). The promoter activity was further validated via qPCR analysis, indicating that promoters P14 and P19 showed stable high transcription levels at all time points. Then, GFP and RFP proteins were overexpressed in JK-SH007. In addition, promoters P14 and P19 were successfully used to drive gene expression in Burkholderia multivorans WS-FJ9 and Escherichia coli S17-1. The two constitutive promoters can be used not only in B. pyrrocinia JK-SH007 itself to gene overexpression but also to expand the scope of application.
Collapse
Affiliation(s)
- Xue-Lian Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Wei Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Wang
- Institute of Forest Pest Control, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Meng-Yun Guo
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Luo H, Riu M, Ryu CM, Yu JM. Volatile organic compounds emitted by Burkholderia pyrrocinia CNUC9 trigger induced systemic salt tolerance in Arabidopsis thaliana. Front Microbiol 2022; 13:1050901. [PMID: 36466674 PMCID: PMC9713481 DOI: 10.3389/fmicb.2022.1050901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 08/01/2023] Open
Abstract
Salinity is among the most significant abiotic stresses that negatively affects plant growth and agricultural productivity worldwide. One ecofriendly tool for broadly improving plant tolerance to salt stress is the use of bio-inoculum with plant growth-promoting rhizobacteria (PGPR). In this study, a bacterium strain CNUC9, which was isolated from maize rhizosphere, showed several plant growth-promoting characteristics including the production of 1-aminocyclopropane-1-carboxylate deaminase, indole acetic acid, siderophore, and phosphate solubilization. Based on 16S rRNA and recA gene sequence analysis, we identified strain CNUC9 as Burkholderia pyrrocinia. Out of bacterial determinants to elicit plant physiological changes, we investigated the effects of volatile organic compounds (VOCs) produced by B. pyrrocinia CNUC9 on growth promotion and salinity tolerance in Arabidopsis thaliana. Higher germination and survival rates were observed after CNUC9 VOCs exposure under 100 mM NaCl stress. CNUC9 VOCs altered the root system architecture and total leaf area of A. thaliana compared to the control. A. thaliana exposed to VOCs induced salt tolerance by increasing its total soluble sugar and chlorophyll content. In addition, lower levels of reactive oxygen species, proline, and malondialdehyde were detected in CNUC9 VOCs-treated A. thaliana seedlings under stress conditions, indicating that VOCs emitted by CNUC9 protected the plant from oxidative damage induced by salt stress. VOC profiles were obtained through solid-phase microextraction and analyzed by gas chromatography coupled with mass spectrometry. Dimethyl disulfide (DMDS), methyl thioacetate, and 2-undecanone were identified as products of CNUC9. Our results indicate that optimal concentrations of DMDS and 2-undecanone promoted growth in A. thaliana seedlings. Our findings provide greater insight into the salt stress alleviation of VOCs produced by B. pyrrocinia CNUC9, as well as potential sustainable agriculture applications.
Collapse
Affiliation(s)
- Huan Luo
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Myoungjoo Riu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
6
|
Xue L, Yang C, Jihong W, Lin L, Yuqiang Z, Zhitong J, Yanxin W, Zhoukun L, Lei F, Cui Z. Biocontrol potential of
Burkholderia
sp.
BV6
against the rice blast fungus
Magnaporthe oryzae. J Appl Microbiol 2022; 133:883-897. [DOI: 10.1111/jam.15605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Luo Xue
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Chen Yang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Wang Jihong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Liu Lin
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Zhao Yuqiang
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences China
| | - Jiang Zhitong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Wang Yanxin
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Li Zhoukun
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Fu Lei
- Nanjing Institute for Comprehensive Utilization of Wild Plants Nanjing China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences Nanjing Agricultural University Nanjing China
- Key Laboratory of Biological Interactions and Crop Health Nanjing Agricultural University Nanjing China
| |
Collapse
|
7
|
Heo AY, Koo YM, Choi HW. Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. BIOLOGY 2022; 11:biology11040619. [PMID: 35453817 PMCID: PMC9028202 DOI: 10.3390/biology11040619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Burkholderia contaminans belongs to B. cepacia complex (Bcc), those of which are found in various environmental conditions. In this study, a novel strain AY001 of B. contaminans (AY001) was identified from the rhizosphere soil sample. AY001 showed (i) various plant growth-promoting rhizobacteria (PGPR)-related traits, (ii) antagonistic activity against different plant pathogenic fungi, (iii) suppressive activity against tomato Fusarium wilt disease, (iv) induced systemic acquired resistance (ISR)-triggering activity, and (v) production of various antimicrobial and plant immune-inducing secondary metabolites. These results suggest that AY001 is, indeed, a successful PGPR, and it can be practically used in tomato cultivation to alleviate biotic and abiotic stresses. However, further safety studies on the use of AY001 will be needed to ensure its safe use in the Agricultural system. Abstract Plant growth promoting rhizobacteria (PGPR) is not only enhancing plant growth, but also inducing resistance against a broad range of pathogens, thus providing effective strategies to substitute chemical products. In this study, Burkholderia contaminans AY001 (AY001) is isolated based on its broad-spectrum antifungal activity. AY001 not only inhibited fungal pathogen growth in dual culture and culture filtrate assays, but also showed various PGPR traits, such as nitrogen fixation, phosphate solubilization, extracellular protease production, zinc solubilization and indole-3-acetic acid (IAA) biosynthesis activities. Indeed, AY001 treatment significantly enhanced growth of tomato plants and enhanced resistance against two distinct pathogens, F. oxysporum f.sp. lycopersici and Pseudomonas syringae pv. tomato. Real-time qPCR analyses revealed that AY001 treatment induced jasmonic acid/ethylene-dependent defense-related gene expression, suggesting its Induced Systemic Resistance (ISR)-eliciting activity. Gas chromatography–mass spectrometry (GC-MS) analysis of culture filtrate of AY001 revealed production of antimicrobial compounds, including di(2-ethylhexyl) phthalate and pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl). Taken together, our newly isolated AY001 showed promising PGPR and ISR activities in tomato plants, suggesting its potential use as a biofertilizer and biocontrol agent.
Collapse
Affiliation(s)
- A Yeong Heo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Division of Forest Insect Pests & Diseases, National Institute of Forest Science, Seoul 02455, Korea
| | - Young Mo Koo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
| | - Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Correspondence: ; Tel.: +82-54-820-5509
| |
Collapse
|
8
|
Amelioration in traditional farming system by exploring the different plant growth-promoting attributes of endophytes for sustainable agriculture. Arch Microbiol 2022; 204:151. [DOI: 10.1007/s00203-021-02637-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
|
9
|
Li B, Wang Y, Hu T, Qiu D, Francis F, Wang S, Wang S. Root-Associated Microbiota Response to Ecological Factors: Role of Soil Acidity in Enhancing Citrus Tolerance to Huanglongbing. FRONTIERS IN PLANT SCIENCE 2022; 13:937414. [PMID: 35909738 PMCID: PMC9335078 DOI: 10.3389/fpls.2022.937414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 05/14/2023]
Abstract
The citrus orchards in southern China are widely threatened by low soil pH and Huanglongbing (HLB) prevalence. Notably, the lime application has been used to optimize soil pH, which is propitious to maintain root health and enhance HLB tolerance of citrus; however, little is known about the interactive effects of soil acidity on the soil properties and root-associated (rhizoplane and endosphere) microbial community of HLB-infected citrus orchard. In this study, the differences in microbial community structures and functions between the acidified and amended soils in the Gannan citrus orchard were investigated, which may represent the response of the host-associated microbiome in diseased roots and rhizoplane to dynamic soil acidity. Our findings demonstrated that the severity of soil acidification and aluminum toxicity was mitigated after soil improvement, accompanied by the increase in root activity and the decrease of HLB pathogen concentration in citrus roots. Additionally, the Illumina sequencing-based community analysis showed that the application of soil amendment enriched functional categories involved in host-microbe interactions and nitrogen and sulfur metabolisms in the HLB-infected citrus rhizoplane; and it also strongly altered root endophytic microbial community diversity and structure, which represented by the enrichment of beneficial microorganisms in diseased roots. These changes in rhizoplane-enriched functional properties and microbial composition may subsequently benefit the plant's health and tolerance to HLB disease. Overall, this study advances our understanding of the important role of root-associated microbiota changes and ecological factors, such as soil acidity, in delaying and alleviating HLB disease.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dewen Qiu
- The State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Frédéric Francis
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuangchao Wang
- The State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Shuangchao Wang
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- Shutong Wang
| |
Collapse
|
10
|
Phytase-Producing Rahnella aquatilis JZ-GX1 Promotes Seed Germination and Growth in Corn ( Zea mays L.). Microorganisms 2021; 9:microorganisms9081647. [PMID: 34442724 PMCID: PMC8400716 DOI: 10.3390/microorganisms9081647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/30/2022] Open
Abstract
Phytase plays an important role in crop seed germination and plant growth. In order to fully understand the plant growth-promoting mechanism by Rahnella aquatilis JZ-GX1, the effect of this strain on germination of maize seeds was determined in vitro, and the colonization of maize root by R. aquatilis JZ-GX1 was observed by scanning electron microscope. Different inoculum concentrations and Phytate-related soil properties were applied to investigate the effect of R. aquatilis JZ-GX1 on the growth of maize seedlings. The results showed that R. aquatilis JZ-GX1 could effectively secrete indole acetic acid and had significantly promoted seed germination and root length of maize. A large number of R. aquatilis JZ-GX1 cells colonized on the root surface, root hair and the root interior of maize. When the inoculation concentration was 107 cfu/mL and the insoluble organophosphorus compound phytate existed in the soil, the net photosynthetic rate, chlorophyll content, phytase activity secreted by roots, total phosphorus concentration and biomass accumulation of maize seedlings were the highest. In contrast, no significant effect of inoculation was found when the total P content was low or when inorganic P was sufficient in the soil. R. aquatilis JZ-GX1 promotes the growth of maize directly by secreting IAA and indirectly by secreting phytase. This work provides beneficial information for the development and application of R. aquatilis JZ-GX1 as a microbial fertilizer in the future.
Collapse
|
11
|
Chen F, Ye J, Liu W, Chio C, Wang W, Qin W. Knockout of a highly GC-rich gene in Burkholderia pyrrocinia by recombineering with freeze-thawing transformation. MOLECULAR PLANT PATHOLOGY 2021; 22:843-857. [PMID: 33942460 PMCID: PMC8232026 DOI: 10.1111/mpp.13058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 05/12/2023]
Abstract
Genetic transformation is a valuable and essential method that provides powerful insights into the gene function of microorganisms and contributes to the construction of engineered bacteria. Here, we developed a novel genetic transformation system to easily knock out a highly GC-rich gene (74.71% GC) from Burkholderia pyrrocinia JK-SH007, a biocontrol strain of poplar canker disease. This system revealed a reliable selectable marker (trimethoprim resistance gene, Tmp) and a simplified, efficient transformation method (6,363.64 CFU/μg, pHKT2) that was developed via freeze-thawing. The knockout recombineering of B. pyrrocinia JK-SH007 was achieved through a suicide plasmid with a three-fragment mutagenesis construct. The three-fragment cassette for mutagenesis was generated by overlap extension and touchdown PCRs and composed of Tmp flanked by GC-rich upstream and downstream fragments from B. pyrrocinia JK-SH007. The mutant strain (ΔBpEG), which was verified by PCR, lost 93.3% of its ability to degrade carboxymethyl cellulose over 40 days. Overall, this system may contribute to future research on B. pyrrocinia traits.
Collapse
Affiliation(s)
- Feifei Chen
- College of Forestry and Co‐Innovation Center for Sustainable Forestry in Southern ChinaJiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingJiangsuChina
- Department of BiologyLakehead UniversityThunder BayOntarioCanada
| | - Jianren Ye
- College of Forestry and Co‐Innovation Center for Sustainable Forestry in Southern ChinaJiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingJiangsuChina
| | - Wanhui Liu
- College of Forestry and Co‐Innovation Center for Sustainable Forestry in Southern ChinaJiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingJiangsuChina
| | - Chonlong Chio
- Department of BiologyLakehead UniversityThunder BayOntarioCanada
| | - Wendy Wang
- Department of BiologyLakehead UniversityThunder BayOntarioCanada
| | - Wensheng Qin
- Department of BiologyLakehead UniversityThunder BayOntarioCanada
| |
Collapse
|
12
|
Liu A, Zhang P, Bai B, Bai F, Jin T, Ren J. Volatile Organic Compounds of Endophytic Burkholderia pyrrocinia Strain JK-SH007 Promote Disease Resistance in Poplar. PLANT DISEASE 2020; 104:1610-1620. [PMID: 32271644 DOI: 10.1094/pdis-11-19-2366-re] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Volatile organic compounds (VOCs) play important roles in the regulation of plant growth and pathogen resistance. However, little is known about the influence of VOCs released from endophytic strains (Burkholderia pyrrocinia strain JK-SH007) on controlling pathogens or inducing systemic resistance in poplar. In this study, we found that VOCs produced by strain JK-SH007 inhibit three poplar canker pathogens (Cytospora chrysosperma, Phomopsis macrospora, and Fusicoccum aesculi) and promote defense enzyme activity and malondialdehyde (MDA) and total phenol (TP) accumulation. Thirteen kinds of VOC components were identified using the solid-phase microextraction combined with gas chromatography-mass spectrometry method. Dimethyl disulfide (DMDS) accounted for the largest proportion of these VOCs. Treatments of poplar seedlings with different volumes of VOC standards (DMDS, benzothiazole, dimethylthiomethane, and phenylacetone) showed that DMDS had the greatest effects on various defense enzyme activities and MDA and TP accumulation. We also found that the inhibitory effect of the VOCs on the three pathogens was gradually enhanced with increasing standard volume. Moreover, the treatment of samples with DMDS significantly reduced the severity and development of the disease caused by three poplar canker pathogens. Comparative transcriptomics analysis of poplar seedlings treated with DMDS showed that there were 1,586 differentially expressed genes in the leaves and stems, and quantitative PCR showed that the gene expression trends were highly consistent with the transcriptome sequencing results. The most significant transcriptomic changes induced by VOCs were related to hormone signal transduction, transcriptional regulation of plant-pathogen interactions, and energy metabolism. Moreover, 137 transcription factors, including members of the ethylene response factor, NAC, WRKY, G2-like, and basic helix-loop-helix protein families, were identified to be involved in the VOC-induced process. This study elucidates the resistance induced by Burkholderia pyrrocinia strain JK-SH007 to poplar canker at the molecular level and can make possible a new method for the comprehensive prevention and control of poplar disease.
Collapse
Affiliation(s)
- Ake Liu
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Pengfei Zhang
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Bianxia Bai
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Fenglin Bai
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Tingting Jin
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Jiahong Ren
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| |
Collapse
|
13
|
Fu H, Chen F, Liu W, Kong W, Wang C, Fang X, Ye J. Adding nutrients to the biocontrol strain JK-SH007 promotes biofilm formation and improves resistance to stress. AMB Express 2020; 10:32. [PMID: 32048076 PMCID: PMC7013030 DOI: 10.1186/s13568-019-0929-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
Abstract
Burkholderia pyrrocinia JK-SH007 is an important biocontrol strain for the prevention and treatment of poplar canker disease. Its powerful biocontrol function is inseparable from its successful colonization of poplar trees. Bacterial biofilms can ensure the long-term colonization of a host. To explore the mechanism of action of biofilms in the biocontrol process, we manipulated various exogenous factors to explore the morphology of the JK-SH007 biofilm in vitro. The addition of glycerol and MgSO4 to TSB medium stimulated biofilm production, increased the resistance of JK-SH007 to disease, enhanced the survival of JK-SH007 in nutrient-poor environments and maintained the antagonistic ability of JK-SH007 against the poplar canker pathogen. Therefore, we constructed and optimized a biofilm-forming system to produce a large number of stable JK-SH007 biofilms. The optimized system showed that the optimal incubation time for JK-SH007 biofilm formation was 14 h, the optimal temperature of the static culture was 25 °C, and the optimal pH was 5. The optimal medium for biofilm formation was TSB medium, 1% glycerol and 50 mM MgSO4. RT-qPCR experiments showed that an increase in the expression of the suhB gene promoted JK-SH007 biofilm formation, while an increase in the expression level of the ropN gene inhibited JK-SH007 biofilm formation. The possible mechanism by which JK-SH007 was inhibited by biofilm formation under natural culture was revealed. These results indicate the importance of adding nutrients to JK-SH007 biocides produced on a commercial scale. This is the first report of JK-SH007 producing a long-lasting biofilm that guarantees antagonism.
Collapse
|
14
|
Chen F, Ye J, Sista Kameshwar AK, Wu X, Ren J, Qin W, Li DW. A Novel Cold-Adaptive Endo-1,4-β-Glucanase From Burkholderia pyrrocinia JK-SH007: Gene Expression and Characterization of the Enzyme and Mode of Action. Front Microbiol 2020; 10:3137. [PMID: 32038571 PMCID: PMC6987409 DOI: 10.3389/fmicb.2019.03137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/26/2019] [Indexed: 11/30/2022] Open
Abstract
The efficient industrial conversion of plant-derived cellulose to simple sugars and other value-added chemicals requires various highly stable and reactive enzymes. Industrial processes especially synchronous saccharification and fermentation (SSF)-based production of cellulosic bio-ethanol require enzymes that are active at lower temperatures. In this study, we have identified, characterized, and expressed the cold-adaptive endo-1,4-β-glucanase (BpEG) isolated from the Burkholderia pyrrocinia JK-SH007. The analysis of the predicted amino acid sequence indicated that BpEG belongs to GH family 8. The BpEG without the signal peptide was cloned into the expression vector pET32a and significantly expressed in Escherichia coli BL21 (DE3) competent cells. The SDS-PAGE and Western blot analysis of BpEG revealed that the recombinant BpEG was approximately 60 kDa. Purified recombinant BpEG exhibited hydrolytic activity against carboxymethyl cellulose (CMC) and phosphoric acid swollen cellulose (PASC), but not crystalline cellulose and xylan substrates. High performance, anion exchange, chromatography-pulsed amperometric detector (HPAEC-PAD) analysis of the enzymatic products obtained from depolymerization of 1,4-β-linked biopolymers of different lengths revealed an interesting cutting mechanism employed by endoglucanases. The recombinant BpEG exhibited 6.0 of optimum pH and 35°C of optimum temperature, when cultured with CMC substrate. The BpEG enzyme exhibited stable activity between pH 5.0 and 9.0 at 35°C. Interestingly, BpEG retained about 42% of its enzymatic activity at 10°C compared to its optimal temperature. This new cold-adaptive cellulase could potentially achieve synchronous saccharification and fermentation (SSF) making BpEG a promising candidate in the fields of biofuel, biorefining, food and pharmaceutical industries.
Collapse
Affiliation(s)
- Feifei Chen
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Jianren Ye
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | | | - Xuelian Wu
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jiahong Ren
- Department of Biology Science and Technology, Changzhi College, Changzhi, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - De-Wei Li
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,The Connecticut Agricultural Experiment Station, Valley Laboratory, Windsor, CT, United States
| |
Collapse
|
15
|
Chen F, Ye J, Chio C, Liu W, Shi J, Qin W. A simplified quick microbial genomic DNA extraction via freeze-thawing cycles. Mol Biol Rep 2019; 47:703-709. [PMID: 31713008 DOI: 10.1007/s11033-019-05176-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Effective isolation of high-quality genomic DNA is one of the essential steps in molecular biology, biochemistry, and genetic studies. Here we describe a simplified procedure based on repeated freeze-thawing cycles to isolate genomic DNA from different organisms of microbes (Burkholderia pyrrocinia JK-SH007, Bacillus pumilus HRl0, Botrytis cinerea) and nematodes (Bursaphelenchus xylophilus). The DNA extraction buffer includes 10% of CTAB; 4% of NaCl (W/V); 20 mM of ethylenediamine tetraacetic acid; 100 mM of Tris-HCl, pH 8.0 and 1% of polyvinylpyrrolidone. The released DNA was purified from the mixture using a phenol/chloroform mixture and precipitated in 70% ethanol to remove proteins, carbohydrates, phenols, RNA, etc. Our method is a reproducible, simple, and rapid technique for routine DNA extractions from various microorganisms and nematodes. Furthermore, the low cost of this method could be an economic benefit to large-scale studies.
Collapse
Affiliation(s)
- Feifei Chen
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China.,Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.,Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Jianren Ye
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China. .,Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Wanhui Liu
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China.,Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jiyuan Shi
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China.,Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| |
Collapse
|
16
|
Qiao H, Sun XR, Wu XQ, Li GE, Wang Z, Li DW. The phosphate-solubilizing ability of Penicillium guanacastense and its effects on the growth of Pinus massoniana in phosphate-limiting conditions. Biol Open 2019; 8:bio.046797. [PMID: 31649117 PMCID: PMC6899000 DOI: 10.1242/bio.046797] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microbes in soil can degrade insoluble inorganic and organic phosphorus, which are components of the soil phosphorus cycle and play an important role in plant growth. Pinus massoniana is a pioneer tree species used for afforestation in southern China and grows in poor, acidic soil. A shortage of available phosphorus in soil limits the growth of P. massoniana. To alleviate this situation, it is necessary to improve soil fertility. A fungal strain (JP-NJ2) with the ability to solubilize phosphate was isolated from the P. massoniana rhizosphere. The ability of JP-NJ2 to solubilize inorganic and organic phosphorus and promote the growth of P. massoniana was evaluated. It showed that JP-NJ2 could grow in NBRIP inorganic phosphate (AlPO4, FePO4·4H2O, and Ca3[PO4]2) fermentation broths, with the highest phosphorus concentration (1.93 mg/ml) and phosphate-solubilizing rate (43.7%) for AlPO4 and in Monkina organic phosphate fermentation broth with a phosphorus concentration of 0.153 mg/ml. The phosphate-solubilizing capability in inorganic and organic fermentation broths was negatively correlated with pH. JP-NJ2-produced acids at a total concentration of 4.7 g/l, which included gluconic (2.3 g/l), oxalic (1.1 g/l), lactic (0.7 g/l) and malonic (0.5 g/l) acids. It prioritized extracellular acidic phosphatase and combined with phytase to solubilize organic phosphates. The fungal suspension and extracellular metabolites from phosphate-solubilizing fungi promoted the shoot length of P. massoniana seedlings by 97.7% and 59.5%, respectively, while increasing the root crown diameter by 46.8% and 27.7%. JP-NJ2 was identified as Penicillium guanacastense based on its morphology and phylogenetic analyses of five genes/regions (ITS, ben A, cmd, cox1 and tef). This is the first report on P. guanacastense isolated from pine tree rhizosphere soil in China and its high phosphate-solubilizing capability, which promoted the growth of P. massoniana. P. guanacastense JP-NJ2 has potential use as a biological fertilizer in forestry and farming. Summary: Identification of a phosphate-solubilizing fungus and its first report in the application as a biological fertilizer.
Collapse
Affiliation(s)
- Huan Qiao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Rui Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Gui-E Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.,The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USA
| |
Collapse
|
17
|
Liu WH, Chen FF, Wang CE, Fu HH, Fang XQ, Ye JR, Shi JY. Indole-3-Acetic Acid in Burkholderia pyrrocinia JK-SH007: Enzymatic Identification of the Indole-3-Acetamide Synthesis Pathway. Front Microbiol 2019; 10:2559. [PMID: 31749788 PMCID: PMC6848275 DOI: 10.3389/fmicb.2019.02559] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022] Open
Abstract
Burkholderia pyrrocinia JK-SH007 is a plant growth-promoting bacteria (PGPB), that can promote the growth of poplar and other trees, and, production of the plant hormone indole-3-acetic acid (IAA) is one of the reasons for this effect. Therefore, the aims of this study were to evaluate the effect of the external environment on the synthesis of IAA by B. pyrrocinia JK-SH007 and to perform a functional analysis of its IAA synthesis pathway. In this study, IAA and its synthetic intermediates indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), tryptamine (TAM), and indole-3-acetonitrile (IAN) were detected in B. pyrrocinia JK-SH007 fermentation broth by high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS), and these indolic compounds were also found in the cell-free extraction of B. pyrrocinia JK-SH007, but the genomic analysis of B. pyrrocinia JK-SH007 indicated that IAA biosynthesis was mainly through the IAM and TAM pathways. The effects of L-tryptophan (L-Trp), temperature and pH on the synthesis of IAA were investigated, and the results showed that L-Trp exerted a significant effect on IAA synthesis and that 37°C and pH 7 were the optimal conditions IAA production by B. pyrrocinia JK-SH007. In addition, the protein expression of tryptophan 2-monooxygenase and indoleacetamide hydrolase, which are the key enzymes of the indole acetamide-mediated IAA synthesis pathway, was analyzed, and their activity was verified by substrate feeding experiments. The results revealed the existence of an IAA synthesis pathway mediated by IAM and indicated that this pathway plays a role in B. pyrrocinia JK-SH007. This study lays the foundation for further exploration of the specific pathway and mechanism of IAA synthesis in B. pyrrocinia JK-SH007.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian-Ren Ye
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | | |
Collapse
|
18
|
Arriel-Elias MT, de Carvalho Barros Côrtes MV, de Sousa TP, Chaibub AA, de Filippi MCC. Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19705-19718. [PMID: 31089999 DOI: 10.1007/s11356-019-05238-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Leaf blast is the main rice disease in the world causing significant losses in productivity. Blast integrate management (BIM) requires the use of genetic resistance, cultural practices, and chemical control, although for sustainable BIM, the insertion of biological agents may be the fourth component for. The objective of this work was to test three formulations of Burkholderia pyrrocinia (BRM32113) previously selected and to verify the effectiveness in resistance induction and blast control in rice. Two experiments were carried out, in a completely randomized design with three replications, in the greenhouse (E1 and E2). E1 aimed to select the best treatment for suppressing leaf blast severity and activating plant defense mechanisms. It was composed of 8 treatments: (1) formulated 11+ B. pyrrocina × Magnaporthe oryzae; (2) formulated 17+ B. pyrrocina × M. oryzae; (3) formulated 32+ B. pyrrocina × M. oryzae; (4) formulated 11 × M. oryzae; (5) B. pyrrocinia 17 × M. oryzae; (6) formulated 32 × M. oryzae; (7) B. pyrrocina × M. oryzae; (8) M. oryzae; (9) control (water). E2 aimed to investigate the effect of the best treatments, for the promotion of plant growth and suppression of leaf blast by calculating AUDPC. It was composed of 6 treatments: (1) formulated 11+ B. pyrrocina × M. oryzae; (2) formulated 32+ B. pyrrocina × M. oryzae; (3) formulated 11 × M. oryzae; (4) formulated 32 × M. oryzae; (5) B. pyrrocina × M. oryzae; (6) water. And after, we did two assays aimed to localize this biological agent after application at seed, soil, and rice plant. In E1, formulated 11+ B. pyrrocinia and 32+ formulated and B. pyrrocina were the best, suppressing leaf blast by up to 97% and providing the significant increase of the enzymes β-1,3-glucanase, chitinase, phenylalanine ammonia lyase, lipoxygenase, and salicylic acid at 24 h and 48 h after inoculation with M. oryzae. In E2, treatments formulated 11+ B. pyrrocinia, formulated 32+ B. pyrrocinia, and B. pyrrocina provided more significant increases in growth promotion and reduced area under disease progress curve. B. pyrrocinia was detected in the rice plant for 18 days, predominantly in the root system (internal and external). The use of B. pyrrocinia formulations based on sugarcane molasses and glycerol can be an essential strategy for sustainable management. Although all the benefits come from these sustainable formulations, the adoption by commercial biological segment depends on an established formulation process. It seems that all the results showed here by this research will be readily assimilated by startups of the organic segment.
Collapse
Affiliation(s)
| | - Marcio Vinicius de Carvalho Barros Côrtes
- Phytopathology Laboratory (Laboratório de Fitopatologia), Brazilian Enterprise for Agricultural Research-Rice and Beans (Embrapa Arroz e Feijão), Goiânia, GO, 75375-000, Brazil
| | | | | | - Marta Cristina Corsi de Filippi
- Phytopathology Laboratory (Laboratório de Fitopatologia), Brazilian Enterprise for Agricultural Research-Rice and Beans (Embrapa Arroz e Feijão), Goiânia, GO, 75375-000, Brazil.
| |
Collapse
|
19
|
Characteristics of Organic Acid Secretion Associated with the Interaction between Burkholderia multivorans WS-FJ9 and Poplar Root System. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9619724. [PMID: 30687759 PMCID: PMC6330825 DOI: 10.1155/2018/9619724] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/17/2018] [Accepted: 12/02/2018] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate whether plant-bacteria interaction affects the secretion of organic acids by both organisms and to assess whether the production of IAA by the bacterium increases the secretion of organic acids by root exudates, and if the stress produced by low available phosphorus (P) affects the production of organic acids by bacteria, by roots, or by root exudates in presence of bacterial cultures. With this purpose, we used as a biological model poplar plants and one strain of Burkholderia multivorans able to solubilize P. High performance liquid chromatography was utilized to measure organic acids. The tests, the inductive effects of exogenous indole-3-acetic acid (IAA) on secretion of organic acids, the 2 × 4 × 2 factorial design experiment, and the ability of organic acids to solubilize tricalcium phosphate were performed to investigate the interactive effects. The results showed that, after B. multivorans WS-FJ9 interacted with the poplar root system, the key phosphate-solubilizing driving force was gluconic acid (GA) which was produced in three ways: (1) secreted by the root system in the presence of IAA produced by B. multivorans WS-FJ9; (2) secreted by B. multivorans WS-FJ9; and (3) secreted by the poplar root system in the presence of phosphorus stress. When phosphorus stress was absent, the GA was produced as outlined in (1) and (2) above. These results demonstrated that inoculating B. multivorans WS-FJ9 into the poplar root system could increase the amount of GA secretion and implied that the interaction between B. multivorans WS-FJ9 and the poplar root system could contribute to the increase of P available fraction for poplar plants.
Collapse
|
20
|
Wu Q, Dou X, Wang Q, Guan Z, Cai Y, Liao X. Isolation of β-1,3-Glucanase-Producing Microorganisms from Poria cocos Cultivation Soil via Molecular Biology. Molecules 2018; 23:molecules23071555. [PMID: 29954113 PMCID: PMC6100237 DOI: 10.3390/molecules23071555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/26/2022] Open
Abstract
β-1,3-Glucanase is considered as a useful enzymatic tool for β-1,3-glucan degradation to produce (1→3)-linked β-glucan oligosaccharides with pharmacological activity properties. To validly isolate β-1,3-glucanase-producing microorganisms, the soil of Wolfiporia extensa, considered an environment rich in β-1,3-glucan-degrading microorganisms, was subjected to high throughput sequencing. The results demonstrated that the genera Streptomyces (1.90%) and Arthrobacter (0.78%) belonging to the order Actinomycetales (8.64%) in the phylum Actinobacteria (18.64%) were observed in soil for P. cocos cultivation (FTL1). Actinomycetes were considered as the candidates for isolation of glucan-degrading microorganisms. Out of 58 isolates, only 11 exhibited β-1,3-glucan-degrading activity. The isolate SYBCQL belonging to the genus Kitasatospora with β-1,3-glucan-degrading activity was found and reported for the first time and the isolate SYBC17 displayed the highest yield (1.02 U/mg) among the isolates. To check the β-1,3-glucanase contribution to β-1,3-glucan-degrading activity, two genes, 17-W and 17-Q, encoding β-1,3-glucanase in SYBC17 and one gene QLK1 in SYBCQL were cloned and expressed for verification at the molecular level. Our findings collectively showed that the isolates able to secrete β-1,3-glucanase could be obtained with the assistance of high-throughput sequencing and genes expression analysis. These methods provided technical support for isolating β-1,3-glucanase-producing microorganisms.
Collapse
Affiliation(s)
- Qiulan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xin Dou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Qi Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
21
|
[The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens]. Rev Argent Microbiol 2018; 51:84-92. [PMID: 29691107 DOI: 10.1016/j.ram.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
The Burkholderia cepacia complex is a group of 22 species, which are known as opportunistic pathogens in immunocompromised people, especially those suffering from cystic fibrosis. It is also found in nosocomial infections and is difficult to eradicate due to intrinsic resistance to several antibiotics. The species have large genomes (up to 9 Mbp), distributed into 2-5 replicons. These features significantly contribute to genome plasticity, which makes them thrive in different environments like soil, water, plants or even producing nodules in legume plants. Some B. cepacia complex species are beneficial in bioremediation, biocontrol and plant-growth promotion. However, because the B. cepacia complex is involved in human infection, its use in agriculture is restricted. B. cepacia complex is being constantly studied due to the health problems that it causes and because of its agricultural potential. In this review, the history of B. cepacia complex and the most recently published information related to this complex are revised.
Collapse
|
22
|
Li Y, Wu C, Xing Z, Gao B, Zhang L. Engineering the bacterial endophyte Burkholderia pyrrocinia JK-SH007 for the control of lepidoptera larvae by introducing the cry218 genes of Bacillus thuringiensis. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1379361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yang Li
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, College of Forest, Nanjing Forestry University, Nanjing, PR China
| | - Choufei Wu
- Collaborative Innovation Center of Green Pesticide, College of Life Science, Huzhou University, Huzhou, PR China
| | - Zhong Xing
- Department of Biology and Chemistry Engineering, College of Zhixing, Hubei University, Wuhan, PR China
| | - Bingli Gao
- Collaborative Innovation Center of Green Pesticide, College of Life Science, Huzhou University, Huzhou, PR China
| | - Liqin Zhang
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, College of Forest, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|
23
|
Patra JK, Vishnuprasad CN, Das G. Bioprospecting of Endophytes for Agricultural and Environmental Sustainability. Microb Biotechnol 2017. [PMCID: PMC7120099 DOI: 10.1007/978-981-10-6847-8_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The term endophytes refers to a group of endosymbionts usually bacterium, fungus or interactive bacterium-fungal species residing asymptomatically and grows within plants for at least a part of their life cycle intra- and intercelullarly in the tissues of higher plants without causing any visible manifestation of disease. The endophytes represent a potential source of novel natural and ecofriendly products for medicinal, agricultural and industrial uses with least adverse effect on the environment. The enormous biological diversity coupled with their capability to biosynthesize bioactive secondary metabolites has provided the momentum for the researchers working on endophytes. The present review was undertaken to highlight the biotechnological processes and bioprospection of endophytes as potential antimicrobial agents, secondary metabolites, antibiotics, antagonists against disease causing phytopathogens, cytotoxic, anticancer, insecticidal, antioxidant antiviral compounds andisolation and production of bioactive compounds with potent enzymatic activities. Endophyte enhances biodegradation and hydrolysis processes significantly important against pathogenic infection, biotransformation studies and production of compounds with immense industrial applications. The interaction of the endophytic microbiota with the plants are more protected and can withstand the adverse environmental conditions and contribute to plant growth, productivity, carbon sequestration, enhanced phytoremediation efficiencies and amelioration of metal induced toxicity. The strategies governed by the endophytes for efficient production of novel bioactive phytocompounds was comprehensively discussed. The review envisaged the biodiversity, transmission of endophytes, plant endophyte interactions for the production of bioactive compounds for therapeutic, environmental and agricultural sustainability.
Collapse
Affiliation(s)
| | | | - Gitishree Das
- Dongguk University, Goyang-si, Gyeonggi-do, Korea (Republic of)
| |
Collapse
|
24
|
Jain P, Pundir RK. Potential Role of Endophytes in Sustainable Agriculture-Recent Developments and Future Prospects. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2017. [DOI: 10.1007/978-3-319-66541-2_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Wu BY, Ye JR, Huang L, He LM, Li DW. Validation of reference genes for RT-qPCR analysis in Burkholderia pyrrocinia JK-SH007. J Microbiol Methods 2016; 132:95-98. [PMID: 27725176 DOI: 10.1016/j.mimet.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 11/18/2022]
Abstract
Burkholderia pyrrocinia strain JK-SH007 isolated from poplar stems plays a highly significant role in the growth promotion and the biocontrol of poplar canker during colonization in poplar. In this research, the ideal reference gene was filtered and determined for the transcript normalization. Additionally, the expression of pyrG under all four conditions was relatively stable in B. pyrrocinia JK-SH007.
Collapse
Affiliation(s)
- Bin-Yan Wu
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jian-Ren Ye
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Lin Huang
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ling-Min He
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - De-Wei Li
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China; The Connecticut Agricultural Experiment Station, Valley Laboratory, 153 Cook Hill Road, Windsor, CT, United States
| |
Collapse
|
26
|
Impact of endophytic microorganisms on plants, environment and humans. ScientificWorldJournal 2014; 2014:250693. [PMID: 24587715 PMCID: PMC3920680 DOI: 10.1155/2014/250693] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/13/2013] [Indexed: 11/23/2022] Open
Abstract
Endophytes are microorganisms (bacteria or fungi or actinomycetes) that dwell within robust plant tissues by having a symbiotic association. They are ubiquitously associated with almost all plants studied till date. Some commonly found endophytes are those belonging to the genera Enterobacter sp., Colletotrichum sp., Phomopsis sp., Phyllosticta sp., Cladosporium sp., and so forth. Endophytic population is greatly affected by climatic conditions and location where the host plant grows. They produce a wide range of compounds useful for plants for their growth, protection to environmental conditions, and sustainability, in favour of a good dwelling place within the hosts. They protect plants from herbivory by producing certain compounds which will prevent animals from further grazing on the same plant and sometimes act as biocontrol agents. A large amount of bioactive compounds produced by them not only are useful for plants but also are of economical importance to humans. They serve as antibiotics, drugs or medicines, or the compounds of high relevance in research or as compounds useful to food industry. They are also found to have some important role in nutrient cycling, biodegradation, and bioremediation. In this review, we have tried to comprehend different roles of endophytes in plants and their significance and impacts on man and environment.
Collapse
|
27
|
Li GX, Wu XQ, Ye JR. Biosafety and colonization of Burkholderia multivorans WS-FJ9 and its growth-promoting effects on poplars. Appl Microbiol Biotechnol 2013; 97:10489-98. [PMID: 24092012 DOI: 10.1007/s00253-013-5276-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 11/28/2022]
Abstract
Burkholderia cepacia complex (Bcc) is a group of bacteria with conflicting biological characteristics, which make them simultaneously beneficial and harmful to humans. They have been exploited for biocontrol, bioremediation, and plant growth promotion. However, their capacity as opportunistic bacteria that infect humans restricts their biotechnological applications. Therefore, the risks of using these bacteria should be assessed. In this study, Burkholderia multivorans WS-FJ9 originally isolated from pine rhizosphere, which was shown to be efficient in solubilizing phosphate, was evaluated with respect to its biosafety, colonization in poplar rhizosphere, and growth-promoting effects on poplar seedlings. Pathogenicity of B. multivorans WS-FJ9 on plants was determined experimentally using onion and tobacco as model plants. Onion bulb inoculated with B. multivorans WS-FJ9 showed slight hypersensitive responses around the inoculation points, but effects were not detectable based on the inner color and odor of the onion. Tobacco leaves inoculated with B. multivorans WS-FJ9 exhibited slightly water-soaked spots around the inoculation points, which did not expand or develop into lesions even with repeated incubation. Pathogenicity of the strain in alfalfa, which has been suggested as an alternative Bcc model for mice, was not detectable. Results from gene-specific polymerase chain reactions showed that the tested B. multivorans WS-FJ9 strain did not possess the BCESM and cblA virulence genes. Scanning electron microscopy revealed that the colonization of the WS-FJ9 strain reached 1.4 × 10(4) colony forming units (cfu) g(-1) rhizosphere soil on day 77 post-inoculation. The B. multivorans WS-FJ9 strain could colonize the rhizosphere as well as the root tissues and cells of poplars. Greenhouse evaluations in both sterilized and non-sterilized soils indicated that B. multivorans WS-FJ9 significantly promoted growth in height, root collar diameter, and plant biomass of inoculated poplar seedlings compared with controls. Phosphorus contents of roots and stems of treated seedlings were 0.57 and 0.55 mg g(-1) higher than those of the controls, respectively. Phosphorus content was lower in the rhizosphere soils by an average of 1.03 mg g(-1) compared with controls. The results demonstrated that B. multivorans WS-FJ9 is a nonpathogenic strain that could colonize the roots and significantly promote the growth of poplar seedlings.
Collapse
Affiliation(s)
- Guan-Xi Li
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | | | | |
Collapse
|
28
|
Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine. World J Microbiol Biotechnol 2013; 29:2181-93. [PMID: 23709169 DOI: 10.1007/s11274-013-1384-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
A number of soil microorganisms can convert insoluble forms of phosphorus (P) to an accessible form to increase plant yields. Phytate is such a large kind of insoluble organic phosphorus that plants cannot absorb directly in soil, so the objectives of this study were to isolate, screen phytate-degrading rhizobacteria (PDRB), and to select potential microbial inocula that could increase the P uptake by plants. In this study, a total of 24 soil samples were collected from natural habitats of eight poplar and pine planting areas from the eastern to southern China. 17 PDRB strains were preliminarily screened from the rhizosphere soil of poplars and pines by the visible decolorization in the phytate selective medium. The highest ratio of the total diameter (colony + halo zone) to the colony diameter of the isolates was JZ-GX1, 3.85. Afterward, 17 PDRB strains were further determined for their abilities to degrade sodium phytate based on the amount of liberated inorganic P in liquid phytate specific medium. The results showed that the phytase ability of the three highest PDRB strains: JZ-GX1, JZ-DZ1 and JZ-ZJ1 were up to 2.58, 2.36 and 2.24 U/mL, respectively, much better than most of the bacteria reported in previous studies. In the soil-plant experiment, compared to CK, the best three strains of PDRB all could significantly promote growth of poplar and Masson pine under container growing. The three efficient PDRB strains were identified as follow: JZ-GX1, Rahnella aquatilis, both JZ-DZ1 and JZ-ZJ1 being autofluorescent, Pseudomonas fluorescens, by 16S rDNA gene sequencing technology, Biolog Identification System and biological characterization. The present study suggests that the three screened PDRB strains would have great potential application as biological fertilizers in the future.
Collapse
|
29
|
Sopheareth M, Chan S, Naing KW, Lee YS, Hyun HN, Kim YC, Kim KY. Biocontrol of Late Blight (Phytophthora capsici) Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7. THE PLANT PATHOLOGY JOURNAL 2013; 29:67-76. [PMID: 25288930 PMCID: PMC4174795 DOI: 10.5423/ppj.oa.07.2012.0114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/08/2012] [Accepted: 12/09/2012] [Indexed: 05/31/2023]
Abstract
A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-ketogluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA) and phenylacetic acid (PA). The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phytophthora capsici, pepper plants in pot trials were treated with modified medium only (M), M plus zoospore inoculation (MP), MPC-7 cultured broth (B) and B plus zoospore inoculation (BP). With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.
Collapse
Affiliation(s)
- Mao Sopheareth
- Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Sarun Chan
- Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Kyaw Wai Naing
- Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Yong Seong Lee
- Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Hae Nam Hyun
- Major of Plant Resources and Environment, Jeju National University, Jeju 690-756, Korea
| | - Young Cheol Kim
- Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Kil Yong Kim
- Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|