1
|
Presela R, Prabu SS, Ch'ng ES, Tang TH, Citartan M. The diagnostic potentiality of the RNA aptamer against progesterone receptor isolated by crush and soak (CRUSOAK)-SELEX. Mikrochim Acta 2024; 191:346. [PMID: 38802696 DOI: 10.1007/s00604-024-06423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Aptamers are a class of molecular recognition elements that exhibit high binding affinity and specificity against their respective targets. In view of the many advantages aptamers harbor over their counterpart antibodies, we were impelled to isolate an RNA aptamer against progesterone receptor, particularly its DNA binding domain. A total of eight SELEX cycles were executed against the recombinant Progesterone Receptor DNA-binding domain (PR DBD). The RNA-protein complex in the gel shift assay was subjected to crush and soak method to elute the binders prior to conventional sequencing, the step of which was based upon to coin the term CRUSOAK-SELEX. The sequencing revealed three different classes of sequences, with one class termed, PRapt-3, showing the strongest binding against PR DBD. The dissociation constant of PRapt-3 RNA aptamer was estimated at 380 nM ± 35 nM. PRapt-3 was successfully used to develop aptamer-based diagnostic assays such as ELASA, aptamer-based dot blot, and aptamer-based western blot. The prominent highlight is the performance of the aptamer in aptacytostaining, which was unachievable with antibodies. Compared to its counterpart antibodies, PRapt-3 has a better penetration capacity in aptahistostaining using the formalin-fixed paraffin-embedded (FFPE) breast cancer cells and tissue blocks. This study represents the first ever demonstration of an aptamer against progesterone receptor and its diagnostic capacity.
Collapse
Affiliation(s)
- Ravinderan Presela
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siva Sankar Prabu
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Thevendran R, Rogini S, Leighton G, Mutombwera A, Shigdar S, Tang TH, Citartan M. The Diagnostic Potential of RNA Aptamers against the NS1 Protein of Dengue Virus Serotype 2. BIOLOGY 2023; 12:biology12050722. [PMID: 37237536 DOI: 10.3390/biology12050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 05/28/2023]
Abstract
Dengue infection, caused by the dengue virus, is a global threat which requires immediate attention and appropriate disease management. The current diagnosis of dengue infection is largely based on viral isolation, RT-PCR and serology-based detection, which are time-consuming and expensive, and require trained personnel. For early diagnosis of dengue, the direct detection of a dengue antigenic target is efficacious, and one such target is NS1. NS1-based detection is primarily antibody-centric and is beset by drawbacks pertaining to antibodies such as the high cost of synthesis and large batch-to-batch variation. Aptamers are potential surrogates of antibodies and are much cheaper, without exhibiting batch-to-batch variation. Given these advantages, we sought to isolate RNA aptamers against the NS1 protein of dengue virus serotype 2. A total of 11 cycles of SELEX were carried out, resulting in two potent aptamers, DENV-3 and DENV-6, with dissociation constant values estimated at 37.57 ± 10.34 nM and 41.40 ± 9.29 nM, respectively. These aptamers can be further miniaturized to TDENV-3 and TDENV-6a with an increased LOD upon their usage in direct ELASA. Moreover, these truncated aptamers are highly specific against the dengue NS1 while showing no cross-reactivity against the NS1 of the Zika virus, the E2 protein of the Chikungunya virus or the LipL32 protein of Leptospira, with target selectivity retained even in human serum. The usage of TDENV-3 as the capturing probe and TDENV-6a as the detection probe underpinned the development of an aptamer-based sandwich ELASA for the detection of dengue NS1. The sensitivity of the sandwich ELASA was further improved with the stabilization of the truncated aptamers and the repeated incubation strategy, which enabled a LOD of 2 nM when used with the target NS1 spiked in human serum diluted at 1:2000.
Collapse
Affiliation(s)
- Ramesh Thevendran
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
| | - Sivalingam Rogini
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
| | - Glenn Leighton
- Hutano Diagnostics Ltd. BioEscalator, Innovation Building, Old Road Campus, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Atherton Mutombwera
- Hutano Diagnostics Ltd. BioEscalator, Innovation Building, Old Road Campus, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3217, Australia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thean-Hock Tang
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
| | - Marimuthu Citartan
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
3
|
Shien Yeoh T, Yusof Hazrina H, Bukari BA, Tang TH, Citartan M. Generation of an RNA aptamer against LipL32 of Leptospira isolated by Tripartite-hybrid SELEX coupled with in-house Python-aided unbiased data sorting. Bioorg Med Chem 2023; 81:117186. [PMID: 36812779 DOI: 10.1016/j.bmc.2023.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
Leptospirosis is a potentially life-threatening zoonosis caused by pathogenic Leptospira. The major hurdle of the diagnosis of Leptospirosis lies in the issues associated with current methods of detection, which are time-consuming, tedious and the need for sophisticated, special equipments. Restrategizing the diagnostics of Leptospirosis may involve considerations of the direct detection of the outer membrane protein, which can be faster, cost-saving and require fewer equipments. One such promising marker is LipL32, which is an antigen with high amino acid sequence conservation among all the pathogenic strains. In this study, we endeavored to isolate an aptamer against LipL32 protein via a modified SELEX strategy known as tripartite-hybrid SELEX, based on 3 different partitioning strategies. In this study, we also demonstrated the deconvolution of the candidate aptamers by using in-house Python-aided unbiased data sorting in examining multiple parameters to isolate potent aptamers. We have successfully generated an RNA aptamer against LipL32 of Leptospira, LepRapt-11, which is applicable in a simple direct ELASA for the detection of LipL32. LepRapt-11 can be a promising molecular recognition element for the diagnosis of leptospirosis by targeting LipL32.
Collapse
Affiliation(s)
- Tzi Shien Yeoh
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Hamdani Yusof Hazrina
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Bakhtiar A Bukari
- School of Medicine, Deakin University, 3216 Geelong, Victoria, Australia
| | - Thean-Hock Tang
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Marimuthu Citartan
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
4
|
Thevendran R, Foo KL, Hussin MH, Moses EJ, Citartan M, Prasad HR, Maheswaran S. Reverse Electrochemical Sensing of FLT3-ITD Mutations in Acute Myeloid Leukemia Using Gold Sputtered ZnO-Nanorod Configured DNA Biosensors. BIOSENSORS 2022; 12:170. [PMID: 35323440 PMCID: PMC8946250 DOI: 10.3390/bios12030170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
Detection of genetic mutations leading to hematological malignancies is a key factor in the early diagnosis of acute myeloid leukemia (AML). FLT3-ITD mutations are an alarming gene defect found commonly in AML patients associated with high cases of leukemia and low survival rates. Available diagnostic assessments for FLT3-ITD are incapable of combining cost-effective detection platforms with high analytical performances. To circumvent this, we developed an efficient DNA biosensor for the recognition of AML caused by FLT3-ITD mutation utilizing electrochemical impedance characterization. The system was designed by adhering gold-sputtered zinc oxide (ZnO) nanorods onto interdigitated electrode (IDE) sensor chips. The sensing surface was biointerfaced with capture probes designed to hybridize with unmutated FLT3 sequences instead of the mutated FLT3-ITD gene, establishing a reverse manner of target detection. The developed biosensor demonstrated specific detection of mutated FLT3 genes, with high levels of sensitivity in response to analyte concentrations as low as 1 nM. The sensor also exhibited a stable functional life span of more than five weeks with good reproducibility and high discriminatory properties against FLT3 gene targets. Hence, the developed sensor is a promising tool for rapid and low-cost diagnostic applications relevant to the clinical prognosis of AML stemming from FLT3-ITD mutations.
Collapse
Affiliation(s)
- Ramesh Thevendran
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia; (R.T.); (M.C.)
| | - Kai Loong Foo
- Nano Biochip Research Group, Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia;
| | - Mohd Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia;
| | - Emmanuel Jairaj Moses
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia;
| | - Marimuthu Citartan
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia; (R.T.); (M.C.)
| | | | - Solayappan Maheswaran
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia;
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Malaysia
- Centre of Excellence for Nanobiotechnology & Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Bedong 08100, Malaysia
| |
Collapse
|
5
|
Rogers AN, Mastronardo MK, Mekonnen TG, Soto AM. RNA electroelution: Comparing two electroeluter models. Anal Biochem 2021; 632:114391. [PMID: 34562467 DOI: 10.1016/j.ab.2021.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
RNA represents a vibrant area of research and many studies use techniques that require large amounts of purified RNA. One common purification method involves slicing a section of a polyacrylamide gel containing the RNA of interest and eluting the RNA out of the gel using electroelution. Various electroeluter models are available but sometimes a given model becomes discontinued, compelling researchers to choose a different model. Here, we have compared two electroeluters with different chamber designs for their ability to recover RNA from gel pieces. Our results show that both electroeluters are effective and recover comparable amounts of purified RNA.
Collapse
Affiliation(s)
- Amber N Rogers
- Molecular Biology, Biochemistry & Bioinformatics Program, Towson University, Towson, MD, 21252, USA
| | - Maya K Mastronardo
- Molecular Biology, Biochemistry & Bioinformatics Program, Towson University, Towson, MD, 21252, USA
| | - Tsion G Mekonnen
- Department of Biological Sciences, Towson University, Towson, MD, 21252, USA
| | - Ana Maria Soto
- Molecular Biology, Biochemistry & Bioinformatics Program, Towson University, Towson, MD, 21252, USA; Department of Chemistry, Towson University, Towson, MD, 21252, USA.
| |
Collapse
|
6
|
Xie D, Yu Y, Dai Z, Sun J, Su J. Identification and characterization of miRNAs and target genes in developing flax seeds by multigroup analysis. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1903337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Dongwei Xie
- Department of Biotechnology, School of Life Science, Nantong University, Jiangsu, Nantong, PR China
| | - Yue Yu
- Laboratory of Germplasm Resources and Utilization of Economic Crops in South China, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Hunan, Changsha, PR China
| | - Zhigang Dai
- Laboratory of Germplasm Resources and Utilization of Economic Crops in South China, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Hunan, Changsha, PR China
| | - Jian Sun
- Department of Biotechnology, School of Life Science, Nantong University, Jiangsu, Nantong, PR China
| | - Jianguang Su
- Laboratory of Germplasm Resources and Utilization of Economic Crops in South China, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Hunan, Changsha, PR China
| |
Collapse
|
7
|
Unravelling the diagnostic and therapeutic potentialities of a novel RNA aptamer isolated against human pituitary tumour transforming gene 1 (PTTG1) protein. Anal Chim Acta 2020; 1138:181-190. [PMID: 33161980 DOI: 10.1016/j.aca.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Human Pituitary Tumour Transforming Gene 1 (PTTG1) is an oncoprotein involved in maintaining chromosome stability and acts as a biomarker for a panel of cancers. In this study, we endeavoured to generate an RNA aptamer against PTTG1. The RNA aptamer, SECURA-3 has an estimated equilibrium dissociation constant of 16.41 ± 6.4 nM. The aptamer was successfully harnessed in several diagnostic platforms including ELASA, aptamer-based dot blot and aptamer-based western blot. SECURA-3 was also unveiled as a potential probe that could replace its counterpart antibody in the histostaining-based detection of PTTG1 in HeLa and MCF-7 formalin-fixed paraffin-embedded cell blocks. In the aspect of therapeutics, SECURA-3 RNA aptamer demonstrates an antagonistic effect by antagonizing the interaction between PTTG1 and CXCR2, as revealed in the in vitro competitive nitrocellulose filter binding assay and dual-luciferase reporter assay in HeLa cells. As the first anti-PTTG1 aptamer, SECURA-3 RNA aptamer has immense diagnostic and therapeutic properties.
Collapse
|