1
|
Zhang G, Luo Z, Yang Q, Kang W, Zhang J, Li J, Wang T, Lin J, Yu Y, Zhuo C, Zhuo C, Wang Q, Chu Y, Chen Z, Sun Z, Guo D, Zhang L, Xu Y. Establishment of epidemiological cut-off values of etimicin: a new fourth-generation aminoglycoside, against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii and Staphylococcus aureus. J Antimicrob Chemother 2024:dkae414. [PMID: 39657742 DOI: 10.1093/jac/dkae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE To determine the epidemiological cut-off (ECOFF) values of etimicin against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii and Staphylococcus aureus. METHODS We selected 1500 isolates from five hospitals throughout five cities in China spanning from January 2018 to December 2021 in the study. Minimal inhibit concentrations (MICs) of etimicin were determined using the broth microdilution method. ECOFFs of etimicin against six species were calculated using ECOFFinder software and visual estimation following EUCAST principles. RESULTS MICs of etimicin were distributed from 0.064 to >128 mg/L for S. aureus, from 0.125 to >128 mg/L for P. aeruginosa, from 0.25 to >128 mg/L for K. pneumoniae, P. mirabilis and A. baumannii, and from 0.5 to >128 mg/L for E. coli. The MIC ECOFF of etimicin was 2 mg/L for K. pneumoniae, 8 mg/L for E. coli and P. mirabilis, 16 mg/L for P. aeruginosa and A. baumannii, and the tentative ECOFF (TECOFF) of etimicin was 2 mg/L for S. aureus. CONCLUSIONS (T)ECOFFs of etimicin against E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, A. baumannii and S. aureus were determined, which will be helpful to differentiate wild-type strains.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengyu Luo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Kang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Lin
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yunsong Yu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chuyue Zhuo
- Department of Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Zhuo
- Department of Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qihui Wang
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunzhuo Chu
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongju Chen
- Clinical Microbiology Laboratory, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Clinical Microbiology Laboratory, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dan Guo
- Center for Biomedical Technology, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zhao X, Ren J, Zheng X, Wang N, Wu Z, Liu H, Tian W, Zhao D, Xu Y, Han X. A phase I clinical study: Evaluation of safety, tolerability, and population pharmacokinetic-pharmacodynamic target attainment analysis of etimicin sulfate among healthy chinese participants. Int J Antimicrob Agents 2024; 64:107287. [PMID: 39084574 DOI: 10.1016/j.ijantimicag.2024.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND This phase I clinical study aimed to assess the safety, tolerability, and population pharmacokinetic-pharmacodynamics (PK-PD) target attainment analysis of etimicin sulfate in healthy participants, and to provide scientific reference for further development of clinical breakpoints. METHODS A total of 24 healthy Chinese subjects were enrolled in this study and received an etimicin sulfate infusion. A population PK model was constructed for the estimation of the PK profiles of etimicin sulfate. The area under the concentration-time curve divided by the minimum inhibitory concentration (AUC0-24h/MIC) and the peak concentration divided by the MIC (Cmax/MIC) were selected as the PK/PD indices. The probability of target attainment (PTA) was calculated for each designed dosing regimen using Monte Carlo simulations. The minimum MIC value with a PTA ≥ 90% for each regimen was considered as the PK/PD cutoff values. RESULTS Etimicin sulfate demonstrated safety, tolerability, and predictable PK characteristics. No deaths or serious adverse events were reported. Seven treatment-emergent adverse events (TEAEs) were reported by five participants; all TEAEs were minor and were rapidly relieved. A two-compartment model was developed and validated for describing the PK features of etimicin sulfate among Chinese healthy participants. The diagnostic goodness-of-fit plots and visual predictive check plots showed that this developed model could describe these data well. CONCLUSIONS The PTA results showed that etimicin sulfate provided clinical improvement against strains with an MIC of 0.5-1 mg/L and below, and antibacterial effect against strains with an MIC of 0.25 mg/L and below. However, etimicin sulfate had limited clinical efficacy for clinical isolates with MIC values > 1 mg/L.
Collapse
Affiliation(s)
- Xue Zhao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianwei Ren
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Zheng
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhen Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongzhong Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Tian
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - DanDan Zhao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Cui X, Zheng X, Ren J, Liu H, Jia Y, Wu A, Han X. Development and validation of two bioanalysis methods for the determination of etimicin in human serum and urine by liquid chromatography-tandem mass spectrometry: Applications to a human pharmacokinetic and breakpoint study. Front Pharmacol 2023; 14:1076046. [PMID: 36713844 PMCID: PMC9880317 DOI: 10.3389/fphar.2023.1076046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Etimicin is a fourth-generation aminoglycoside antibiotic. It has potent activity and low toxicity when employed for the treatment of Gram-negative and Gram-positive bacterial infections. The pharmacokinetics of etimicin in humans have not been elucidated completely. Two liquid chromatography-tandem mass spectrometry (LC-MS/MS) bioanalytical methods, without the use of any ion-pairing reagents, were developed and validated for the quantification of etimicin in human samples of serum and urine. Using a deuterated reagent as the internal standard, analytes in serum and urine samples were extracted by protein precipitation and dilution before LC-MS/MS analysis, respectively. For the two methods, chromatographic separations were undertaken under isocratic elution of water-ammonia solution-acetic acid (96:3.6:0.2, v/v/v) and methanol at 50%:50% and a flow rate of 0.35 ml/min within 5 min. A Waters XTerra MS C18 column (2.1 × 150 mm, 3.5 μm) and a column temperature of 40°C were chosen. A Sciex Qtrap 5500 mass spectrometer equipped with an electrospray ion source was used in both methods under multiple-reaction monitoring in positive-ion mode. The two methods showed good linearity, accuracy, and precision with high recovery and a minimal matrix effect in the range of 50.0-20000 ng/ml for serum samples and 50.0-10000 ng/ml for urine samples, respectively. Carry-over effects were not observed. Etimicin remained stable in human samples of serum or urine under the storage, preparation, and analytical conditions of the two methods. These two simple and reliable methods were applied successfully to a dose-escalation, phase I clinical trial of etimicin in Chinese healthy volunteers after intravenous administration of single and multiple doses. Based on these two methods we ascertained, for the first time, the comprehensive pharmacokinetics of etimicin in humans, which will be used for the exploration of the breakpoint research further.
Collapse
Affiliation(s)
- Xinge Cui
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Zheng
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Ren
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongzhong Liu
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Jia
- Jiangxi Jemincare Group Co., Ltd., Shanghai, China
| | - Aiguo Wu
- Jiangxi Jemincare Group Co., Ltd., Shanghai, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Shao W, Zhong D, Jiang H, Han Y, Yin Y, Li R, Qian X, Chen D, Jing L. A new aminoglycoside etimicin shows low nephrotoxicity and ototoxicity in zebrafish embryos. J Appl Toxicol 2020; 41:1063-1075. [PMID: 33094525 DOI: 10.1002/jat.4093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 01/06/2023]
Abstract
Aminoglycoside antibiotics are widely used for many life-threatening infections. The use of aminoglycosides is often comprised by their deleterious side effects to the kidney and inner ear. A novel semisynthetic antibiotic, etimicin, has good antimicrobial activity against both gram-positive and gram-negative bacteria. But its toxicity profile analysis is still lacking. In the present study, we compared the in vivo toxic effects of three aminoglycosides, gentamicin, amikacin, and etimicin, in zebrafish embryos. We examined the embryotoxicity, nephrotoxicity, and the damage to the neuromast hair cells. Our results revealed that etimicin and amikacin exhibit more developmental toxicities to the young embryos than gentamicin. But at subtoxic doses, etimicin and amikacin show significantly reduced toxicities towards kidney and neuromast hair cells. We further demonstrated that fluorescently conjugated aminoglycosides (gentamicin-Texas red [GTTR], amikacin-Texas red [AMTR], and etimicin-Texas red [ETTR]) all enter the hair cells properly. Inside the hair cells, gentamicin, not etimicin and amikacin, displays robust reactive oxygen species generation and induces apoptosis. Our data support that the different intracellular cytotoxicity underlies the different ototoxicity of the three aminoglycosides and that etimicin is a new aminoglycoside with reduced risk of nephrotoxicity and ototoxicity.
Collapse
Affiliation(s)
- Weihao Shao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Haowei Jiang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Han
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruining Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Jing
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Kong J, Wu ZX, Wei L, Chen ZS, Yoganathan S. Exploration of Antibiotic Activity of Aminoglycosides, in Particular Ribostamycin Alone and in Combination With Ethylenediaminetetraacetic Acid Against Pathogenic Bacteria. Front Microbiol 2020; 11:1718. [PMID: 32849365 PMCID: PMC7403490 DOI: 10.3389/fmicb.2020.01718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
The emergence of infections caused by bacterial pathogens that are resistant to current antibiotic therapy is a critical healthcare challenge. Aminoglycosides are natural antibiotics with broad spectrum of activity; however, their clinical use is limited due to considerable nephrotoxicity. Moreover, drug-resistant bacteria that cause infections in human as well as livestock are less responsive to conventional antibiotics. Herein, we report the in vitro antibacterial evaluation of five different aminoglycosides, including ribostamycin, against a panel of Gram-positive and Gram-negative pathogens. Eight of the tested bacterial strains are linked to gastrointestinal (GI) infections. The minimum inhibitory concentration (MIC) of ribostamycin against three different Escherichia coli strains is in the range of 0.9–7.2 μM and against a strain of Haemophilus influenzae is 0.5 μM. We also found that the MIC of ribostamycin was considerably enhanced from 57.2 to 7.2 μM, an 8-fold improvement, when bacteria were treated with a combination of ribostamycin and ethylenediaminetetraacetic acid (EDTA). These findings demonstrate a promising approach to enhance the clinical potential of ribostamycin and provide a rational for its antibiotic reclassification from special level to non-restricted level.
Collapse
Affiliation(s)
- Jing Kong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Liuya Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States.,School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| |
Collapse
|
6
|
Mechanisms and pharmacokinetic/pharmacodynamic profiles underlying the low nephrotoxicity and ototoxicity of etimicin. Acta Pharmacol Sin 2020; 41:866-878. [PMID: 31937930 PMCID: PMC7468263 DOI: 10.1038/s41401-019-0342-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023] Open
Abstract
Etimicin (ETM), a fourth-generation aminoglycosides (AGs), is now widely clinically used in China due to its high efficacy and low toxicity. However, the mechanisms underlying its low nephrotoxicity and ototoxicity remain unclear. In the present study we compared the antibacterial and toxicity profiles of etimicin, gentamicin (GM, a second-generation AG), and amikacin (AMK, a third-generation AG), and investigated their pharmacokinetic properties in the toxicity target organs (kidney and inner ear) and subcellular compartments. We first demonstrated that ETM exhibited superior antibacterial activities against clinical isolates to GM and AMK, and it exerted minimal nephrotoxicity and ototoxicity in rats following multi-dose administration. Then, we conducted pharmacokinetic studies in rats, showed that the three AGs accumulated in the kidney and inner ear with ETM being distributed to a lesser degree in the two toxicity target organs as compared with GM and AMK high-dose groups. Furthermore, we conducted in vitro experiments in NRK-52E rat renal tubular epithelial cells and HEI-OC1 cochlear hair cells, and revealed that all the three AGs were distributed predominantly in the mitochondria with ETM showing minimal accumulation; they not only directly inhibited the activity of mitochondrial complexes IV and V but also inhibited mitochondrial function and its related PGC-1α-NRF1-TFAM pathway; ETM caused minimal damage to the mitochondrial complex and mitochondrial biogenesis. Our results demonstrate that the minimal otonephrotoxicity of ETM results from its lesser accumulation in mitochondria of target cells and subsequently lesser inhibition of mitochondrial function. These results provide a new strategy for discovering novel AGs with high efficacy and low toxicity.
Collapse
|
7
|
Exclusive Production of Gentamicin C1a from Micromonospora purpurea by Metabolic Engineering. Antibiotics (Basel) 2019; 8:antibiotics8040267. [PMID: 31847403 PMCID: PMC6963548 DOI: 10.3390/antibiotics8040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
Gentamicin C1a is an important precursor to the synthesis of etimicin, a potent antibiotic. Wild type Micromonospora purpurea Gb1008 produces gentamicin C1a, besides four other gentamicin C components: C1, C2, C2a, and C2b. While the previously reported engineered strain M. purpurea GK1101 can produce relatively high titers of C1a by blocking the genK pathway, a small amount of undesirable C2b is still being synthesized in cells. Gene genL (orf6255) is reported to be responsible for converting C1a to C2b and C2 to C1 in Micromonospora echinospora ATCC15835. In this work, we identify the genL that is also responsible for the same methylation in Micromonospora purpurea. Based on M. purpurea GK1101, we construct a new strain with genL inactivated and show that no C2b is produced in this strain. Therefore, we successfully engineer a strain of M. purpurea that solely produces gentamicin C1a. This strain can potentially be used in the industrial production of C1a for the synthesis of etimicin.
Collapse
|
8
|
Yao L, Zhou F, Cai M, Peng Y, Sun J, Chen Q, Jin X, Wang G, Zhang J. Development and validation of a sensitive LC-MS/MS method without derivatization/ion-pairing agents for etimicin quantification in rat plasma, internal ear and kidney. J Pharm Biomed Anal 2017; 146:96-102. [PMID: 28881316 DOI: 10.1016/j.jpba.2017.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022]
Abstract
Etimicin (ETM), which belongs to the newest generation of aminoglycosides (AGs), has been proven to not only maintain but also strengthen the advantages of former AGs with relatively less toxicity. Now, it is widely applied for the treatment of bacterial infections in the clinic. Nevertheless, nephrotoxicity and ototoxicity are unavoidable issues for AGs, and while ETM is no exception, the seriousness of these issues is different. To explore the reason why ETM exhibits less toxicity and to better direct the optimization and development of new AGs, it is of great necessity and importance to monitor the pharmacokinetic behaviors of ETM in its potential toxicity target organs, the kidney and internal ear, as well as in plasma. Therefore, a novel, sensitive and efficient LC-MS/MS method without derivatization or ion-pairing agents had been developed and validated for quantification of ETM in rat plasma, kidney and internal ear for the first time. This method showed good linearity over the range of 50-2000ng/mL for rat plasma/internal ear and 100-5000ng/mL for rat kidney. The precision was less than 4.4% and the accuracy was below 4.8%. Recovery and matrix effects were 71.3%-82.8% and 97.6%-108.5%, respectively. After intravenous administration of a single dose of ETM, plasma drug concentrations fit well with a two-compartmental model, and the AUC0-∞, t1/2α, t1/2β, MRT and CL were 127.96±5.52μg*h/mL, 0.53±0.03h, 3.32±1.11h, 1.01±0.03h and 234.80±10.05mL/h/kg, respectively. Particularly, ETM showed a considerably long half-life in kidney and internal ear, up to 155.96±19.95h and 83.11±26.60h, respectively, which might contribute greatly to its toxicity.
Collapse
Affiliation(s)
- Lan Yao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mingmin Cai
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qianying Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoliang Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jingwei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
|