1
|
Zhai W, Li X, Duan X, Gou C, Wang L, Gao Y. Development of a microbial protease for composting swine carcasses, optimization of its production and elucidation of its catalytic hydrolysis mechanism. BMC Biotechnol 2022; 22:36. [PMID: 36443757 PMCID: PMC9703648 DOI: 10.1186/s12896-022-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dead swine carcass composting is an excellent method for harmless treatment and resource utilization of swine carcass. However, poor biodegradation ability of traditional composting results in poor harmless treatment effect. Researches report that the biodegradation ability of composting can be improved by inoculation with enzyme-producing microorganisms or by inoculation with enzyme preparations. At present, the researches on improving the efficiency of dead swine carcass composting by inoculating enzyme-producing microorganisms have been reported. However, no work has been reported on the development of enzyme preparations for dead swine carcass composting. METHODOLOGY The protease-producing strain was isolated by casein medium, and was identified by 16 S rRNA gene sequencing. The optimal fermentation conditions for maximum protease production were gradually optimized by single factor test. The extracellular protease was purified by ammonium sulfate precipitation and Sephadex G-75 gel exclusion chromatography. The potential for composting applications of the purified protease was evaluated by characterization of its biochemical properties. And based on amino acid sequence analysis, molecular docking and inhibition test, the catalytic hydrolysis mechanism of the purified protease was elucidated. RESULTS In this study, a microbial protease was developed for swine carcass composting. A protease-producing strain DB1 was isolated from swine carcass compositing and identified as Serratia marcescen. Optimum fermentation conditions for maximum protease production were 5 g/L glucose, 5 g/L urea, 1.5 mmol/L Mg2+, initial pH-value 8, inoculation amount 5%, incubation temperature 30 °C and 60 h of fermentation time. The specific activity of purified protease reached 1982.77 U/mg, and molecular weight of the purified protease was 110 kDa. Optimum pH and temperature of the purified protease were 8 and 50 °C, respectively, and it had good stability at high temperature and in alkaline environments. The purified protease was a Ser/Glu/Asp triad serine protease which catalyzed substrate hydrolysis by Glu, Arg, Ser, Asp and Tyr active residues. CONCLUSIONS In general, the microbial protease developed in this study was suitable for industrial production and has the potential to enhance composting at thermophilic stage. Moreover, the catalytic hydrolysis mechanism of the protease was further analyzed in this study.
Collapse
Affiliation(s)
- Wei Zhai
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xintian Li
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xinran Duan
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Changlong Gou
- grid.411647.10000 0000 8547 6673College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000 Inner Mongolia China
| | - Lixia Wang
- grid.9227.e0000000119573309Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 Jilin Province China
| | - Yunhang Gao
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| |
Collapse
|
2
|
Mirza Alizadeh A, Hosseini H, Mollakhalili Meybodi N, Hashempour-Baltork F, Alizadeh-Sani M, Tajdar-Oranj B, Pirhadi M, Mousavi Khaneghah A. Mitigation of potentially toxic elements in food products by probiotic bacteria: A comprehensive review. Food Res Int 2022; 152:110324. [PMID: 35181105 DOI: 10.1016/j.foodres.2021.110324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Potentially toxic elements (PTEs) as non-degradable elements (especially carcinogenic types for humans such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As)) are widely distributed in the environment. They are one of the most concerned pollutants that can be absorbed and accumulated in the human body, primarily via contaminated water and foods. Acute or chronic poisoning of humans to PTEs can pose some serious risks for human health even at low concentrations. In this context, some methods are introduced to eliminate or reduce their concentration. While the biological treatment by bacterial strains, particularly probiotic bacteria, is considered as an effective method for reducing or eliminating of them. The consumption of probiotics as nonpathogenic microorganisms at regular and adequate dose offer some beneficial health impacts, it can also be applied to remove PTEs in both alive and non-alive states. This review aimed to provide an overview regarding the efficacy of different types of probiotic bacteria for PTEs removal from various environments such as food, water, in vitro, and in vivo conditions.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Neda Mollakhalili Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Tajdar-Oranj
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Pirhadi
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Kumar A, Hussain SA, Prasad W, Singh AK, Singh R. Effect of oxygen tolerant probiotic strain, stabilizers and copper addition on the storage stability of Aloe vera supplemented synbiotic lassi. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
Wang J, Jiang S, Huang J, Guo H, Bi X, Hou M, Chen X, Hou S, Lin H, Lu Y, Lv H, Qiao J, Yang R, Liu S. Optimization of Initial Cation Concentrations for L-Lactic Acid Production from Fructose by Lactobacillus pentosus Cells. Appl Biochem Biotechnol 2021; 193:1496-1512. [PMID: 33484444 DOI: 10.1007/s12010-021-03492-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
In this study, Box-Behnken design was applied to optimize the initial concentrations of 4 cations for L-lactic acid production from fructose by homologous batch fermentation of Lactobacillus pentosus cells. The optimum initial cation concentrations were obtained as 6.542 mM Mg2+, 3.765 mM Mn2+, 2.397 mM Cu2+, and 3.912 mM Fe2+, respectively. The highest L-lactic acid yield and productivity were obtained as 0.935 ± 0.005 g/g fructose and 1.363 ± 0.021 g/(L × h), respectively, with a maximum biomass concentration of 7.97 ± 0.17 g/L. The effectiveness of the optimization by Box-Behnken design was confirmed based on the small errors between predicted results and experimental results shown as 0.3%, - 0.2%, and - 1.2%, respectively. The quadratic models with high accuracy and reliability can be applied to mathematically forecasted the fermentation performance. After the optimization, the lactic acid yield and productivity were significantly improved by 3.7% and 21.0%, respectively.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Shaoming Jiang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.,The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Huanyu Guo
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Xudong Bi
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.,California State University, Los Angeles (CSULA), Los Angeles, CA, 90032, USA
| | - Maolin Hou
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.,Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xingyu Chen
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Shibo Hou
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Hebei Lin
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Yuming Lu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Hujie Lv
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Jinyue Qiao
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Ruiyi Yang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Mohd Yusof H, Mohamad R, Zaidan UH, Rahman NA. Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microb Cell Fact 2020; 19:10. [PMID: 31941498 PMCID: PMC6964013 DOI: 10.1186/s12934-020-1279-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The use of microorganisms in the biosynthesis of zinc oxide nanoparticles (ZnO NPs) has recently emerged as an alternative to chemical and physical methods due to its low-cost and eco-friendly method. Several lactic acid bacteria (LAB) have developed mechanisms in tolerating Zn2+ through prevention against their toxicity and the production of ZnO NPs. The LAB's main resistance mechanism to Zn2+ is highly depended on the microorganisms' ability to interact with Zn2+ either through biosorption or bioaccumulation processes. Besides the inadequate studies conducted on biosynthesis with the use of zinc-tolerant probiotics, the understanding regarding the mechanism involved in this process is not clear. Therefore, this study determines the features of probiotic LAB strain TA4 related to its resistance to Zn2+. It also attempts to illustrate its potential in creating a sustainable microbial cell nanofactory of ZnO NPs. RESULTS A zinc-tolerant probiotic strain TA4, which was isolated from local fermented food, was selected based on the principal component analysis (PCA) with the highest score of probiotic attributes. Based on the 16S rRNA gene analysis, this strain was identified as Lactobacillus plantarum strain TA4, indicating its high resistance to Zn2+ at a maximum tolerable concentration (MTC) value of 500 mM and its capability of producing ZnO NPs. The UV-visible spectroscopy analysis proved the formations of ZnO NPs through the notable absorption peak at 380 nm. It was also found from the dynamic light scattering (DLS) analysis that the Z-average particle size amounted to 124.2 nm with monodisperse ZnO NPs. Studies on scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR) revealed that the main mechanisms in ZnO NPs biosynthesis were facilitated by the Zn2+ biosorption ability through the functional groups present on the cell surface of strain TA4. CONCLUSIONS The strong ability of zinc-tolerant probiotic of L. plantarum strain TA4 to tolerate high Zn2+ concentration and to produce ZnO NPs highlights the unique properties of these bacteria as a natural microbial cell nanofactory for a more sustainable and eco-friendly practice of ZnO NPs biosynthesis.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Lule VK, Tomar SK, Chawla P, Pophaly S, Kapila S, Arora S. Bioavailability assessment of zinc enriched lactobacillus biomass in a human colon carcinoma cell line (Caco-2). Food Chem 2019; 309:125583. [PMID: 31699555 DOI: 10.1016/j.foodchem.2019.125583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
The present study utilizes lactobacilli strains having the potential to accumulate a significant amount of Zinc (Zn) in their biomass and ability to deliver the same mineral in a highly bioavailable form. A human origin Lactobacillus fermentum SR4 and Lactobacillus rhamnosus GG (LGG) were studied for their ability to accumulate Zn by growing them in the medium containing Zn salt. Further, Zn enriched cell lysates were prepared by Ultrasonication, as an organic Zn source. Various functional groups involved in bacterial Zn binding were identified by FT-IR spectroscopy and elemental Zn in bio-chelated cell lysate complex was confirmed by SEM and Energy Dispersive X-ray Spectrometry (EDX). Experimental data demonstrated a significantly higher (P < 0.05) bioavailability of Zn chelated by SR4 followed by LGG i.e., 57% and 48%, as compared to the commercially available inorganic (ZnSo4) and even organic (Zinc gluconate) forms tested which has 15.6% and 21.7% respectively.
Collapse
Affiliation(s)
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sarang Pophaly
- College of Dairy Science and Food Technology, CGKV, Raipur 492006, India
| | - Suman Kapila
- National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sumit Arora
- National Dairy Research Institute, Karnal, Haryana 132001, India
| |
Collapse
|
7
|
Zhang Y, Ma Y, Duan J, Li X, Wang J, Hou B. Analysis of marine microbial communities colonizing various metallic materials and rust layers. BIOFOULING 2019; 35:429-442. [PMID: 31109195 DOI: 10.1080/08927014.2019.1610881] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
High-throughput sequencing was used to visualize microbial biocoenoses on different metallic surfaces and rust layers of highly corroded steels after immersion in coastal marine water for 30 months at Sanya, China. Distinct microbial community compositions were observed on these metallic surfaces. The dominant genus was the copper-tolerant, acid-producing Lactobacillus on copper alloys, the common aerobic surface colonizers Bacillus and Ruegeria on aluminum alloys, and aerobic biofilm-forming Pseudomonas on carbon steel. Most of these are copiotrophic microbes compared to planktonic microbes, which are oligotrophic. Additionally, sulfate-reducing prokaryotes (SRP) were detected in the rust layer, but the dominant genera changed from the outer layer to the inner part. The dominant genera detected in the outer, middle and inner rusts layers were Desulfotomaculum, Desulfonatronum (obligate anaerobe) and Desulfovibiro (electroactive), respectively. Further, the coexistence of methanogens with SRP suggests interspecies interactions.
Collapse
Affiliation(s)
- Yimeng Zhang
- a Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
- b University of Chinese Academy of Sciences , Beijing , China
- c Open Studio for Marine Corrosion and Protection , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao , China
- d Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , China
| | - Yan Ma
- a Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
- c Open Studio for Marine Corrosion and Protection , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao , China
- d Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , China
| | - Jizhou Duan
- a Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
- c Open Studio for Marine Corrosion and Protection , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao , China
- d Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , China
| | - Xiaohong Li
- a Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
- e College of Marine Life Sciences , Ocean University of China , Qingdao , China
| | - Jing Wang
- a Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
- e College of Marine Life Sciences , Ocean University of China , Qingdao , China
| | - Baorong Hou
- a Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
- c Open Studio for Marine Corrosion and Protection , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao , China
- d Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , China
| |
Collapse
|
8
|
Gómez-Gómez B, Pérez-Corona T, Mozzi F, Pescuma M, Madrid Y. Silac-based quantitative proteomic analysis of Lactobacillus reuteri CRL 1101 response to the presence of selenite and selenium nanoparticles. J Proteomics 2019; 195:53-65. [DOI: 10.1016/j.jprot.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/29/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022]
|
9
|
Gupta P, Sreekrishnan TR, Shaikh ZA. Application of hybrid anaerobic reactor: Treatment of increasing cyanide containing effluents and microbial composition identification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:448-456. [PMID: 30144783 DOI: 10.1016/j.jenvman.2018.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
The study endeavors the anaerobic treatment of cyanide-containing effluents using the hybrid anaerobic reactor, with self-immobilized granules under high up-flow velocities. Comparison of one-year time-course analyses of HARs treating high strength effluents containing cyanide and control indicates the importance of wastewater characteristics in development and maintenance of microbiome. Efforts were directed towards associating process performance with microbial dynamics. Presence of cyanide results in the accumulation of intermediates paralleled with a drop in abundance of sensitive aceticlastic methanogens. HAR appear to have better resilience than other identified digesters because of shielding effects and enhanced granule-wastewater contact. The predominance of Methanobacteriales in the presence of cyanide can be linked to its tolerance. It was found that methane yield is positively correlated with abundance of aceticlastic guilds (R = 0.830, CI = 0.01). Tolerant bacterial groups were also identified. The study advances our knowledge related to less energy intensive technology with the focus on the development of efficient HAR.
Collapse
Affiliation(s)
- Pragya Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Z A Shaikh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
10
|
Ye T, Li X, Zhang T, Su Y, Zhang W, Li J, Gan Y, Zhang A, Liu Y, Xue G. Copper (II) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: Understanding of the corresponding metabolisms, microbial community and predictive functional profiling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 76:414-422. [PMID: 29571568 DOI: 10.1016/j.wasman.2018.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/04/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Bio-refinery of food waste and waste activated sludge to high value-added chemicals, such as lactic acid, has attracted particular interest in recent years. In this paper, the effect of copper (II) dosing to the organic waste fermentation system on lactic acid production was evaluated, which proved to be a promising method to stimulate high yield of lactic acid (77.0% higher than blank) at dosage of 15 μM-Cu2+/g VSS. As mechanism study suggested, copper addition enhanced the activity of α-glycosidase and glycolysis, which increased the substrate for subsequent acidification; whereas, the high dosage (70 μM-Cu2+/g VSS) inhibited the conversion of lactic acid to VFA, thus stabilized lactic acid concentration. Microbial community study revealed that small amount of copper (II) at 15 μM/g VSS resulted in the proliferation of Lactobacillus to 82.6%, which mainly produced lactic acid. Finally, the variation of functional capabilities implied that the proposed homeostatic system II was activated at relatively low concentration of copper. Meanwhile, membrane transport function and carbohydrate metabolism were also strengthened. This study provides insights into the effect of copper (II) on the enhancement of lactic acid production from co-fermentation of food waste and waste activated sludge.
Collapse
Affiliation(s)
- Tingting Ye
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Ting Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yinglong Su
- Shanghai Key Lab for Urban Ecological Processes and Eco-restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wenjuan Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jun Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanfei Gan
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
11
|
Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity. J Microbiol 2017; 55:296-303. [DOI: 10.1007/s12275-017-6642-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 10/19/2022]
|
12
|
Paradeshi JS, Patil SN, Koli SH, Chaudhari BL. Effect of copper on probiotic properties ofLactobacillus helveticusCD6. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jayasinh S Paradeshi
- Department of Microbiology; School of Life Sciences; North Maharashtra University; Jalgaon 425 001 India
| | - Sandeep N Patil
- Department of Microbiology; School of Life Sciences; North Maharashtra University; Jalgaon 425 001 India
| | - Sunil H Koli
- Department of Microbiology; School of Life Sciences; North Maharashtra University; Jalgaon 425 001 India
| | - Bhushan L Chaudhari
- Department of Microbiology; School of Life Sciences; North Maharashtra University; Jalgaon 425 001 India
| |
Collapse
|
13
|
Quintana AV, Olalla-Herrera M, Ruiz-López MD, Moreno-Montoro M, Navarro-Alarcón M. Study of the effect of different fermenting microorganisms on the Se, Cu, Cr, and Mn contents in fermented goat and cow milks. Food Chem 2015; 188:234-9. [DOI: 10.1016/j.foodchem.2015.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
|
14
|
Li L, Ma Y. Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis. J Dairy Sci 2014; 97:5975-82. [DOI: 10.3168/jds.2014-8047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/20/2014] [Indexed: 11/19/2022]
|
15
|
Khemiri A, Carrière M, Bremond N, Ben Mlouka MA, Coquet L, Llorens I, Chapon V, Jouenne T, Cosette P, Berthomieu C. Escherichia coli response to uranyl exposure at low pH and associated protein regulations. PLoS One 2014; 9:e89863. [PMID: 24587082 PMCID: PMC3935937 DOI: 10.1371/journal.pone.0089863] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/23/2014] [Indexed: 11/18/2022] Open
Abstract
Better understanding of uranyl toxicity in bacteria is necessary to optimize strains for bioremediation purposes or for using bacteria as biodetectors for bioavailable uranyl. In this study, after different steps of optimization, Escherichia colicells were exposed to uranyl at low pH to minimize uranyl precipitation and to increase its bioavailability. Bacteria were adapted to mid acidic pH before exposure to 50 or 80 µM uranyl acetate for two hours at pH≈3. To evaluate the impact of uranium, growth in these conditions were compared and the same rates of cells survival were observed in control and uranyl exposed cultures. Additionally, this impact was analyzedby two-dimensional differential gel electrophoresis proteomics to discover protein actors specifically present or accumulated in contact with uranium.Exposure to uranium resulted in differential accumulation of proteins associated with oxidative stress and in the accumulation of the NADH/quinone oxidoreductase WrbA. This FMN dependent protein performs obligate two-electron reduction of quinones, and may be involved in cells response to oxidative stress. Interestingly, this WrbA protein presents similarities with the chromate reductase from E. coli, which was shown to reduce uranyl in vitro.
Collapse
Affiliation(s)
- Arbia Khemiri
- CEA, DSV, IBEB, Commissariat à l'Energie Atomique, Laboratoire des Interactions Protéine-Métal, Saint-Paul-lez-Durance, France ; CNRS, UMR Biologie Végétale et Microbiologie Environnementales 7265, Saint-Paul-lez-Durance, France ; Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Marie Carrière
- UMR E3 CEA-Université Joseph Fourier, Service de Chimie Inorganique et Biologique, Laboratoire Lésions des Acides Nucléiques (LAN), Grenoble, France
| | - Nicolas Bremond
- CEA, DSV, IBEB, Commissariat à l'Energie Atomique, Laboratoire des Interactions Protéine-Métal, Saint-Paul-lez-Durance, France ; CNRS, UMR Biologie Végétale et Microbiologie Environnementales 7265, Saint-Paul-lez-Durance, France ; Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Mohamed Amine Ben Mlouka
- UMR 6270 CNRS, Plateforme Protéomique PISSARO, IRIB -Université de Rouen, Mont Saint Aignan, France
| | - Laurent Coquet
- UMR 6270 CNRS, Plateforme Protéomique PISSARO, IRIB -Université de Rouen, Mont Saint Aignan, France
| | - Isabelle Llorens
- ESRF-CRG-FAME beamline, Polygone Scientifique Louis Néel, Grenoble, France ; Commissariat à l'Energie Atomique CEA, DSM, INAC, Laboratoire Nanostructure et Rayonnement Synchrotron, Grenoble, France
| | - Virginie Chapon
- CEA, DSV, IBEB, Commissariat à l'Energie Atomique, Laboratoire des Interactions Protéine-Métal, Saint-Paul-lez-Durance, France ; CNRS, UMR Biologie Végétale et Microbiologie Environnementales 7265, Saint-Paul-lez-Durance, France ; Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Thierry Jouenne
- UMR 6270 CNRS, Plateforme Protéomique PISSARO, IRIB -Université de Rouen, Mont Saint Aignan, France
| | - Pascal Cosette
- UMR 6270 CNRS, Plateforme Protéomique PISSARO, IRIB -Université de Rouen, Mont Saint Aignan, France
| | - Catherine Berthomieu
- CEA, DSV, IBEB, Commissariat à l'Energie Atomique, Laboratoire des Interactions Protéine-Métal, Saint-Paul-lez-Durance, France ; CNRS, UMR Biologie Végétale et Microbiologie Environnementales 7265, Saint-Paul-lez-Durance, France ; Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| |
Collapse
|