1
|
Muñoz-Miranda LA, Zepeda-Peña AC, Casas-Godoy L, Pereira-Santana A, Méndez-Zamora A, Barrera-Martínez I, Rodríguez-Zapata L, Gschaedler-Mathis AC, Figueroa-Yáñez LJ. CRISPRi-induced transcriptional regulation of IAH1 gene and its influence on volatile compounds profile in Kluyveromyces marxianus DU3. World J Microbiol Biotechnol 2024; 40:121. [PMID: 38441729 DOI: 10.1007/s11274-023-03811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 03/07/2024]
Abstract
Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K. marxianus strain DU3. The constructed CRISPRi plasmid successfully targeted the IAH1 gene, allowing for specific gene expression modulation. Through gene expression analysis, we assessed the impact of IAH1 down-regulation on the metabolic profile of volatile compounds. We also measured the expression of other genes involved in volatile compound biosynthesis, including ATF1, EAT1, ADH1, and ZWF1 by RT-qPCR. Results demonstrated successful down-regulation of IAH1 expression in K. marxianus strain DU3 using the CRISPRi system. The modulation of IAH1 gene expression resulted in alterations in the production of volatile compounds, specifically ethyl acetate, which are important contributors to the beverage's aroma. Changes in the expression levels of other genes involved in ester biosynthesis, suggesting that the knockdown of IAH1 may generate intracellular alterations in the balance of these metabolites, triggering a regulatory response. The application of CRISPRi technology in K. marxianus opens the possibility of targeted modulation of gene expression, metabolic engineering strategies, and synthetic biology in this yeast strain.
Collapse
Affiliation(s)
- Luis A Muñoz-Miranda
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México
| | - Andrea Catalina Zepeda-Peña
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México
| | - Leticia Casas-Godoy
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Zapopan, Zapopan, Jalisco, México
| | - Alejandro Pereira-Santana
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. Subsede Sureste, Parque Científico y Tecnológico de Yucatán, Mérida, Yucatán, México
| | - Andrés Méndez-Zamora
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México
| | - Iliana Barrera-Martínez
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Zapopan, Zapopan, Jalisco, México
| | - Luis Rodríguez-Zapata
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Mérida, Yucatán, México
| | - Anne Christine Gschaedler-Mathis
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México.
| | - Luis J Figueroa-Yáñez
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México.
| |
Collapse
|
2
|
Unveiling the Microbial Ecology behind Mezcal: A Spirit Drink with a Growing Global Demand. FERMENTATION 2022. [DOI: 10.3390/fermentation8110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The advent of omics has expanded our knowledge of microbial ecology behind Mezcal, a fermented spirit made from the juices of cooked Agave plants (Agave spp., Asparagaceae). Mezcal has been produced in Mexico for over 200 years, however, has been in high demand since its discovery by international markets in the last decade. Mezcal is appreciated for its diverse and complex sensory profile, which is tied to the geographic and environmental diversity of the different Mezcal-producing regions. This regional typicity is brought about by spontaneous fermentation consortia that act in loosely controlled artisanal fermentation processes. Previous works have mainly concentrated on microorganisms involved in the biosynthesis of alcohol and other volatile compounds, or from a different perspective, on culturable microorganisms (mainly yeasts) influencing the taste profile. Attention has been aimed at the richness of microbial populations in point events or under laboratory conditions, which leaves much of the biological richness out of account. Omics techniques have become powerful tools for characterizing the composition of autochthonous fermentation microbiota, regional or endemic features, and ecological processes that determine the dynamics of Mezcal fermentation. The analyses of genetic material, proteins, and metabolites allow disentangling the biological complexity of Mezcal production. This review presents the reader with an up-to-date overview of publications that discuss microbial communities in Mezcal fermentation, metabolic pathways regulated by microbial interactions, and the application of omics to characterize the spontaneous fermenting microbiota conformation and dynamics considering the subjacent ecological processes.
Collapse
|
3
|
Englezos V, Jolly NP, Di Gianvito P, Rantsiou K, Cocolin L. Microbial interactions in winemaking: Ecological aspects and effect on wine quality. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Isolation, Identification, Optimization of Baker’s Yeast from Natural Sources, Scale-Up Production Using Molasses as a Cheap Carbohydrate Source, and Evaluation for Bread Production. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: Bangladesh must has to spend a large amount of foreign currency to import commercial baker’s yeast every year. We could save money by finding a potential Saccharomyces cerevisiae from natural sources compatible with commercial baker’s yeast production. (2) Methods: Grapes, rice, pineapples were collected, processed, and inoculated on YMA plates and incubated at 30 °C for 48 h. Then 11 single morphologically well-formed colonies were isolated, purified, and identified, three as S. cerevisiae, three as S. rouxii, three as S. bisporus, and two as S. exigus based on standard cultural, morphological, and biochemical characteristics. Identified S. cerevisiae (designated as G2, P5 and R3) were then assessed for CO2 production as a measure of their baking potential during bread production and compared with two commercial strains (designated as C1 and C2). (3) Results: Isolate-G2 produced the maximum of 1830 mm3 of gas, whereas C1, C2, R3, and P5 produced 1520, 1680, 770, and 610 mm3 gas, respectively. No strain produced H2S which is associated with an off-flavor and unpleasant taste. These isolates showed maximum cell density at a pH range of 4–5.5 in 4–16% molasses broth at 30 °C after 4 days of incubation and maximum 4.75 × 109, 7.9 × 108, 1.472 × 1010, 2.08 × 1010 and 5.24 × 109 CFU mL−1 were produced by C1, C2, G2, P5 and R3, respectively. Isolate-G2 was found to have the most potential, whereas isolate-R3 and P5 have satisfactory potential. (4) Conclusions: G2 could be a good candidate for commercial trials.
Collapse
|
5
|
Phenotypic characterization of cell-to-cell interactions between two yeast species during alcoholic fermentation. World J Microbiol Biotechnol 2021; 37:186. [PMID: 34580785 DOI: 10.1007/s11274-021-03154-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Microbial multispecies ecosystems are responsible for many biotechnological processes and are particularly important in food production. In wine fermentations, in addition to the natural microbiota, several commercially relevant yeast species may be co-inoculated to achieve specific outcomes. However, such multispecies fermentations remain largely unpredictable because of multilevel interactions between naturally present and/or co-inoculated species. Understanding the nature of such interactions has therefore become essential for successful implementation of such strategies. Here we investigate interactions between strains of Saccharomyces cerevisiae and Lachancea thermotolerans. Co-fermentations with both species sharing the same bioreactor (physical contact) were compared to co-fermentations with physical separation between the species in a membrane bioreactor ensuring free exchange of metabolites. Yeast culturability, viability and the production of core metabolites were monitored. The previously reported negative interaction between these two yeast species was confirmed. Physical contact greatly reduced the culturability and viability of L. thermotolerans and led to earlier cell death, compared to when these yeasts were co-fermenting without cell-cell contact. In turn, in the absence of cell-cell contact, L. thermotolerans metabolic activity led to an earlier decline in culturability in S. cerevisiae. Cell-cell contact did not result in significant differences in the major fermentation metabolites ethanol, acetic acid and lactic acid, but impacted on the production of some volatile compounds.
Collapse
|
6
|
Torres-Guardado R, Esteve-Zarzoso B, Reguant C, Bordons A. Microbial interactions in alcoholic beverages. Int Microbiol 2021; 25:1-15. [PMID: 34347199 DOI: 10.1007/s10123-021-00200-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
This review examines the different types of interactions between the microorganisms involved in the fermentation processes of alcoholic beverages produced all over the world from cereals or fruit juices. The alcoholic fermentation converting sugars into ethanol is usually carried out by yeasts, mainly Saccharomyces cerevisiae, which can grow directly using fruit sugars, such as those in grapes for wine or apples for cider, or on previously hydrolyzed starch of cereals, such as for beers. Some of these beverages, or the worts obtained from cereals, can be distilled to obtain spirits. Besides S. cerevisiae, all alcoholic beverages can contain other microorganisms and especially in spontaneous fermentation when starter cultures are not used. These other microbes are mostly lactic acid bacteria and other yeasts-the non-Saccharomyces yeasts. The interactions between all these microorganisms are very diverse and complex, as in any natural occurring ecosystem, including food fermentations. To describe them, we have followed a simplified ecological classification of the interactions. The negative ones are amensalism, by which a metabolic product of one species has a negative effect on others, and antagonism, by which one microbe competes directly with others. The positive interactions are commensalism, by which one species has benefits but no apparent effect on others, and synergism, by which there are benefits for all the microbes and also for the final product. The main interactions in alcoholic beverages are between S. cerevisiae and non-Saccharomyces and between yeasts and lactic acid bacteria. These interactions can be related to metabolites produced by fermentation such as ethanol, or to secondary metabolites such as proteinaceous toxins, or are feed-related, either by competition for nutrients or by benefit from released compounds during yeast autolysis. The positive or negative effects of these interactions on the organoleptic qualities of the final product are also revised. Focusing mainly on the alcoholic beverages produced by spontaneous fermentations, this paper reviews the interactions between the different yeasts and lactic acid bacteria in wine, cider, beer, and in spirits such as tequila, mezcal and cachaça.
Collapse
Affiliation(s)
- Rafael Torres-Guardado
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Braulio Esteve-Zarzoso
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
7
|
Conacher CG, Luyt NA, Naidoo-Blassoples RK, Rossouw D, Setati ME, Bauer FF. The ecology of wine fermentation: a model for the study of complex microbial ecosystems. Appl Microbiol Biotechnol 2021; 105:3027-3043. [PMID: 33834254 DOI: 10.1007/s00253-021-11270-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022]
Abstract
The general interest in microbial ecology has skyrocketed over the past decade, driven by technical advances and by the rapidly increasing appreciation of the fundamental services that these ecosystems provide. In biotechnology, ecosystems have many more functionalities than single species, and, if properly understood and harnessed, will be able to deliver better outcomes for almost all imaginable applications. However, the complexity of microbial ecosystems and of the interactions between species has limited their applicability. In research, next generation sequencing allows accurate mapping of the microbiomes that characterise ecosystems of biotechnological and/or medical relevance. But the gap between mapping and understanding, to be filled by "functional microbiomics", requires the collection and integration of many different layers of complex data sets, from molecular multi-omics to spatial imaging technologies to online ecosystem monitoring tools. Holistically, studying the complexity of most microbial ecosystems, consisting of hundreds of species in specific spatial arrangements, is beyond our current technical capabilities, and simpler model systems with fewer species and reduced spatial complexity are required to establish the fundamental rules of ecosystem functioning. One such ecosystem, the ecosystem responsible for natural alcoholic fermentation, can provide an excellent tool to study evolutionarily relevant interactions between multiple species within a relatively easily controlled environment. This review will critically evaluate the approaches that are currently implemented to dissect the cellular and molecular networks that govern this ecosystem. KEY POINTS: • Evolutionarily isolated fermentation ecosystem can be used as an ecological model. • Experimental toolbox is gearing towards mechanistic understanding of this ecosystem. • Integration of multidisciplinary datasets is key to predictive understanding.
Collapse
Affiliation(s)
- C G Conacher
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - N A Luyt
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - R K Naidoo-Blassoples
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - D Rossouw
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - M E Setati
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - F F Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa.
| |
Collapse
|
8
|
Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioethanol is considered an excellent alternative to fossil fuels, since it importantly contributes to the reduced consumption of crude oil, and to the alleviation of environmental pollution. Up to now, the baker yeast Saccharomyces cerevisiae is the most common eukaryotic microorganism used in ethanol production. The inability of S. cerevisiae to grow on pentoses, however, hinders its effective growth on plant biomass hydrolysates, which contain large amounts of C5 and C12 sugars. The industrial-scale bioprocessing requires high temperature bioreactors, diverse carbon sources, and the high titer production of volatile compounds. These criteria indicate that the search for alternative microbes possessing useful traits that meet the required standards of bioethanol production is necessary. Compared to other yeasts, Kluyveromyces marxianus has several advantages over others, e.g., it could grow on a broad spectrum of substrates (C5, C6 and C12 sugars); tolerate high temperature, toxins, and a wide range of pH values; and produce volatile short-chain ester. K. marxianus also shows a high ethanol production rate at high temperature and is a Crabtree-negative species. These attributes make K. marxianus promising as an industrial host for the biosynthesis of biofuels and other valuable chemicals.
Collapse
|
9
|
Bordet F, Joran A, Klein G, Roullier-Gall C, Alexandre H. Yeast-Yeast Interactions: Mechanisms, Methodologies and Impact on Composition. Microorganisms 2020; 8:E600. [PMID: 32326124 PMCID: PMC7232261 DOI: 10.3390/microorganisms8040600] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
During the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them.
Collapse
Affiliation(s)
- Fanny Bordet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
- Lallemand SAS, 19, rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France
| | - Alexis Joran
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Géraldine Klein
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Chloé Roullier-Gall
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| |
Collapse
|
10
|
Petitgonnet C, Klein GL, Roullier-Gall C, Schmitt-Kopplin P, Quintanilla-Casas B, Vichi S, Julien-David D, Alexandre H. Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast interactions and the exo-metabolome. Food Microbiol 2019; 83:122-133. [PMID: 31202403 DOI: 10.1016/j.fm.2019.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 01/28/2023]
Abstract
Sequential fermentation of grape must inoculated with L. thermotolerans and then S. cerevisiae 24 h later (typical wine-making practice) was conducted with or without cell-cell contact between the two yeast species. We monitored cell viability of the two species throughout fermentation by flow cytometry. The cell viability of S. cerevisiae decreased under both conditions, but the decrease was greater if there was cell-cell contact. An investigation of the nature of the interactions showed competition between the two species for nitrogen compounds, oxygen, and must sterols. Volatile-compound analysis showed differences between sequential and pure fermentation and that cell-cell contact modifies yeast metabolism, as the volatile-compound profile was significantly different from that of sequential fermentation without cell-cell contact. We further confirmed that cell-cell contact modifies yeast metabolism by analyzing the exo-metabolome of all fermentations by FT-ICR-MS analysis. These analyses show specific metabolite production and quantitative metabolite changes associated with each fermentation condition. This study shows that cell-cell contact not only affects cell viability, as already reported, but markedly affects yeast metabolism.
Collapse
Affiliation(s)
- Clément Petitgonnet
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France
| | - Géraldine L Klein
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany; Technische Universität Muenchen, Analytical Food Chemistry, Alte Akademie 10, 85354, Freising, Germany
| | - Beatriz Quintanilla-Casas
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Stefania Vichi
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Diane Julien-David
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France.
| |
Collapse
|
11
|
Nolasco-Cancino H, Santiago-Urbina JA, Wacher C, Ruíz-Terán F. Predominant Yeasts During Artisanal Mezcal Fermentation and Their Capacity to Ferment Maguey Juice. Front Microbiol 2018; 9:2900. [PMID: 30574125 PMCID: PMC6291486 DOI: 10.3389/fmicb.2018.02900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Artisanal mezcal is produced by the natural fermentation of maguey juice, which frequently results in a process that becomes stuck or is sluggish. Using selected indigenous starter inoculums of Saccharomyces and non-Saccharomyces yeasts is considered beneficial in overcoming these problems and thereby preserving the essence of the artisanal process. In this work, three hundred and four yeast isolates were recovered from 17 distilleries and then grouped by the ARDRA analysis, their restriction profiles were clustered in 15 groups. Four of them included 90% of all isolates, and these were identified using the sequence of the D1/D2 domain of the large-subunit rDNA. Pichia kudriavzevii, Pichia manshurica, Saccharomyces cerevisiae, and Kluyveromyces marxianus were detected as predominant species. Both species belonging to the Pichia genus were detected in 88% of the distilleries, followed by S. cerevisiae (70%) and K. marxianus (50%). In order to evaluate the fermentative capacity, one strain of each species was assessed in a pure and mixed culture in two culture media, filtered maguey juice (MJ) and maguey juice including its bagasse (MJB). Findings demonstrated that non-Saccharomyces yeast presented better growth than that of S. cerevisiae. K. marxianus PA16 was more efficient for ethanol production than S. cerevisiae DI14. It produced 32 g/L of ethanol with a yield of 0.47 g/g and efficient of 90%. While, P. kudriavzevii produced more ethyl acetate (280 mg/L) than the others species. All fermentations were characterized by the presence of isobutyl and isoamyl alcohol. The presence of K. marxianus in a mixed culture, improved the ethanol production and volatile compounds increased using co-cultures.
Collapse
Affiliation(s)
- Hipócrates Nolasco-Cancino
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Jorge A Santiago-Urbina
- División de Dirección de Carrera de Agricultura Sustentable y Protegida, Universidad Tecnológica de los Valles Centrales de Oaxaca, Oaxaca, Mexico
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Francisco Ruíz-Terán
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
12
|
Abstract
Physical contact between yeast species, in addition to better-understood and reported metabolic interactions, has recently been proposed to significantly impact the relative fitness of these species in cocultures. Such data have been generated by using membrane bioreactors, which physically separate two yeast species. However, doubts persist about the degree that the various membrane systems allow for continuous and complete metabolic contact, including the exchange of proteins. Here, we provide independent evidence for the importance of physical contact by using a genetic system to modify the degree of physical contact and, therefore, the degree of asexual intraspecies and interspecies adhesion in yeast. Such adhesion is controlled by a family of structurally related cell wall proteins encoded by the FLO gene family. As previously shown, the expression of specific members of the FLO gene family in Saccharomyces cerevisiae dramatically changes the coadhesion patterns between this yeast and other yeast species. Here, we use this differential aggregation mediated by FLO genes as a model to assess the impact of physical contact between different yeast species on the relative fitness of these species in simplified ecosystems. The identity of the FLO gene has a marked effect on the persistence of specific non-Saccharomyces yeasts over the course of extended growth periods in batch cultures. Remarkably, FLO1 and FLO5 expression often result in opposite outcomes. The data provide clear evidence for the role of physical contact in multispecies yeast ecosystems and suggest that FLO gene expression may be a major factor in such interactions.IMPORTANCE The impact of direct (physical) versus indirect (metabolic) interactions between different yeast species has attracted significant research interest in recent years. This is due to the growing interest in the use of multispecies consortia in bioprocesses of industrial relevance and the relevance of interspecies interactions in establishing stable synthetic ecosystems. Compartment bioreactors have traditionally been used in this regard but suffer from numerous limitations. Here, we provide independent evidence for the importance of physical contact by using a genetic system, based on the FLO gene family, to modify the degree of physical contact and, therefore, the degree of asexual intraspecies and interspecies adhesion in yeast. Our results show that interspecies contact significantly impacts population dynamics and the survival of individual species. Remarkably, different members of the FLO gene family often lead to very different population outcomes, further suggesting that FLO gene expression may be a major factor in such interactions.
Collapse
|
13
|
Application of the Severity Factor and HMF Removal of Red Macroalgae Gracilaria verrucosa to Production of Bioethanol by Pichia stipitis and Kluyveromyces marxianus with Adaptive Evolution. Appl Biochem Biotechnol 2018; 187:1312-1327. [DOI: 10.1007/s12010-018-2888-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
|
14
|
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. Understanding Kombucha Tea Fermentation: A Review. J Food Sci 2018; 83:580-588. [PMID: 29508944 DOI: 10.1111/1750-3841.14068] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 12/01/2022]
Abstract
Kombucha is a beverage of probable Manchurian origins obtained from fermented tea by a microbial consortium composed of several bacteria and yeasts. This mixed consortium forms a powerful symbiosis capable of inhibiting the growth of potentially contaminating bacteria. The fermentation process also leads to the formation of a polymeric cellulose pellicle due to the activity of certain strains of Acetobacter sp. The tea fermentation process by the microbial consortium was able to show an increase in certain biological activities which have been already studied; however, little information is available on the characterization of its active components and their evolution during fermentation. Studies have also reported that the use of infusions from other plants may be a promising alternative. PRACTICAL APPLICATION Kombucha is a traditional fermented tea whose consumption has increased in the recent years due to its multiple functional properties such as anti-inflammatory potential and antioxidant activity. The microbiological composition of this beverage is quite complex and still more research is needed in order to fully understand its behavior. This study comprises the chemical and microbiological composition of the tea and the main factors that may affect its production.
Collapse
Affiliation(s)
| | - Sandra Beaufort
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jean-Pierre Souchard
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France.,Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, Toulouse, France
| | - Patricia Taillandier
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
15
|
Mixed culture fermentation using Torulaspora delbrueckii and Saccharomyces cerevisiae with direct and indirect contact: impact of anaerobic growth factors. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3095-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Campos-García J, Vargas A, Farías-Rosales L, Miranda AL, Meza-Carmen V, Díaz-Pérez AL. Improving the Organoleptic Properties of a Craft Mezcal Beverage by Increasing Fatty Acid Ethyl Ester Contents through ATF1 Expression in an Engineered Kluyveromyces marxianus UMPe-1 Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4469-4480. [PMID: 29644852 DOI: 10.1021/acs.jafc.8b00730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mezcal, a traditional beverage that originated in Mexico, is produced from species of the Agavaceae family. The esters associated with the yeasts utilized during fermentation are important for improving the organoleptic properties of the beverage. We improved the ester contents in a mezcal beverage by using the yeast Kluyveromyces marxianus, which was engineered with the ATF1 gene. ATF1 expression in the recombinant yeast significantly increased compared with that in the parental yeast, but its fermentative parameters were unchanged. Volatile-organic-compound-content analysis showed that esters had significantly increased in the mezcal produced with the engineered yeast. In a sensory-panel test, 48% of the panelists preferred the mezcal produced from the engineered yeast, 30% preferred the mezcal produced from the wild type, and 15 and 7% preferred the two mezcal types produced following the routine procedure. Correlation analysis showed that the fruitiness/sweetness description of the mezcal produced using the ATF1-engineered K. marxianus yeast correlated with the content of the esters, whose presence improved the organoleptic properties of the craft mezcal beverage.
Collapse
Affiliation(s)
- Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Edificio B-3, Ciudad Universitaria , 58030 Morelia , Michoacán , Mexico
| | - Alejandra Vargas
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Edificio B-3, Ciudad Universitaria , 58030 Morelia , Michoacán , Mexico
- Tecnológico Nacional de México , Instituto Tecnológico de Morelia , 58120 Morelia , Michoacán , Mexico
| | - Lorena Farías-Rosales
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Edificio B-3, Ciudad Universitaria , 58030 Morelia , Michoacán , Mexico
| | - Ana L Miranda
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Edificio B-3, Ciudad Universitaria , 58030 Morelia , Michoacán , Mexico
| | - Víctor Meza-Carmen
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , 58030 Morelia , Michoacán , Mexico
| | - Alma L Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Edificio B-3, Ciudad Universitaria , 58030 Morelia , Michoacán , Mexico
| |
Collapse
|
17
|
Rollero S, Bloem A, Ortiz-Julien A, Camarasa C, Divol B. Altered Fermentation Performances, Growth, and Metabolic Footprints Reveal Competition for Nutrients between Yeast Species Inoculated in Synthetic Grape Juice-Like Medium. Front Microbiol 2018; 9:196. [PMID: 29487584 PMCID: PMC5816954 DOI: 10.3389/fmicb.2018.00196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
The sequential inoculation of non-Saccharomyces yeasts and Saccharomyces cerevisiae in grape juice is becoming an increasingly popular practice to diversify wine styles and/or to obtain more complex wines with a peculiar microbial footprint. One of the main interactions is competition for nutrients, especially nitrogen sources, that directly impacts not only fermentation performance but also the production of aroma compounds. In order to better understand the interactions taking place between non-Saccharomyces yeasts and S. cerevisiae during alcoholic fermentation, sequential inoculations of three yeast species (Pichia burtonii, Kluyveromyces marxianus, Zygoascus meyerae) with S. cerevisiae were performed individually in a synthetic medium. Different species-dependent interactions were evidenced. Indeed, the three sequential inoculations resulted in three different behaviors in terms of growth. P. burtonii and Z. meyerae declined after the inoculation of S. cerevisiae which promptly outcompeted the other two species. However, while the presence of P. burtonii did not impact the fermentation kinetics of S. cerevisiae, that of Z. meyerae rendered the overall kinetics very slow and with no clear exponential phase. K. marxianus and S. cerevisiae both declined and became undetectable before fermentation completion. The results also demonstrated that yeasts differed in their preference for nitrogen sources. Unlike Z. meyerae and P. burtonii, K. marxianus appeared to be a competitor for S. cerevisiae (as evidenced by the uptake of ammonium and amino acids), thereby explaining the resulting stuck fermentation. Nevertheless, the results suggested that competition for other nutrients (probably vitamins) occurred during the sequential inoculation of Z. meyerae with S. cerevisiae. The metabolic footprint of the non-Saccharomyces yeasts determined after 48 h of fermentation remained until the end of fermentation and combined with that of S. cerevisiae. For instance, fermentations performed with K. marxianus were characterized by the formation of phenylethanol and phenylethyl acetate, while those performed with P. burtonii or Z. meyerae displayed higher production of isoamyl alcohol and ethyl esters. When considering sequential inoculation of yeasts, the nutritional requirements of the yeasts used should be carefully considered and adjusted accordingly. Finally, our chemical data suggests that the organoleptic properties of the wine are altered in a species specific manner.
Collapse
Affiliation(s)
- Stephanie Rollero
- Department of Viticulture and Oenology, Institute of Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Audrey Bloem
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | | | - Carole Camarasa
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | - Benoit Divol
- Department of Viticulture and Oenology, Institute of Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
Brandam C, Fahimi N, Taillandier P. Mixed cultures of Oenococcus oeni strains: A mathematical model to test interaction on malolactic fermentation in winemaking. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Rossouw D, Bagheri B, Setati ME, Bauer FF. Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems. PLoS One 2015; 10:e0136249. [PMID: 26317200 PMCID: PMC4552943 DOI: 10.1371/journal.pone.0136249] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/31/2015] [Indexed: 01/22/2023] Open
Abstract
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.
Collapse
Affiliation(s)
- Debra Rossouw
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Bahareh Bagheri
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Mathabatha Evodia Setati
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Florian Franz Bauer
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
- * E-mail:
| |
Collapse
|
20
|
Pohanka M. Toxicology and the biological role of methanol and ethanol: Current view. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 160:54-63. [PMID: 26006090 DOI: 10.5507/bp.2015.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alcohol variants such as ethanol and methanol are simple organic compounds widely used in foods, pharmaceuticals, chemical synthesis, etc. Both are becoming an emerging health problem; abuse of ethanol containing beverages can lead to disparate health problems and methanol is highly toxic and unfit for consumption. METHODS AND RESULTS This review summarizes the basic knowledge about ethanol and methanol toxicity, the effect mechanism on the body, the current care of poisoned individuals and the implication of alcohols in the development of diseases. Alcohol related dementia, stroke, metabolic syndrome and hepatitis are discussed as well. Besides ethanol, methanol toxicity and its biodegradation pathways are addressed. CONCLUSIONS The impact of ethanol and methanol on the body is shown as case reports, along with a discussion on the possible implication of alcohol in Alzheimer's disease and antidotal therapy for methanol poisoning. The role of ethanol in cancer and degenerative disorders seems to be underestimated given the current knowledge. Treatment in case of poisoning is another issue that remains unresolved even though effective protocols and drugs exist.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove, Czech Republic
| |
Collapse
|
21
|
Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria. Enzyme Microb Technol 2015; 75-76:44-8. [PMID: 26047915 DOI: 10.1016/j.enzmictec.2015.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/03/2015] [Accepted: 04/22/2015] [Indexed: 02/02/2023]
Abstract
This paper presents the results of a study to determine the effect of Quillaja saponaria saponins on the lysis of industrial yeast strains. Cell lysis induced by saponin from Q. saponaria combined with the plasmolysing effect of 5% NaCl for Saccharomyces cerevisiae, Kluyveromyces marxianus yeasts biomass was conducted at 50 °C for 24-48 h. Membrane permeability and integrity of the yeast cells were monitored using fluorescent techniques and concentrations of proteins, free amino nitrogen (FAN) and free amino acids in resulting lysates were analyzed. Protein release was significantly higher in the case of yeast cell lysis promoted with 0.008% Q. saponaria and 5% NaCl in comparison to plasmolysis triggered by NaCl only.
Collapse
|