1
|
Hegarty B. Making waves: Intelligent phage cocktail design, a pathway to precise microbial control in water systems. WATER RESEARCH 2025; 268:122594. [PMID: 39405620 DOI: 10.1016/j.watres.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 12/19/2024]
Abstract
Current practices in water and wastewater treatment to control unwanted microbes have led to new problems, including health effects from disinfection byproducts, growth of opportunistic pathogens resistant to residual disinfectants (e.g., chlorine), and antibiotic resistance. These challenges are spurring interest in rethinking our practices of microbial control. Simultaneously, advances in molecular biology and computation power are driving renewed interest in using phages (viruses that infect bacteria) to precisely control microbial growth (aka, phage biocontrol). In this Making Waves article, I begin by reviewing the current state of research into phage cocktail design, emphasizing our limited understanding of the features of successful phage cocktails (combinations of multiple types of phages). I describe the state of modeling phage-bacteria interactions and underscore the need for increasing research efforts to predict phage cocktail success, a key gap slowing the application of phage biocontrol. I also detail how research must also focus on techniques for engineering more effective phages to offer a more rapid alternative to phage discovery from natural environments. In this way, phage cocktails comprised of phages with complementary infection strategies may be designed. The final area for increased research effort that I highlight is the need for phage cocktail design to account for possible unintended environmental effects, a risk that is increasingly acknowledged in phage ecology studies but mostly ignored by those developing phage biocontrol technologies. By focusing more research effort towards the areas necessary for intelligent phage cocktail design, we can accelerate the development of phage-based biocontrol in water systems and improve public health.
Collapse
Affiliation(s)
- Bridget Hegarty
- Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH, 44118, USA.
| |
Collapse
|
2
|
Yesil M, Huang E, Yang X, Yousef AE. Genomic analysis, culturing optimization, and characterization of Escherichia bacteriophage OSYSP, previously studied as effective pathogen control on fresh produce. Front Microbiol 2024; 15:1486333. [PMID: 39717272 PMCID: PMC11664485 DOI: 10.3389/fmicb.2024.1486333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Advances in bacteriophage genome sequencing and regulatory approvals of some bacteriophages in various applications have renewed interest in these antibacterial viruses as a potential solution to persistent food safety challenges. Here, we analyzed in depth the genome of the previously studied Escherichia bacteriophage OSYSP (phage OSYSP), revealed its application-related characteristics, and optimized its enumeration techniques for facilitating industrial implementation. We previously sequenced phage OSYSP genome completely by combining results from Illumina Miseq and Ion Torrent sequencing platforms and completing the remaining sequence gaps using PCR. Based on the genomics analysis completed herein, phage OSYSP was confirmed as an obligate lytic phage of the Caudoviricetes class. The genome encodes 81 proteins of identifiable functions, including two endolysins and 45 proteins that support host-independent DNA replication, transcription, and repair. Despite its similarities to T5-like phages, unique genome arrangements confirm phage OSYSP's novelty. The genomic analysis also confirmed the absence of DNA sequences encoding virulence or antibiotic resistance factors. For optimizing phage detection and quantification in the conventional plaque assay, it was observed that decreasing the concentration of agar or agarose, when used as a medium gelling agent, increased phage recovery (p < 0.05), but using agarose resulted in smaller plaque diameters (p < 0.05). Phage OSYSP inactivated pathogenic and non-pathogenic strains of E. coli and some Salmonella enterica serovars, with more pronounced effect against E. coli O157:H7. Phage titers remained fairly unchanged throughout a 24-month storage at 4°C. Incubation for 30 min at 4°C-47°C or pH 4-11 had no significant detrimental effect (p > 0.05) on phage infectivity. In vitro application of phage OSYSP against E. coli O157:H7 EDL933 decreased the pathogen's viable population by >5.7-log CFU/mL within 80 min, at a multiplicity of infection as low as 0.01. The favorable genome characteristics, combined with improved enumeration methodology, and the proven infectivity stability, make phage OSYSP a promising biocontrol agent against pathogenic E. coli for food or therapeutic applications.
Collapse
Affiliation(s)
- Mustafa Yesil
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - En Huang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Xu Yang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, CA, United States
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Mohammadi M. Cutibacterium acnes bacteriophage therapy: exploring a new frontier in acne vulgaris treatment. Arch Dermatol Res 2024; 317:84. [PMID: 39644414 DOI: 10.1007/s00403-024-03585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
The skin microbiome, encompassing a variety of microorganisms, plays a critical role in skin health and function. Acne vulgaris, affecting approximately 9.4% of the global population, is a prevalent skin condition primarily targeting pilosebaceous units rich in sebaceous glands. The condition is influenced by factors such as hormonal changes, sebaceous gland dysfunction, and the activity of Cutibacterium acnes, a gram-positive bacterium linked to acne development. The skin's immune system, particularly keratinocytes with pattern recognition receptors like Toll-like receptors (TLRs), plays a crucial role in recognizing and responding to bacterial presence. The onset of acne is often linked to adolescence, marked by significant hormonal fluctuations. Genetics also plays a role, with family history being a notable risk factor. Acne is characterized by distinct alterations in the C. acnes composition, with specific phylotypes associated with either commensal or pathogenic behavior. Traditional treatments include antibiotics, but the rise of antibiotic resistance has led to exploring alternative therapies, such as bacteriophage therapy. Bacteriophages offer a targeted approach to treating acne by targeting C. acnes strains, potentially reducing antibiotic resistance and enhancing treatment efficacy. Phage therapy shows promise, but further research is needed to fully understand its effectiveness and potential in clinical applications. Additionally, combining phages with antibiotics may offer a synergistic approach to overcoming antibiotic resistance and managing acne.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, 8715973449, Iran.
| |
Collapse
|
4
|
Chen B, Moriarty TF, Metsemakers WJ, Chittò M. Phage therapy: A primer for orthopaedic trauma surgeons. Injury 2024; 55 Suppl 6:111847. [PMID: 39482030 DOI: 10.1016/j.injury.2024.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/03/2024]
Abstract
Phage therapy (PT) continues to attract interest in the fight against fracture-related infection (FRI), particularly for recurring infections that have not been resolved using conventional therapeutic approaches. The journey PT has taken from early clinical application in the pre-antibiotic era to its recent reintroduction to western clinical practice has been accelerated by the increased prevalence of multi-drug resistant (MDR) pathogens in the clinic. This review will present PT's potential as a precise, adaptable, and effective treatment modality, with a focus on patient and phage selection, as well as the various administration protocols currently applied to patients. The challenges for PT, for example the most optimal application technique and dosing, are also discussed and underscore the importance of personalized approaches and the urgent need for more robust clinical evidence. Future perspectives, including phage engineering and innovative delivery systems will be discussed, as they may broaden the applicability of PT to a point where it may become a standard rather than an option of last resort for orthopedic infection management.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
5
|
Hosseini Hooshiar M, Salari S, Nasiri K, Salim US, Saeed LM, Yasamineh S, Safaralizadeh R. The potential use of bacteriophages as antibacterial agents in dental infection. Virol J 2024; 21:258. [PMID: 39425223 PMCID: PMC11490148 DOI: 10.1186/s12985-024-02510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Dental infections, such as apical Periodontitis, periodontitis, and peri-implantitis (PI), are closely associated with specific bacterial species, including Streptococcus mutans (S. mutans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum), among others. Antibiotics are extensively utilized for prophylactic and therapeutic purposes in the treatment of dental infections and other dental-related issues. Unfortunately, the rapid emergence of antimicrobial resistance has accompanied the increased use of antibiotics in recent years. Specific bacterial pathogens have reached a critical stage of antibiotic resistance, characterized by the proliferation of pan-resistant strains and the scarcity of viable therapeutic alternatives. Therapeutic use of particular bacteriophage (phage) particles that target bacterial pathogens is one potential alternative to antibiotics that are now being seriously considered for treating bacterial illnesses. A kind of virus known as a phage is capable of infecting and eliminating bacteria. Because they can't infect cells in plants and animals, phages might be a harmless substitute for antibiotics. To control oral disorders including periodontitis and dental caries, several research have been conducted in this area to study and identify phages from human saliva and dental plaque. The capacity of these agents to disturb biofilms expands their effectiveness against dental plaque biofilms and oral pathogens in cases of periodontitis, PI, and apical periodontitis. This review summarizes the current antibacterial properties of phages used to treat a variety of dental infections, such as periodontitis, peri-implantitis, infected dentin, and apical periodontitis.
Collapse
Affiliation(s)
| | - Sara Salari
- Doctor of Dental Surgery, Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ula Samir Salim
- Department of Dentistry, Al-Noor University College, Nineveh, Iraq
| | - Lamya M Saeed
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Reza Safaralizadeh
- Restorative Dentistry Department of Dental Faculty, TABRIZ Medical University, Tabriz, Iran.
| |
Collapse
|
6
|
Ilomuanya MO, Oseni BA, Okwuba BC, Abia P, Aboh MI, Oluwale OP, Alkiviadis T, Tsouknidas AE, Amenaghawon AN, Nwaneri SC. Evaluation of MDR-specific phage Pɸ-Mi-Pa loaded mucoadhesive electrospun nanofibrous scaffolds against drug-resistant Pseudomonas aeruginosa- induced wound infections in an animal model. Int J Biol Macromol 2024; 277:134484. [PMID: 39102904 DOI: 10.1016/j.ijbiomac.2024.134484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Given the escalating prevalence of drug-resistant wounds, there is a justified imperative to explore innovative and more efficacious therapies that diverge from conventional, ineffective wound healing approaches. This research has introduced a strategy to address multi-drug resistant (MDR) Pseudomonas aeruginosa infections in a chronic wound model, employing MDR-specific phage Pɸ-Mi-Pa loaded onto mucoadhesive electrospun scaffolds. A cocktail of three isolates of P. aeruginosa-specific lytic phages, Pɸ-Mi-Pa 51, Pɸ-Mi-Pa 120, and Pɸ-Mi-Pa 133 were incorporated into varying ratios of fabricated PCL-PVP polymer. These formulations were assessed for their therapeutic efficacy in achieving bacterial clearance in P. aeruginosa-induced wound infections. The study encompassed biological characterization through in vivo wound healing assessments, histology, and histomorphometry. Additionally, morphological, mechanical, and chemical analyses were conducted on the fabricated PCL-PVP electrospun nanofibrous scaffolds. Three clonal differences of the MDR P. aeruginosa-specific phages (Pɸ-Mi-Pa 51, Pɸ-Mi-Pa 120, and Pɸ-Mi-Pa 133) produced lytic activity and were seen to produce distinct and clear zones of inhibition against MDR P. aeruginosa strains Pa 051, Pa 120 and Pa 133 respectively. The average porosity of the nanofibrous scaffolds PB 1, PB 2, PB 3, and PB 4 were 12.2 ± 0.3 %, 22.1 ± 0.7 %, 31.1 ± 2.4 %, 28.0 ± 0.8 % respectively. In vitro cumulative release of MDR-specific phage Pɸ-Mi-Pa from the mucoadhesive electrospun nanofibrous scaffolds was found to be 70.91 % ± 1.02 % after 12 h of incubation after an initial release of 42.8 % ± 3.01 % after 1 h. Results from the in vivo wound healing study revealed a substantial reduction in wound size, with formulations PB 2 and PB 3 exhibiting the most significant reduction in wound size, demonstrating statistically significant results on day 5 (100 % ± 31.4 %). These findings underscore the potential of bacteriophage-loaded electrospun PCL-PVP nanofibrous scaffolds for treating drug-resistant wounds, generating tissue substitutes, and overcoming certain limitations associated with conventional wound care matrices.
Collapse
Affiliation(s)
- Margaret O Ilomuanya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
| | - Bukola A Oseni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Bryan C Okwuba
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Peter Abia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Mercy I Aboh
- Department of Microbiology and Biotechnology, National Institute for Pharmaceutical Research and Development, Idu, P.M.B 21 Garki Abuja, Nigeria
| | - Oladosu P Oluwale
- Department of Microbiology and Biotechnology, National Institute for Pharmaceutical Research and Development, Idu, P.M.B 21 Garki Abuja, Nigeria
| | - Tsamis Alkiviadis
- Department of Mechanical Engineering, University of Western Macedonia, Kozani 50100, Greece
| | | | - Andrew N Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Edo State, Nigeria
| | - Solomon C Nwaneri
- Department of Biomedical Engineering Faculty of Engineering, University of Lagos, Lagos, Nigeria
| |
Collapse
|
7
|
Wei Z, Li X, Ai C, Dang H. Characterization and Genomic Analyses of dsDNA Vibriophage vB_VpaM_XM1, Representing a New Viral Family. Mar Drugs 2024; 22:429. [PMID: 39330310 PMCID: PMC11432961 DOI: 10.3390/md22090429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
A novel vibriophage vB_VpaM_XM1 (XM1) was described in the present study. Morphological analysis revealed that phage XM1 had Myovirus morphology, with an oblate icosahedral head and a long contractile tail. The genome size of XM1 is 46,056 bp, with a G + C content of 42.51%, encoding 69 open reading frames (ORFs). Moreover, XM1 showed a narrow host range, only lysing Vibrio xuii LMG 21346 (T) JL2919, Vibrio parahaemolyticus 1.1997, and V. parahaemolyticus MCCC 1H00029 among the tested bacteria. One-step growth curves showed that XM1 has a 20-min latent period and a burst size of 398 plaque-forming units (PFU)/cell. In addition, XM1 exhibited broad pH, thermal, and salinity stability, as well as strong lytic activity, even at a multiplicity of infection (MOI) of 0.001. Multiple genome comparisons and phylogenetic analyses showed that phage XM1 is grouped in a clade with three other phages, including Vibrio phages Rostov 7, X29, and phi 2, and is distinct from all known viral families that have ratified by the standard genomic analysis of the International Committee on Taxonomy of Viruses (ICTV). Therefore, the above four phages might represent a new viral family, tentatively named Weiviridae. The broad physiological adaptability of phage XM1 and its high lytic activity and host specificity indicated that this novel phage is a good candidate for being used as a therapeutic bioagent against infections caused by certain V. parahaemolyticus strains.
Collapse
Affiliation(s)
- Zuyun Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| | - Xuejing Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Mariculture Breeding, Xiamen 361102, China
| | - Hongyue Dang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| |
Collapse
|
8
|
Taha M, AlDuwaisan A, Daneshmand M, Ibrahim MM, Bourget-Murray J, Grammatopoulos G, Garceau S, Abdelbary H. Mapping Staphylococcus aureus at Early and Late Stages of Infection in a Clinically Representative Hip Prosthetic Joint Infection Rat Model. Microorganisms 2024; 12:1895. [PMID: 39338569 PMCID: PMC11433939 DOI: 10.3390/microorganisms12091895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Prosthetic joint infection (PJI) continues to be a devastating complication following total joint replacement surgeries where Staphylococcus aureus is the main offending organism. To improve our understanding of the disease pathogenesis, a histological analysis of infected peri-implant tissue in a hip PJI rat model was utilized to assess S. aureus spread and tissue reaction at early and late stages of infection. Sprague-Dawley rats were used and received a left cemented hip hemiarthroplasty using a 3D-printed titanium femoral stem. The rats received an intra-articular injection of S. aureus Xen36. These infected rats were sacrificed either at 3 days post-infection (early-stage infection) or at 13-days post-infection (late-stage infection). The femoral and acetabular tissues of all animals were harvested at euthanasia. Histological analysis for the harvested tissue was performed using immunohistochemistry, hematoxylin and eosin, as well as Masson's trichrome stains. Histological examination revealed significant quantitative and qualitative differences in peri-implant tissue response to infection at early and late stages. This hip PJI rat model identified clear histologic differences between early and late stages of S. aureus infection and how quickly bacterial infiltration could occur. These findings can provide insight into why certain surgical strategies like debridement and antibiotics may be associated with high failure rates.
Collapse
Affiliation(s)
- Mariam Taha
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Abdullah AlDuwaisan
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Division of Orthopaedic Surgery, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Manijeh Daneshmand
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mazen M Ibrahim
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | | | | | - Simon Garceau
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Hesham Abdelbary
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
9
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
10
|
Yu R, Yu L, Ning X, Cui Y. Investigating Propionibacterium acnes antibiotic susceptibility and response to bacteriophage in vitro and in vivo. Front Microbiol 2024; 15:1424849. [PMID: 38974030 PMCID: PMC11224150 DOI: 10.3389/fmicb.2024.1424849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction A total of 94 Propionibacterium acnes (P. acnes) isolates were obtained from a hospital in Beijing to evaluate their susceptibility to erythromycin, clarithromycin, doxycycline, and minocycline. As well as the determination of the effectiveness of P. acnes phages in vitro and in P. acnes-induced lesions mouse model. Methods Patients with acne vulgaris (AV) were enrolled from August 2021 to October 2022. Standard methods were employed for specimen collection, culture, and identification of P. acnes. Susceptibility testing was conducted using E-strips for erythromycin, clarithromycin, minocycline, and doxycycline. Phage culture and identification followed standard procedures. A mouse model with P. acnes-induced skin lesions was established, and data was analyzed using χ 2 test. Results The results showed that all isolates were susceptible to minocycline and doxycycline, while 53 (56.4%) and 52 (55.3%) isolates were susceptible to erythromycin and clarithromycin, respectively. Interestingly, younger patients and those with lower acne severity exhibited reduced resistance. Phage cleavage rates ranged from 88.30 to 93.60%. Multilocus sequence typing (MLST) analysis was conducted on eight randomly selected P. acnes isolates, and the IA-2 subtype was used in experiments to address P. acnes-induced lesions in mice. Phage therapy proved effective in this model. Discussion This study highlights the high susceptibility of P. acnes to doxycycline and tetracycline, while erythromycin and clarithromycin exhibited elevated resistance. Additionally, P. acnes phages demonstrated high cleavage rates and potential effectiveness in treating P. acnes-induced lesions. These findings suggest promising avenues for further exploration of phage therapy in acne treatment.
Collapse
Affiliation(s)
- Ruixing Yu
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Lingyun Yu
- Beijing University of Chemical Technology, Beijing, China
| | - Xiaoli Ning
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
11
|
Romero-Calle DX, Pedrosa-Silva F, Ribeiro Tomé LM, Fonseca V, Guimarães Benevides R, de Oliveira Santos LTS, de Oliveira T, da Costa MM, Alcantara LCJ, de Carvalho Azevedo VA, Brenig B, Venancio TM, Billington C, Góes-Neto A. Molecular Characterization of Salmonella Phage Wara Isolated from River Water in Brazil. Microorganisms 2023; 11:1837. [PMID: 37513009 PMCID: PMC10384808 DOI: 10.3390/microorganisms11071837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance is increasing despite new treatments being employed, so novel strategies are required to ensure that bacterial infections remain treatable. Bacteriophages (phages; bacteria viruses) have the potential to be used as natural antimicrobial methods to control bacterial pathogens such as Salmonella spp. A Salmonella phage, Wara, was isolated from environmental water samples at the Subaé River Basin, Salvador de Bahia, Brazil. The basin has environmental impacts in its main watercourses arising from the dumping of domestic and industrial effluents and agricultural and anthropological activities. The phage genome sequence was determined by Oxford Nanopore Technologies (ONT) MinION and Illumina HiSeq sequencing, and assembly was carried out by Racon (MinION) and Unicycler (Illumina, Illumina + MinION). The genome was annotated and compared to other Salmonella phages using various bioinformatics approaches. MinION DNA sequencing combined with Racon assembly gave the best complete genome sequence. Phylogenetic analysis revealed that Wara is a member of the Tequintavirus genus. A lack of lysogeny genes, antimicrobial resistance, and virulence genes indicated that Wara has therapeutic and biocontrol potential against Salmonella species in healthcare and agriculture.
Collapse
Affiliation(s)
- Danitza Xiomara Romero-Calle
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vagner Fonseca
- General Coordination of Public Health Laboratories/Secretariat of Health Surveillance, Ministry of Health, Brasília 70800-400, Brazil
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Raquel Guimarães Benevides
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, Brazil
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mateus Matiuzzi da Costa
- Department of Biological Sciences, Federal University of the São Francisco Valley, Petrolina 56304-917, Brazil
| | - Luiz Carlos Junior Alcantara
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Flavivirus Laboratory, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil
| | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, 37073 Göttingen, Germany
| | - Thiago M Venancio
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, Brazil
| | - Craig Billington
- Health & Environment Group, Institute of Environmental Sciences and Research, Christchurch 8540, New Zealand
| | - Aristóteles Góes-Neto
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, Brazil
| |
Collapse
|
12
|
Taha M, Arnaud T, Lightly TJ, Peters D, Wang L, Chen W, Cook BWM, Theriault SS, Abdelbary H. Combining bacteriophage and vancomycin is efficacious against MRSA biofilm-like aggregates formed in synovial fluid. Front Med (Lausanne) 2023; 10:1134912. [PMID: 37359001 PMCID: PMC10289194 DOI: 10.3389/fmed.2023.1134912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Background Biofilm formation is a major clinical challenge contributing to treatment failure of periprosthetic joint infection (PJI). Lytic bacteriophages (phages) can target biofilm associated bacteria at localized sites of infection. The aim of this study is to investigate whether combination therapy of phage and vancomycin is capable of clearing Staphylococcus aureus biofilm-like aggregates formed in human synovial fluid. Methods In this study, S. aureus BP043, a PJI clinical isolate was utilized. This strain is a methicillin-resistant S. aureus (MRSA) biofilm-former. Phage Remus, known to infect S. aureus, was selected for the treatment protocol. BP043 was grown as aggregates in human synovial fluid. The characterization of S. aureus aggregates was assessed for structure and size using scanning electron microscopy (SEM) and flow cytometry, respectively. Moreover, the formed aggregates were subsequently treated in vitro with: (a) phage Remus [∼108 plaque-forming units (PFU)/ml], (b) vancomycin (500 μg/ml), or (c) phage Remus (∼108 PFU/ml) followed by vancomycin (500 μg/ml), for 48 h. Bacterial survival was quantified by enumeration [colony-forming units (CFU)/ml]. The efficacy of phage and vancomycin against BP043 aggregates was assessed in vivo as individual treatments and in combination. The in vivo model utilized Galleria mellonella larvae which were infected with BP043 aggregates pre-formed in synovial fluid. Results Scanning electron microscopy (SEM) images and flow cytometry data demonstrated the ability of human synovial fluid to promote formation of S. aureus aggregates. Treatment with Remus resulted in significant reduction in viable S. aureus residing within the synovial fluid aggregates compared to the aggregates that did not receive Remus (p < 0.0001). Remus was more efficient in eliminating viable bacteria within the aggregates compared to vancomycin (p < 0.0001). Combination treatment of Remus followed by vancomycin was more efficacious in reducing bacterial load compared to using either Remus or vancomycin alone (p = 0.0023, p < 0.0001, respectively). When tested in vivo, this combination treatment also resulted in the highest survival rate (37%) 96 h post-treatment, compared to untreated larvae (3%; p < 0.0001). Conclusion We demonstrate that combining phage Remus and vancomycin led to synergistic interaction against MRSA biofilm-like aggregates in vitro and in vivo.
Collapse
Affiliation(s)
- Mariam Taha
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Tia Arnaud
- Cytophage Technologies Inc., Winnipeg, MB, Canada
- Department of Microbiology, The University of Manitoba, Winnipeg, MB, Canada
| | | | - Danielle Peters
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, Canada
| | - Liyuan Wang
- Cell Biology and Image Acquisition, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, Canada
- Department of Biology, Brock University, St. Catharines, ON, Canada
| | | | - Steven S. Theriault
- Cytophage Technologies Inc., Winnipeg, MB, Canada
- Department of Microbiology, The University of Manitoba, Winnipeg, MB, Canada
| | - Hesham Abdelbary
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Werkneh AA, Islam MA. Post-treatment disinfection technologies for sustainable removal of antibiotic residues and antimicrobial resistance bacteria from hospital wastewater. Heliyon 2023; 9:e15360. [PMID: 37123966 PMCID: PMC10130869 DOI: 10.1016/j.heliyon.2023.e15360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
The World Health Organization (WHO) has identified antimicrobial resistance bacteria and its spread as one of the most serious threats to public health and the environment in the twenty-first century. Different treatment scenarios are found in several countries, each with their own regulations and selection criteria for the effluent quality and management practices of hospital wastewater. To prevent the spread of disease outbreaks and other environmental threats, the development of sustainable treatment techniques that remove all antibiotics and antimicrobial resistant bacteria and genes should be required. Although few research based articles published focusing this issues, explaining the drawbacks and effectiveness of post-treatment disinfection strategies for eliminating antibiotic residues and antimicrobial resistance from hospital wastewater is the reason of this review. The application of conventional activated sludge (CAS) in large scale hospital wastewater treatments poses high energy supply needs for aeration, capital and operational costs. Membrane bioreactors (MBR) have also progressively replaced the CAS treatment systems and achieved better treatment potential, but membrane fouling, energy cost for aeration, and membrane permeability loss restrict their performance at large scale operations. In addition, the membrane process alone doesn't completely remove/degrade these micropollutants; as a substitute, the pollutants are being concentrated in a smaller volume, which requires further post-treatment. Therefore, these drawbacks should be solved by developing advanced techniques to be integrated into any of these or other secondary wastewater treatment systems, aiming for the effective removal of these micropollutants. The purpose of this paper is to review the performances of post-treatment disinfection technologies in the removal of antibiotics, antimicrobial resistant bacteria and their gens from hospital wastewater. The performance of advanced disinfection technologies (such as granular and powered activated carbon adsorption, ozonation, UV, disinfections, phytoremediation), and other integrated post-treatment techniques are primarily reviewed. Besides, the ecotoxicology and public health risks of hospital wastewater, and the development, spreading and mechanisms of antimicrobial resistant and the protection of one health are also highlighted.
Collapse
Affiliation(s)
- Adhena Ayaliew Werkneh
- Department of Environmental Health, School of Public Health, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia
- Corresponding author. ;
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| |
Collapse
|
14
|
Shivaram KB, Bhatt P, Applegate B, Simsek H. Bacteriophage-based biocontrol technology to enhance the efficiency of wastewater treatment and reduce targeted bacterial biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160723. [PMID: 36496019 DOI: 10.1016/j.scitotenv.2022.160723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Wastewater treatment is an essential process for public health and a sustainable ecosystem. Inadequate wastewater treatment can lead to the release of organic and inorganic pollutants and pathogenic bacteria into the receiving waters which could be further utilized for recreation purposes. The interaction between bacteriophage and bacteria in a wastewater treatment plant plays a major role in maintaining the treatment process. Phage therapy has been proposed as an alternative to conventional treatment methods as bacteriophages can be used on specific targets and leave useful bacteria unharmed. The bacterial species, which are responsible for bulking, foaming, and biofilm formation in a wastewater treatment plant (WWTP) have been identified and their respective phages are isolated to control their growth. Phages with lytic life cycles are preferred to lysogenic. Lytic phages can kill the specific target as they lyse the cell, infect most of the hosts, and have an immediate effect on controlling problems caused by bacteria in a WWTP. The bacteriophages such as T7, SPI1, GTE7, PhaxI, MAG1, MAG2, ϕPh_Se01, ϕPh_Se02, and Bxb1 have been investigated for the removal of bacterial biofilms from wastewater. Novel experimental setups have improved the efficiency of phage therapy in small-scale and pilot-scale experiments. Much more in-depth knowledge of the microbial community and their interaction would help promote the usage of phage therapy in large-scale wastewater treatments. This paper has covered the recent advancements in phage therapy as an effective biocontrol of pathogenic bacteria in the wastewater treatment process and has looked at certain shortcomings that have to be improved.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
15
|
Topical phage therapy in a mouse model of Cutibacterium acnes-induced acne-like lesions. Nat Commun 2023; 14:1005. [PMID: 36813793 PMCID: PMC9947178 DOI: 10.1038/s41467-023-36694-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Acne vulgaris is a common neutrophil-driven inflammatory skin disorder in which Cutibacterium acnes (C. acnes) is known to play a key role. For decades, antibiotics have been widely employed to treat acne vulgaris, inevitably resulting in increased bacterial antibiotic resistance. Phage therapy is a promising strategy to combat the growing challenge of antibiotic-resistant bacteria, utilizing viruses that specifically lyse bacteria. Herein, we explore the feasibility of phage therapy against C. acnes. Eight novel phages, isolated in our laboratory, and commonly used antibiotics eradicate 100% of clinically isolated C. acnes strains. Topical phage therapy in a C. acnes-induced acne-like lesions mouse model affords significantly superior clinical and histological scores. Moreover, the decrease in inflammatory response was reflected by the reduced expression of chemokine CXCL2, neutrophil infiltration, and other inflammatory cytokines when compared with the infected-untreated group. Overall, these findings indicate the potential of phage therapy for acne vulgaris as an additional tool to conventional antibiotics.
Collapse
|
16
|
Isolation, characterization, and complete genome sequence of vibrio phage KIT04, a novel lytic phage of the subfamily ermolyevavirinae. Virology 2023; 579:148-155. [PMID: 36669331 DOI: 10.1016/j.virol.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/16/2023]
Abstract
Vibrio phage KIT04 was isolated from muscle tissue samples collected from a local market in Vietnam. KIT04 is a lytic phage that is specific to Vibrio parahaemolyticus. The one-step growth curve determined the burst size and latent period of 0.01 multiplicity of infection KIT04 in V. parahaemolyticus as approximately 156 plaque-forming units/bacterium and 45 min, respectively. Vibrio phage KIT04 has an approximately 76.4 ± 4.5 nm diameter icosahedral head and a tail length of approximately 159.5 ± 16.6 nm long tail. KIT04 significantly reduced V. parahaemolyticus ATCC 17802 in vitro. Complete genome analysis showed that KIT04 had a 114,933 bp dsDNA genome with 40.24% G + C content and 160 open reading frames (ORFs). However, the phage genome contained 24 tRNAs and no lysogeny-related genes. Moreover, five of the 160 ORFs encoded unique hypothetical proteins, indicating that KIT04 is a novel phage. Genomic comparison indicated that KIT04 is closely related to the Vibrio phages pVp-1 and VPT02. Further, phylogenetic analysis of the major tail proteins and whole genome supported the KIT04 classification into the subfamily Ermolyevavirinae. Our study describes a new candidate phage that could be used as a bioagent for controlling Vibrio pathogens.
Collapse
|
17
|
Bolsan AC, Rodrigues HC, Abilhôa HCZ, Hollas CE, Venturin B, Gabiatti NC, Bortoli M, Kunz A, De Prá MC. Bacteriophages in wastewater treatment: can they be an approach to optimize biological treatment processes? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89889-89898. [PMID: 36367646 DOI: 10.1007/s11356-022-24000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we explore the applications of bacteriophages and the advantages of using these viruses to control undesirable organisms in wastewater treatment plants. Based on this, this paper reviewed the literature on the subject by performing a bibliometric and scientometric analysis of articles published in peer-reviewed journals through 2021. We obtained 806 publications, of which 40% were published in the last 5 years, demonstrating an increase in interest in the subject. These articles analyzed, bacteriophages in treatment plants were strongly linked to bacteria such as Escherichia coli and related to disinfection, inactivation, sewage, and wastewater, in addition, biocontrol studies have gained prominence in recent years, particularly due to the resistance of microorganisms to antibiotics. Studies have shown that bacteriophages have great potential for application in treatment systems to control unwanted processes and act as valuable economic and environmental tools to improve the efficiency of various treatment technologies. Although these viruses have already been studied in various applications to optimize treatment plant processes, technology transfer remains a challenge due to the limitations of the technique-such as physicochemical factors related to the environment-and the complexity of biological systems. The research focusing on application strategies in conjunction with molecular biology techniques can expand this study area, enabling the discovery of new bacteriophages.
Collapse
Affiliation(s)
- Alice Chiapetti Bolsan
- Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos, UTFPR-DV/PPGBIOTEC-DV, Dois Vizinhos, PR, Brazil
| | - Heloisa Campeão Rodrigues
- Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos, UTFPR-DV/PPGBIOTEC-DV, Dois Vizinhos, PR, Brazil
| | - Hélen Caroline Zonta Abilhôa
- Universidade Tecnológica Federal Do Paraná, Campus Francisco Beltrão, UTFPR-FB/PPGEA-FB, Francisco Beltrão, PR, Brazil
| | - Camila Ester Hollas
- Universidade Estadual Do Oeste Do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - Bruno Venturin
- Universidade Estadual Do Oeste Do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - Naiana Cristine Gabiatti
- Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos, UTFPR-DV/PPGBIOTEC-DV, Dois Vizinhos, PR, Brazil
| | - Marcelo Bortoli
- Universidade Tecnológica Federal Do Paraná, Campus Francisco Beltrão, UTFPR-FB/PPGEA-FB, Francisco Beltrão, PR, Brazil
| | - Airton Kunz
- Universidade Estadual Do Oeste Do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
- Embrapa Suínos E Aves, Concórdia, SC, 89715-899, Brazil
| | - Marina Celant De Prá
- Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos, UTFPR-DV/PPGBIOTEC-DV, Dois Vizinhos, PR, Brazil.
| |
Collapse
|
18
|
Leclerc QJ, Lindsay JA, Knight GM. Modelling the synergistic effect of bacteriophage and antibiotics on bacteria: Killers and drivers of resistance evolution. PLoS Comput Biol 2022; 18:e1010746. [PMID: 36449520 PMCID: PMC9744316 DOI: 10.1371/journal.pcbi.1010746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Bacteriophage (phage) are bacterial predators that can also spread antimicrobial resistance (AMR) genes between bacteria by generalised transduction. Phage are often present alongside antibiotics in the environment, yet evidence of their joint killing effect on bacteria is conflicted, and the dynamics of transduction in such systems are unknown. Here, we combine in vitro data and mathematical modelling to identify conditions where phage and antibiotics act in synergy to remove bacteria or drive AMR evolution. We adapt a published model of phage-bacteria dynamics, including transduction, to add the pharmacodynamics of erythromycin and tetracycline, parameterised from new in vitro data. We simulate a system where two strains of Staphylococcus aureus are present at stationary phase, each carrying either an erythromycin or tetracycline resistance gene, and where multidrug-resistant bacteria can be generated by transduction only. We determine rates of bacterial clearance and multidrug-resistant bacteria appearance, when either or both antibiotics and phage are present at varying timings and concentrations. Although phage and antibiotics act in synergy to kill bacteria, by reducing bacterial growth antibiotics reduce phage production. A low concentration of phage introduced shortly after antibiotics fails to replicate and exert a strong killing pressure on bacteria, instead generating multidrug-resistant bacteria by transduction which are then selected for by the antibiotics. Multidrug-resistant bacteria numbers were highest when antibiotics and phage were introduced simultaneously. The interaction between phage and antibiotics leads to a trade-off between a slower clearing rate of bacteria (if antibiotics are added before phage), and a higher risk of multidrug-resistance evolution (if phage are added before antibiotics), exacerbated by low concentrations of phage or antibiotics. Our results form hypotheses to guide future experimental and clinical work on the impact of phage on AMR evolution, notably for studies of phage therapy which should investigate varying timings and concentrations of phage and antibiotics.
Collapse
Affiliation(s)
- Quentin J. Leclerc
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Antimicrobial Resistance Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institute for Infection & Immunity, St George’s University of London, London, United Kingdom
- * E-mail: ,
| | - Jodi A. Lindsay
- Institute for Infection & Immunity, St George’s University of London, London, United Kingdom
| | - Gwenan M. Knight
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Antimicrobial Resistance Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
19
|
Cao S, Yang W, Zhu X, Liu C, Lu J, Si Z, Pei L, Zhang L, Hu W, Li Y, Wang Z, Pang Z, Xue X, Li Y. Isolation and identification of the broad-spectrum high-efficiency phage vB_SalP_LDW16 and its therapeutic application in chickens. BMC Vet Res 2022; 18:386. [PMID: 36329508 PMCID: PMC9632116 DOI: 10.1186/s12917-022-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Salmonella infection in livestock and poultry causes salmonellosis, and is mainly treated using antibiotics. However, the misuse use of antibiotics often triggers the emergence of multi-drug-resistant Salmonella strains. Currently, Salmonella phages is safe and effective against Salmonella, serving as the best drug of choice. This study involved 16 Salmonella bacteriophages separated and purified from the sewage and the feces of the broiler farm. A phage, vB_SalP_LDW16, was selected based on the phage host range test. The phage vB_SalP_LDW16 was characterized by the double-layer plate method and transmission electron microscopy. Furthermore, the clinical therapeutic effect of phage vB_SalP_LDW16 was verified by using the pathogenic Salmonella Enteritidis in the SPF chicken model. RESULTS The phage vB_SalP_LDW16 with a wide host range was identified to the family Siphoviridae and the order Caudoviridae, possess a double-stranded DNA and can lyse 88% (22/25) of Salmonella strains stored in the laboratory. Analysis of the biological characteristics, in addition, revealed the optimal multiplicity of infection (MOI) of vB_SalP_LDW16 to be 0.01 and the phage titer to be up to 3 × 1014 PFU/mL. Meanwhile, the phage vB_SalP_LDW16 was found to have some temperature tolerance, while the titer decreases rapidly above 60 ℃, and a wide pH (i.e., 5-12) range as well as relative stability in pH tolerance. The latent period of phage was 10 min, the burst period was 60 min, and the burst size was 110 PFU/cell. Furthermore, gastric juice was also found to highly influence the activity of the phage. The clinical treatment experiments showed that phage vB_SalP_LDW16 was able to significantly reduce the bacterial load in the blood through phage treatment, thereby improving the pathological changes in the intestinal, liver, and heart damage, and promoting the growth and development of the chicken. CONCLUSIONS The phage vB_SalP_LDW16 is a highly lytic phage with a wide host range, which can be potentially used for preventing and treating chicken salmonellosis, as an alternative or complementary antibiotic treatment in livestock farming.
Collapse
Affiliation(s)
- Shengliang Cao
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wenwen Yang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xihui Zhu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhenshu Si
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Lanying Pei
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Leilei Zhang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wensi Hu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Yanlan Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhiwei Wang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zheyu Pang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xijuan Xue
- Shandong Sinder Technology Co., Ltd., Sinder Industrial Park, Shungeng Road, Zhucheng Development Zone, Weifang, Shandong, 262200, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
| |
Collapse
|
20
|
Kanaan MHG, Tarek AM. Innovative modern bio-preservation module of meat by lytic bacteriophages against emergent contaminants. Open Vet J 2022; 12:1018-1026. [PMID: 36650867 PMCID: PMC9805770 DOI: 10.5455/ovj.2022.v12.i6.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/20/2022] [Indexed: 12/29/2022] Open
Abstract
Meat is a perishable product that has a short shelf life and can be ruined easily if the proper preservation measures are not employed. It is difficult to control all potential sources of microbial contamination due to the complexity of the habitats present during the pre-harvest, harvest, and post-harvest stages of the food supply chain. This is due to the fact that contamination can occur at any stage. As a consequence of this, the food industry is perpetually at risk of being tainted by microorganisms, notwithstanding the progress that has been made in contemporary technology. Antibiotic usage has exacerbated the problem, leading to the emergence of infections transmitted by antibiotic-resistant foods. It's critical to work on novel ways to reduce microbial contamination in meat and in the meat processing environment. Therefore, to assure the wholesomeness of the finished product, several control procedures must be adopted throughout the food manufacturing and processing chain. Because of this, bacteriophages and the derivatives of these viruses have arisen as an innovative, significant, and risk-free option for the prevention, treatment, and/or elimination of such pollutants in a variety of foodstuff handling environments. So, the focus of this review was on the future potential of integrated phage, modified phage, and their derivatives as antimicrobials in the traditional farm-to-table setting, which encompasses areas like primary production, post-harvest processing, bio-sanitation, and bio-detection. In addition to presenting certain safety concerns. Also, this paper discusses how to assure the safe and successful use of bacteriophages in the future.
Collapse
Affiliation(s)
| | - Ahmad M. Tarek
- Department of Crime Evidence, Institute of Medical Technology Al-Mansour, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
21
|
ILOMUANYA MO, ENWURU NV, ADENOKUN E, FATUNMBI ABIGAIL, ADELUOLA A, IGWILO CI. Chitosan-Based Microparticle Encapsulated <i>cinetobacter baumannii</i> Phage Cocktail in Hydrogel Matrix for the Management of Multidrug Resistant Chronic Wound Infection. Turk J Pharm Sci 2022; 19:187-195. [DOI: 10.4274/tjps.galenos.2021.72547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Abstract
Bacteriophage (phage) are both predators and evolutionary drivers for bacteria, notably contributing to the spread of antimicrobial resistance (AMR) genes by generalized transduction. Our current understanding of this complex relationship is limited. We used an interdisciplinary approach to quantify how these interacting dynamics can lead to the evolution of multidrug-resistant bacteria. We cocultured two strains of methicillin-resistant Staphylococcus aureus, each harboring a different antibiotic resistance gene, with generalized transducing phage. After a growth phase of 8 h, bacteria and phage surprisingly coexisted at a stable equilibrium in our culture, the level of which was dependent on the starting concentration of phage. We detected double-resistant bacteria as early as 7 h, indicating that transduction of AMR genes had occurred. We developed multiple mathematical models of the bacteria and phage relationship and found that phage-bacteria dynamics were best captured by a model in which phage burst size decreases as the bacteria population reaches stationary phase and where phage predation is frequency-dependent. We estimated that one in every 108 new phage generated was a transducing phage carrying an AMR gene and that double-resistant bacteria were always predominantly generated by transduction rather than by growth. Our results suggest a shift in how we understand and model phage-bacteria dynamics. Although rates of generalized transduction could be interpreted as too rare to be significant, they are sufficient in our system to consistently lead to the evolution of multidrug-resistant bacteria. Currently, the potential of phage to contribute to the growing burden of AMR is likely underestimated. IMPORTANCE Bacteriophage (phage), viruses that can infect and kill bacteria, are being investigated through phage therapy as a potential solution to the threat of antimicrobial resistance (AMR). In reality, however, phage are also natural drivers of bacterial evolution by transduction when they accidentally carry nonphage DNA between bacteria. Using laboratory work and mathematical models, we show that transduction leads to evolution of multidrug-resistant bacteria in less than 8 h and that phage production decreases when bacterial growth decreases, allowing bacteria and phage to coexist at stable equilibria. The joint dynamics of phage predation and transduction lead to complex interactions with bacteria, which must be clarified to prevent phage from contributing to the spread of AMR.
Collapse
|
23
|
Abstract
Antimicrobial resistance has become increasingly common across the globe, claiming over 33,000 lives annually in Europe and 23,000 lives in the United States alone. The problem lies in trying to find potential solutions capable of tackling resistance and being able to fight infections that may resist various antimicrobials. Since Alexander Fleming's discovery in 1928, every antimicrobial synthesized in the past 70 years has developed at least one or more strands of resistant bacteria. One particular alternative to antimicrobials has brought hope to many in the scientific community; its name is the bacteriophage. Bacteriophages are viruses that can replicate within bacteria triggering genetic alterations and changes in pathways of protein expression by encoding a few to hundreds of genes within their genomes. The bacteriophage can hijack the cell, using the cell's genetic apparatus to replicate within the bacterium until bacterial lysis. This therapy has been used in the genodermatosis Netherton syndrome which has been associated with the increased risk of Staphylococcus aureus infections. Emerging data support the potential role of bacteriophage therapy for Cutibacterium acnes in acne vulgaris, with a potential role in genetic disorders with severe acne vulgaris including Apert's syndrome. Bacteriophages hold benefits for genodermatoses associated with recurrent cutaneous infections, i.e. the immunodeficiencies with distinctive cutaneous features as well as conditions such as atopic dermatitis in which bacterial colonization plays a strong role.
Collapse
|
24
|
Fanaei V, Validi M, Zamanzad B, Karimi A. Isolation and identification of specific bacteriophages against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamases-producing Escherichia coli, extended-spectrum beta-lactamases-producing Klebsiella pneumoniae, and multidrug-resistant Acinetobacter baumanniiin vitro. FEMS Microbiol Lett 2021; 368:6413542. [PMID: 34718541 DOI: 10.1093/femsle/fnab139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
Drug resistance of methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamases-producing Escherichia coli and Klebsiella pneumoniae and multidrug-resistant Acinetobacter baumannii are also cited as one of the most important causes of community and hospital acquired infections. Phage therapy can be used as a therapeutic method for the treatment of infections caused by these bacteria. The aim of this study was to isolate bacteriophages from municipal wastewater and assess their effects against drug resistant bacterial strains. The single agar layer technique was used to investigate the bacteriolytic effect of bacteriophages. Then, the double agar layer technique was used to observe phage plaques and the transmission electron microscopy was used to study the morphology of the bacteriophages. Transparent plaque formation in a double agar layer test of methicillin-resistant S. aureus and extended-spectrum beta-lactamases-producing E. coli and K. pneumoniae indicated the lysis of bacterial cells by isolated bacteriophages. No bacteriophage against A. baumannii was isolated from municipal wastewater. The morphology of these bacteriophages was also identified by electron microscopy. The results of this study showed that bacteriophages act specifically and due to the increasing level of antibiotic resistance, phage therapy as a new treatment can open a new horizon for the treatment of multidrug resistant bacteria.
Collapse
Affiliation(s)
- Vahide Fanaei
- Shahrekord, Rahmatieh, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran
| | - Majid Validi
- Shahrekord, Rahmatieh, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran
| | - Behnam Zamanzad
- Shahrekord, Rahmatieh, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran
| | - Ali Karimi
- Shahrekord, Rahmatieh, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran
| |
Collapse
|
25
|
Novel PhoH-encoding vibriophages with lytic activity against environmental Vibrio strains. Arch Microbiol 2021; 203:5321-5331. [PMID: 34379161 DOI: 10.1007/s00203-021-02511-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
Cholera is a devastating diarrheal disease that accounts for more than 10% of children's lives worldwide, but its treatment is hampered by a rise in antibiotic resistance. One promising alternative to antibiotic therapy is the use of bacteriophages to treat antibiotic-resistant cholera infections, and control Vibrio cholera in clinical cases and in the environment, respectively. Here, we report four novel, closely related environmental myoviruses, VP4, VP6, VP18, and VP24, which we isolated from two environmental toxigenic Vibrio cholerae strains from river Kuja and Usenge beach in Kenya. High-throughput sequencing followed by bioinformatics analysis indicated that the genomes of the four bacteriophages have closely related sequences, with sizes of 148,180 bp, 148,181 bp, 148,179 bp, and 148,179 bp, and a G + C content of 36.4%. The four genomes carry the phoH gene, which is overrepresented in marine cyanophages. The isolated phages displayed a lytic activity against 15 environmental, as well as one clinical, Vibrio cholerae strains. Thus, these novel lytic vibriophages represent potential biocontrol candidates for water decontamination against pathogenic Vibrio cholerae and ought to be considered for future studies of phage therapy.
Collapse
|
26
|
Characterization and genome sequence of the genetically unique Escherichia bacteriophage vB_EcoM_IME392. Arch Virol 2021; 166:2505-2520. [PMID: 34236511 DOI: 10.1007/s00705-021-05160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/17/2021] [Indexed: 10/20/2022]
Abstract
In this study, a novel Escherichia coli-specific bacteriophage, vB_EcoM_IME392, was isolated from chicken farm sewage in Qingdao, China. The genome of IME392 was found by next-generation sequencing to be 116,460 base pairs in length with a G+C content of 45.4% (GenBank accession number MH719082). BLASTn results revealed that only 2% of the genome sequence of IME392 shows sequence similarity to known phage sequences in the GenBank database, which indicates that IME392 is a novel bacteriophage. Transmission electron microscopy showed that IME392 belongs to the family Myoviridae. The host range, the multiplicity of infection, and a one-step growth curve were also determined.
Collapse
|
27
|
Figueiredo CM, Malvezzi Karwowski MS, da Silva Ramos RCP, de Oliveira NS, Peña LC, Carneiro E, Freitas de Macedo RE, Rosa EAR. Bacteriophages as tools for biofilm biocontrol in different fields. BIOFOULING 2021; 37:689-709. [PMID: 34304662 DOI: 10.1080/08927014.2021.1955866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial biofilms are difficult to control due to the limited accessibility that antimicrobial drugs and chemicals have to the entrapped inner cells. The extracellular matrix, binds water, contributes to altered cell physiology within biofilms and act as a barrier for most antiproliferative molecules. Thus, new strategies need to be developed to overcome biofilm vitality. In this review, based on 223 documents, the advantages, recommendations, and limitations of using bacteriophages as 'biofilm predators' are presented. The plausibility of using phages (bacteriophages and mycoviruses) to control biofilms grown in different environments is also discussed. The topics covered here include recent historical experiences in biofilm control/eradication using phages in medicine, dentistry, veterinary, and food industries, the pros and cons of their use, and the development of microbial resistance/immunity to such viruses.
Collapse
Affiliation(s)
| | | | | | | | - Lorena Caroline Peña
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Everdan Carneiro
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Edvaldo Antonio Ribeiro Rosa
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Graduate Program in Animal Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
28
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
29
|
Song YR, Vu NT, Park J, Hwang IS, Jeong HJ, Cho YS, Oh CS. Phage PPPL-1, A New Biological Agent to Control Bacterial Canker Caused by Pseudomonas syringae pv. actinidiae in Kiwifruit. Antibiotics (Basel) 2021; 10:antibiotics10050554. [PMID: 34068711 PMCID: PMC8150970 DOI: 10.3390/antibiotics10050554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a Gram-negative bacterium that causes bacterial canker disease in kiwifruit. Copper or antibiotics have been used in orchards to control this disease, but the recent emergence of antibiotic-resistant Psa has called for the development of a new control agent. We previously reported that the bacteriophage (or phage) PPPL-1 showed antibacterial activity for both biovar 2 and 3 of Psa. To investigate the possibility of PPPL-1 to control bacterial canker in kiwifruit, we further tested the efficacy of PPPL-1 and its phage cocktail with two other phages on suppressing disease development under greenhouse conditions using 6 weeks old kiwifruit plants. Our results showed that the disease control efficacy of PPPL-1 treatment was statistically similar to those of phage cocktail treatment or AgrimycinTM, which contains streptomycin and oxytetracycline antibiotics as active ingredients. Moreover, PPPL-1 could successfully kill streptomycin-resistant Psa isolates, of which the treatment of BuramycinTM carrying only streptomycin as an active ingredient had no effect in vitro. The phage PPPL-1 was further characterized, and stability assays showed that the phage was stable in the field soil and at low temperature of 0 ± 2 °C. In addition, the phage could be scaled up quickly up to 1010 pfu/mL at 12 h later from initial multiplicity of infection of 0.000005. Our results indicate that PPPL-1 phage is a useful candidate as a biocontrol agent and could be a tool to control the bacterial canker in kiwifruit by Psa infection in the field conditions.
Collapse
Affiliation(s)
- Yu-Rim Song
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea; (Y.-R.S.); (N.T.V.); (J.P.); (I.S.H.)
| | - Nguyen Trung Vu
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea; (Y.-R.S.); (N.T.V.); (J.P.); (I.S.H.)
| | - Jungkum Park
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea; (Y.-R.S.); (N.T.V.); (J.P.); (I.S.H.)
| | - In Sun Hwang
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea; (Y.-R.S.); (N.T.V.); (J.P.); (I.S.H.)
| | - Hyeon-Ju Jeong
- Fruit Research Institute, Jeollanamdo Agricultural Research and Extension Services, Haenam-gun 59021, Korea; (H.-J.J.); (Y.-S.C.)
| | - Youn-Sup Cho
- Fruit Research Institute, Jeollanamdo Agricultural Research and Extension Services, Haenam-gun 59021, Korea; (H.-J.J.); (Y.-S.C.)
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea; (Y.-R.S.); (N.T.V.); (J.P.); (I.S.H.)
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
- Correspondence: ; Tel.: +82-31-201-2678
| |
Collapse
|
30
|
Kwon J, Kim SG, Kim HJ, Giri SS, Kim SW, Lee SB, Park SC. Bacteriophage as an alternative to prevent reptile-associated Salmonella transmission. Zoonoses Public Health 2021; 68:131-143. [PMID: 33455089 DOI: 10.1111/zph.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 01/21/2023]
Abstract
Salmonellosis is a major global public health issue; its most common infection, gastroenteritis, accounts for approximately 90 million illnesses and 150,000 mortalities per year. Eradicating salmonellosis requires surveillance, prevention and treatment, entailing large expenditures. However, it is difficult to control Salmonella transmission because it occurs via multiple routes; exotic reptiles are a reservoir of Salmonella and comprise one such route. As the popularity of exotic pets and animal exhibition has increased, human encounters with reptiles have also increased. As a result, reptile-associated salmonellosis (RAS) has been recognized as an emerging disease. The development of antimicrobial resistance in RAS-causing Salmonella sp. requires alternatives to antibiotics. In this study, bacteriophages have been established as an alternative to antibiotics because only target bacteria are lysed; thus, they are promising biocontrol agents. Here, bacteriophage pSal-SNUABM-02, which infects and lyses reptile Salmonella isolates, was isolated and characterized. The morphology, host range, growth traits and stability of the phage were investigated. The phage was assigned to Myoviridae and was stable in the following conditions: pH 5-9, 4-37°C, and ultravioletA/ultravioletB (UVA/UVB) exposure. Salmonella clearance efficacy was tested using planktonic cell lysis activity and biofilm degradation on polystyrene 96-well plates and reptile skin fragments. The phage exhibited vigorous lysis activity against planktonic cells. In in vitro biofilm degradation tests on reptile skin and polystyrene plates, both low- and high-concentration phage treatments lowered bacterial cell viability by approximately 2.5-3 log colony-forming units and also decreased biomass. Thus, bacteriophages are a promising alternative to antibiotics for the prevention and eradication of RAS.
Collapse
Affiliation(s)
- Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sang Geun Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
31
|
Comparison of single and multi-host enrichment approach for harnessing lytic phages against antimicrobial-resistant E. coli: Repurposing the enrichment step. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00652-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Guevara Agudelo FA, Muñoz Molina LC, Navarrette Ospina J, Salazar Pulido LM, Pinilla Bermúdez G. Innovaciones en la terapia antimicrobiana. NOVA 2020. [DOI: 10.22490/24629448.3921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
La resistencia microbiana ha llevado a la búsqueda de innovadoras alternativas para su contención y dentro de las más promisorias están el uso de péptidos sintéticos, no sólo por sus características intrínsecas antimicrobianas, sino por las interacciones sinérgicas y antagónicas que presenta con otros mediadores inmunológicos. Estas propiedades han permitido crear péptidos sintéticos reguladores de defensa innata que representan un nuevo enfoque inmunomodulador para el tratamiento de infecciones; sin embargo, sólo los diseñados con alto score antimicrobiano, han demostrado eficacia en estudios clínicos de Fase 3. Debido a su amplio espectro de actividad, un único péptido puede actuar contra bacterias Gram negativas, Gram positivas, hongos, e incluso virus y parásitos, aumentando el interés por investigar estas dinámicas moléculas.
Por otra parte, se encuentra el sistema CRISPR, para la edición de genomas bacterianos, permitirá reducir su actividad virulenta y diseñar antimicrobianos basados en nucleasas CRISPR-Cas 9 programables contra dianas específicas, las que representan un promisorio camino en el estudio de nuevas alternativas con alto potencial para eliminar la resistencia a antibióticos de bacterias altamente patógenas. Asimismo, se aborda la terapia con fagos, referida a la accion de virus que infectan bacterias, usados solos o en cocteles para aumentar el espectro de acción de estos, aprovechando su abundacia en la naturaleza, ya que se ha considerado que cada bacteria tiene un virus específico que podría emplearse como potente agente antibacteriano.
Finalmente, mientras se usen como principal medio de contención solo tratamientos convencionales antimicrobianos, incluso de manera oportuna y acertada, la microevolución en las bacterias se asegurará de seguir su curs
Collapse
|
33
|
Huang H, Velmurugan M, Manibalan K, Zhang Q, Lu X, Wang Y, Lin JM. Synthesis and Antibacterial Activity Investigation of Novel Cuprous Oxide-Graphene Oxide Nanocomposites. CHEM LETT 2020. [DOI: 10.1246/cl.200128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hua Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300075, P. R. China
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Murugan Velmurugan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Kesavan Manibalan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xinling Lu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300075, P. R. China
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300075, P. R. China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
34
|
Kowalska JD, Kazimierczak J, Sowińska PM, Wójcik EA, Siwicki AK, Dastych J. Growing Trend of Fighting Infections in Aquaculture Environment-Opportunities and Challenges of Phage Therapy. Antibiotics (Basel) 2020; 9:antibiotics9060301. [PMID: 32512805 PMCID: PMC7345527 DOI: 10.3390/antibiotics9060301] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Phage therapy, a promising alternative to antimicrobial treatment of bacterial diseases, is getting more and more popular, especially due to the rising awareness of antibiotic resistance and restrictions in antibiotics' use. During recent years, we observed a growing trend of bacteriophages' application in aquaculture, which in each year reports high losses due to bacterial diseases. This review provides an update of the status of bacteriophage therapy for the treatment and prevention of infections in the aquatic environment. As it is still mostly in the scientific stage, there are a few constraints that may prevent effective therapy. Therefore, specific characteristics of bacteriophages, that can act in favor or against their successful use in treatment, were described. We underlined aspects that need to be considered: specificity of phages, bacterial resistance, safety, immune response of the host organism, formulation, administration and stability of phage preparations as well as bacteriophages' influence on the environment. The biggest challenge to overcome is finding the right balance between the desired and problematic characteristics of bacteriophages. Finally, regulatory approval challenges may be encountered by bacteriophage manufacturers. Even though there are still some technical constraints connected with the global use of bacteriophage therapy, it was concluded that it can be successfully applied in aquaculture.
Collapse
Affiliation(s)
- Justyna D. Kowalska
- Proteon Pharmaceuticals, 90-364 Lodz, Poland; (J.K.); (P.M.S.); (E.A.W.); (J.D.)
- Correspondence:
| | - Joanna Kazimierczak
- Proteon Pharmaceuticals, 90-364 Lodz, Poland; (J.K.); (P.M.S.); (E.A.W.); (J.D.)
| | - Patrycja M. Sowińska
- Proteon Pharmaceuticals, 90-364 Lodz, Poland; (J.K.); (P.M.S.); (E.A.W.); (J.D.)
| | - Ewelina A. Wójcik
- Proteon Pharmaceuticals, 90-364 Lodz, Poland; (J.K.); (P.M.S.); (E.A.W.); (J.D.)
| | - Andrzej K. Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Jarosław Dastych
- Proteon Pharmaceuticals, 90-364 Lodz, Poland; (J.K.); (P.M.S.); (E.A.W.); (J.D.)
| |
Collapse
|
35
|
Singh MK, Maurya A, Kumar S. Bioaugmentation for the treatment of waterborne pathogen contamination water. WATERBORNE PATHOGENS 2020. [PMCID: PMC7153333 DOI: 10.1016/b978-0-12-818783-8.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bioaugmentation is an eco-friendly and economically viable approach for enhanced degradation of pollutants and pathogens by addition of pregrown microbe or microbial cocultures in the medium. Microorganisms from different ecological conditions and engineered microbes capable to produce versatile enzymes and bioproducts are added to native microbial population for in situ treatment of wastewater. Bacterial pathogen borne in wastewater is an important concern for public health because they are not only associated with environmental damage, morbidity, and mortality but also cause economic loss connected with physical and chemical methods in wastewater treatment. Bacteriophages are natural killer of bacteria; they can be used as an alternative, cost-effective, biological method for waterborne bacterial pathogen control. Legionella pneumophila is the most tracked waterborne pathogen requiring specific treatment conditions because despite of biocides use, they are able to persist in water supplies with the help of multispecies biofilms and phagocytic protists. This type of pathogens can be biologically controlled through native complex communities fight for nutrients by means of antagonistic molecules as war weapons. Bioinoculation of heterotrophic bacterial strains in different wastewater treatment systems improves the process of pathogenic bacteria removal. The antagonist substances produced by the inoculated strains are responsible for bacterial pathogen inactivation.
Collapse
|
36
|
Yıldızlı G, Coral G, Ayaz F. Immunostimulatory Activities of Coliphages on In Vitro Activated Mammalian Macrophages. Inflammation 2019; 43:595-604. [DOI: 10.1007/s10753-019-01140-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Amiri Fahliyani S, Beheshti-Maal K, Ghandehari F. Novel lytic bacteriophages of Klebsiella oxytoca ABG-IAUF-1 as the potential agents for mastitis phage therapy. FEMS Microbiol Lett 2019; 365:5096019. [PMID: 30212876 DOI: 10.1093/femsle/fny223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/09/2018] [Indexed: 01/05/2023] Open
Abstract
Mastitis is an inflammation of the mammary gland that occurs when pathogenic microorganisms enter the udder. Even though tremendous advancements in veterinary diagnosis and therapeutics, mastitis is still the most frequent and costly disease of dairy herds overall the world. The purpose of this research was to isolate and identify the lytic phages as a potential method for biological control of bovine mastitis. In this study Klebsiella oxytoca was isolated from contaminated milk samples of Isfahan dairy herds, Isfahan, Iran and characterized as K. oxytoca ABG-IAUF-1 and its 16s-rRNA sequence was deposited in GenBank under the accession numbers of MF175803.1. Then, the four novel specific lytic bacteriophages of K. oxytoca ABG-IAUF-1 from Isfahan public wastewater were isolated and identified. The results of transmission electron microscopy indicated that theses isolated phages were related to Myoviridae and Podoviridae families of bacteriophages. Also the analysis of the growth curve of K. oxytoca ABG-IAUF-1 before and after treatment with lytic phage showed the 97% success rate of the phages in preventing of bacterial growth. This is the first report indicating the use of bacteriophages as the potential agents for eliminating the pathogenic bacteria responsible for bovine mastitis in Iran. The applications of these lytic phages could be an asset for biocontrolling of pathogenic agents in medical and veterinary biotechnology.
Collapse
Affiliation(s)
- Sara Amiri Fahliyani
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| | - Keivan Beheshti-Maal
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| | - Fereshteh Ghandehari
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| |
Collapse
|
38
|
Abdelsattar AS, Abdelrahman F, Dawoud A, Connerton IF, El-Shibiny A. Encapsulation of E. coli phage ZCEC5 in chitosan-alginate beads as a delivery system in phage therapy. AMB Express 2019; 9:87. [PMID: 31209685 PMCID: PMC6579803 DOI: 10.1186/s13568-019-0810-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/06/2019] [Indexed: 12/29/2022] Open
Abstract
Bacteriophages can be used successfully to treat pathogenic bacteria in the food chain including zoonotic pathogens that colonize the intestines of farm animals. However, harsh gastric conditions of low pH and digestive enzyme activities affect phage viability, and accordingly reduce their effectiveness. We report the development of a natural protective barrier suitable for oral administration to farm animals that confers acid stability before functional release of bead-encapsulated phages. Escherichia coli bacteriophage ZSEC5 is rendered inactive at pH 2.0 but encapsulation in chitosan–alginate bead with a honey and gelatin matrix limited titer reductions to 1 log10 PFU mL−1. The encapsulated phage titers were stable upon storage in water but achieved near complete release over 4–5 h in a simulated intestinal solution (0.1% bile salt, 0.4% pancreatin, 50 mM KH2PO4 pH 7.5) at 37 °C. Exposure of E. coli O157:H7 to the bead-encapsulated phage preparations produced a delayed response, reaching a maximal reductions of 4.2 to 4.8 log10 CFU mL−1 after 10 h at 37 °C under simulated intestinal conditions compared to a maximal reduction of 5.1 log10 CFU mL−1 at 3 h for free phage applied at MOI = 1. Bead-encapsulation is a promising reliable and cost-effective method for the functional delivery of bacteriophage targeting intestinal bacteria of farm animals.
Collapse
|
39
|
Kim MJ, Eun DH, Kim SM, Kim J, Lee WJ. Efficacy of Bacteriophages in Propionibacterium acnes-Induced Inflammation in Mice. Ann Dermatol 2019; 31:22-28. [PMID: 33911535 PMCID: PMC7992707 DOI: 10.5021/ad.2019.31.1.22] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/28/2022] Open
Abstract
Background Bacteriophages have been introduced as living drugs for infectious diseases; thus, they may provide an alternative to conventional acne therapeutics in patients with non-responsive acne. Objective We investigated the effect of bacteriophages using an acne mouse model with Propionibacterium acnes-induced inflammatory nodules by clinical examination, pathology, and immunohistochemical analysis. Methods A human-isolated P. acnes suspension (109 colony forming units/µl) was injected into the backs of HR-1 mice. Group A was used as a control, Group B was injected on the back with P. acnes 4 weeks following the initial P. acnes suspension injection, and group C was injected on the back with P. acnes and bacteriophages 4 weeks following the initial P. acnes suspension injection. Clinical and histopathological evaluations were performed. Results Inflammatory nodule size decreased with time in all groups. Group C showed the greatest decrease in size, followed by group B and group A. The histopathological findings showed a decrease in epidermal thickness and the number and size of microcomedone-like cysts in groups B and C compared to group A. Immunohistochemistry revealed similar expression of integrin α6, the epidermal proliferation marker, infiltration of CD4/CD8 T cells and neutrophils, and expression of myeloperoxidase, interleukin-1β, toll-like receptor-2, LL-37, and matrix metalloproteinase-2/3/9 in all three groups. Conclusion Using an acne mouse model with P. acnes-induced inflammatory nodules, we demonstrate that bacteriophages may constitute an alternative to conventional acne therapies. However, additional studies are needed for human applications.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Dermatology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Dong Hyuk Eun
- Department of Dermatology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Seok Min Kim
- Department of Dermatology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Weon Ju Lee
- Department of Dermatology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
40
|
El-Shafai N, El-Khouly ME, El-Kemary M, Ramadan M, Eldesoukey I, Masoud M. Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles: fabrication, characterization, DNA interaction, and antibacterial activity. RSC Adv 2019; 9:3704-3714. [PMID: 35518070 PMCID: PMC9060286 DOI: 10.1039/c8ra09788g] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/13/2019] [Indexed: 12/28/2022] Open
Abstract
The fabrication, characterization, and antibacterial activity of novel nanocomposites based on graphene oxide (GO) nanosheets decorated with silver, titanium dioxide nanoparticles, and zinc oxide nanoflowers were examined. The fabricated nanocomposites were characterized by various techniques including X-ray diffraction, ultraviolet-visible light absorption and fluorescence spectroscopy, Brunauer–Emmett–Teller theory analysis, Fourier transform infrared, and scanning electron microscopy. The antibacterial activity of the GO–metal oxide nanocomposites against two Gram-positive and two Gram-negative bacteria was examined by using the standard counting plate methodology. The results showed that the fabricated nanocomposites on the surface of GO could inhibit the growth of microbial adhered cells, and consequently prevent the process of biofilm formation in food packaging and medical devices. To confirm the antibacterial activity of the examined GO-nanocomposites, we examined their interactions with bovine serum albumin (BSA) and circulating tumor DNA (ctDNA) by steady-state fluorescence spectroscopy. Upon addition of different amounts of fabricated GO-nanocomposites, the fluorescence intensities of the singlet states of BSA and ctDNA were considerably quenched. The higher quenching was observed in the case of GO–Ag–TiO2@ZnO nanocomposite compared with other control composites. The fabrication, characterization, and antibacterial activity of novel nanocomposites based on graphene oxide (GO) nanosheets decorated with silver, titanium dioxide nanoparticles, and zinc oxide nanoflowers were examined.![]()
Collapse
Affiliation(s)
- Nagi El-Shafai
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Egypt
- Institute of Nanoscience and Nanotechnology
| | - Mohamed E. El-Khouly
- Department of Chemistry
- Faculty of Science
- Kafrelsheikh University
- Egypt
- Institute of Basic and Applied Sciences
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology
- Kafrelsheikh University
- Egypt
- Department of Chemistry
- Faculty of Science
| | - Mohamed Ramadan
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Egypt
| | - Ibrahim Eldesoukey
- Department of Bacteriology, Mycology and Immunology
- Faculty of Veterinary Medicine
- Kafrelsheikh University
- Egypt
| | - Mamdouh Masoud
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Egypt
| |
Collapse
|
41
|
Castillo DE, Nanda S, Keri JE. Propionibacterium (Cutibacterium) acnes Bacteriophage Therapy in Acne: Current Evidence and Future Perspectives. Dermatol Ther (Heidelb) 2018; 9:19-31. [PMID: 30539425 PMCID: PMC6380980 DOI: 10.1007/s13555-018-0275-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Acne vulgaris is the most common dermatological disorder worldwide. It is a multifactorial disease that involves increased sebum production, hyperkeratinization of the pilosebaceous unit, Propionibacterium acnes (Cutibacterium acnes) colonization, and inflammation. The human skin microbiome hosts a wide variety of microorganisms, including bacteria, viruses, and fungi. A delicate balance of these microorganisms is essential for the barrier function of the skin. Propionibacterium acnes represents nearly 90% of the human skin microbiome of healthy adults. Acne is a chronic recurrent disease that requires long-lasting treatment, which has led to the emergence of antibiotic resistance. New alternatives to traditional therapy are emerging, including antimicrobial peptides, natural engineered antibodies, and bacteriophages. Bacteriophages have been shown to play a role in human skin health and disease. There is evidence supporting phage therapy in many types of skin infections. P. acnes bacteriophages have been isolated and characterized. However, only a few in vitro studies have tested the ability of bacteriophages to kill P. acnes. Furthermore, there is no evidence on bacteriophage therapy in the treatment of acne in humans. In this review, we summarize the most recent evidence regarding P. acnes bacteriophages and the potential role of these bacteriophages in the treatment of acne. Further research on this field will provide the evidence to use phage therapy to decrease rates of antibiotic resistance and restore antibiotic susceptibility of P. acnes.
Collapse
Affiliation(s)
- David E Castillo
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sonali Nanda
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonette E Keri
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Veterans Affairs Miami Health Care System, Miami, FL, USA.
| |
Collapse
|
42
|
Wang R, Sun L, Wang Y, Deng Y, Fang Z, Liu Y, Deng Q, Sun D, Gooneratne R. Influence of food matrix type on extracellular products of Vibrio parahaemolyticus. BMC Microbiol 2018; 18:65. [PMID: 29976139 PMCID: PMC6034228 DOI: 10.1186/s12866-018-1207-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/22/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Two strains of Vibrio parahaemolyticus (ATCC 17802 and 33847) in shrimp, oyster, freshwater fish, pork, chicken and egg fried rice were evaluated for production of hemolysin and exoenzymes of potential importance to the pathogenicity of this bacterium. RESULTS The two strains of V. parahaemolyticus produced hemolysin, gelatinase, caseinase, phospholipase, urease, DNase and amylase in selected food matrices. Significantly higher (p < 0.05) hemolytic activity was produced by V. parahaemolyticus in egg fried rice > shrimp > freshwater fish > chicken > oyster > pork. But the exoenzyme activities were not consistent with the hemolytic activity profile, being significantly higher (p < 0.05) in shrimp > freshwater fish > chicken > oyster > pork > egg fried rice. Filtrates of V. parahaemolyticus from shrimp, freshwater fish and chicken given intraperitoneally to adult mice induced marked liver and kidney damage and were highly lethal compared with the filtrates of V. parahaemolyticus from oyster > egg fried rice > pork. CONCLUSION From in vitro and in vivo tests, it appears that the food matrix type has a significant impact on the activity of extracellular products and the pathogenicity of V. parahaemolyticus. From a food safety aspect, it is important to determine which food matrices can stimulate V. parahaemolyticus to produce additional extracellular factors. This is the first report of non-seafood including freshwater fish and chicken contaminated with V. parahaemolyticus to have been shown to be toxic to mice in vivo.
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yijia Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongfang Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Centre for Food Research and Innovation, Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
43
|
Patterson-West J, Arroyo-Mendoza M, Hsieh ML, Harrison D, Walker MM, Knipling L, Hinton DM. The Bacteriophage T4 MotB Protein, a DNA-Binding Protein, Improves Phage Fitness. Viruses 2018; 10:v10070343. [PMID: 29949907 PMCID: PMC6070864 DOI: 10.3390/v10070343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 01/21/2023] Open
Abstract
The lytic bacteriophage T4 employs multiple phage-encoded early proteins to takeover the Escherichia coli host. However, the functions of many of these proteins are not known. In this study, we have characterized the T4 early gene motB, located in a dispensable region of the T4 genome. We show that heterologous production of MotB is highly toxic to E. coli, resulting in cell death or growth arrest depending on the strain and that the presence of motB increases T4 burst size 2-fold. Previous work suggested that motB affects middle gene expression, but our transcriptome analyses of T4 motBam vs. T4 wt infections reveal that only a few late genes are mildly impaired at 5 min post-infection, and expression of early and middle genes is unaffected. We find that MotB is a DNA-binding protein that binds both unmodified host and T4 modified [(glucosylated, hydroxymethylated-5 cytosine, (GHme-C)] DNA with no detectable sequence specificity. Interestingly, MotB copurifies with the host histone-like proteins, H-NS and StpA, either directly or through cobinding to DNA. We show that H-NS also binds modified T4 DNA and speculate that MotB may alter how H-NS interacts with T4 DNA, host DNA, or both, thereby improving the growth of the phage.
Collapse
Affiliation(s)
- Jennifer Patterson-West
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Danielle Harrison
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Morgan M Walker
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
44
|
Vahedi A, Soltan Dallal MM, Douraghi M, Nikkhahi F, Rajabi Z, Yousefi M, Mousavi M. Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage. FEMS Microbiol Lett 2018; 365:5044543. [DOI: 10.1093/femsle/fny136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Azadeh Vahedi
- School of Public Health, Tehran University of Medical Sciences, Ghods street, Tehran 3551713146, Iran
| | - Mohammad Mehdi Soltan Dallal
- Department of Microbiology and Pathobiology, Tehran University of Medical Sciences, Enghelab Sq., Tehran 1416753955, Iran
| | - Masoumeh Douraghi
- Department of Pathology, Tehran University of Medical Sciences, Poursina St., Tehran 14185781, Iran
| | - Farhad Nikkhahi
- Department of Medical Bacteriology–Pathobiology, Tehran University of Medical Sciences, District 6, Pour Sina St, Tehran 1416753955, Iran
| | - Zahra Rajabi
- Food Microbiology Research Center, Tehran University of Medical Sciences, Ghods st, Tehran 1416753955, Iran
| | - Maryam Yousefi
- Department of Virology, Tehran University of Medical Sciences, Ghods street, Tehran 1416753955, Iran
| | - Maryam Mousavi
- Department of Biostatistics, Faculty of medical sciences, Tarbiat Modares University, Tehran 3551713146, Iran
| |
Collapse
|
45
|
Ngueng Feze I, Dalpé G, Song L, Farber J, Goodridge L, Levesque RC, Joly Y. For the Safety of Fresh Produce: Regulatory Considerations for Canada on the Use of Whole Genome Sequencing to Subtype Salmonella. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Rossitto M, Fiscarelli EV, Rosati P. Challenges and Promises for Planning Future Clinical Research Into Bacteriophage Therapy Against Pseudomonas aeruginosa in Cystic Fibrosis. An Argumentative Review. Front Microbiol 2018; 9:775. [PMID: 29780361 PMCID: PMC5945972 DOI: 10.3389/fmicb.2018.00775] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/05/2018] [Indexed: 01/16/2023] Open
Abstract
Although early aggressive and prolonged treatment with specific antibiotics can extend survival in patients with cystic fibrosis (CF) colonized by opportunistic Pseudomonas aeruginosa (PA), antibiotics fail to eradicate the infecting multidrug-resistant (MDR) PA strains in CF. Century-long research has suggested treating patients with bacteriophages (phages, prokaryotic viruses) naturally hosted by bacteria. Although the only phage types used in therapy, lytic phages, lyse PA aggregated in biofilm matrix by depolymerase degrading enzymes, how they can effectively, safely, and persistently do so in patients with CF is unclear. Even though advanced techniques for formulating phage cocktails, training phages and collecting phage libraries have improved efficacy in vitro, whether personalized or ready-to-use therapeutic approaches or phages and antibiotics combined are effective and safe in vivo, and can reduce PA biofilms, remains debatable. Hence, to advance clinical research on phage therapy in clinical trials, also involving mucoid and non-mucoid multidrug-resistant PA in CF, and overcome problems in Western international regulations, we need reliable and repeatable information from experiments in vitro and in vivo on phage characterization, cocktail selection, personalized approaches, and phages combined with antibiotics. These findings, challenges, and promises prompted us to undertake this argumentative review to seek up-to-date information from papers describing lytic phage activity tested in vitro on PA laboratory strains, and PA strains from chronic infections including CF. We also reviewed in vivo studies on phage activity on pulmonary and non-pulmonary animal host models infected by laboratory or CF PA strains. Our argumentative review provides essential information showing that future phage clinical research in CF should use well-characterized and selected phages isolated against CF PA, tested in vitro under dynamic conditions in cocktails or combined with antibiotics, and in vivo on non-pulmonary and pulmonary host models infected with mucoid and non-mucoid CF MDR PA. Our findings should encourage pharmaceutical industries to conduct clinical trials in vitro and in vivo testing patented genomic engineered phages from phage libraries combined with antibiotics to treat or even prevent multidrug-resistant PA in CF, thus helping international regulatory agencies to plan future clinical research on phage therapy in CF.
Collapse
Affiliation(s)
- Martina Rossitto
- Cystic Fibrosis Microbiology, Laboratory Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ersilia V. Fiscarelli
- Cystic Fibrosis Microbiology, Laboratory Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Rosati
- Unit of Clinical Epidemiology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
47
|
Jacalin-copper sulfide nanoparticles complex enhance the antibacterial activity against drug resistant bacteria via cell surface glycan recognition. Colloids Surf B Biointerfaces 2018; 163:209-217. [DOI: 10.1016/j.colsurfb.2017.12.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 11/23/2022]
|
48
|
Heo S, Kim MG, Kwon M, Lee HS, Kim GB. Inhibition of Clostridium perfringens using Bacteriophages and Bacteriocin Producing Strains. Korean J Food Sci Anim Resour 2018; 38:88-98. [PMID: 29725227 PMCID: PMC5932972 DOI: 10.5851/kosfa.2018.38.1.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/02/2022] Open
Abstract
In this study, we isolated and characterized a bacteriocin-producing strain and two bacteriophages (P4, A3), showing antimicrobial effects against Clostridium perfringens, from chicken and swine feces by the spot-on-the lawn antagonism method. The selected strain was identified as Streptococcus hyointestinalis by 16S rRNA gene sequencing. The bacteriocin from the isolated strain exhibited strong inhibitory activity against four strains of C. perfringens and all the tested strains of Listeria monocytogenes, and the bacteriocin were highly heat- and pH-stable even at pH 2, pH 10 and 121℃ for 15 min. We also evaluated the combined effects of the isolated bacteriocin and phages. Combining the phage treatments and bacteriocin resulted in a synergetic effect compared with the phage or the bacteriocin alone. In addition, during the probiotic test, the bacteriocin-producing S. hyointestinalis B19 strain reduced the population of C. perfringens significantly. Treatment with S. hyointestinalis B19 and a cocktail of lytic bacteriophages eradicated the C. perfringens KCTC 3269T, completely. Consequently, the isolated bacteriocin and bacteriophages represent candidates for effective biocontrol of C. perfringens, and bacteriocin-producing S. hyointestinalis B19 is a potential probiotic candidate for use in domestic animals.
Collapse
Affiliation(s)
- Sunhak Heo
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Min Gon Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Mirae Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hee Soo Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
49
|
Mahmoud M, Askora A, Barakat AB, Rabie OEF, Hassan SE. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. Int J Food Microbiol 2017; 266:8-13. [PMID: 29156244 DOI: 10.1016/j.ijfoodmicro.2017.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt.
Collapse
Affiliation(s)
- Mayada Mahmoud
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; Animal Health Research Institute, Zagazig, Sharkia, Egypt
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, 44519 Zagazig, Egypt.
| | - Ahmed Barakat Barakat
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Omar El-Farouk Rabie
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | | |
Collapse
|
50
|
Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66260-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|