1
|
Chen J, Gonzalez R. Engineering Escherichia coli for selective 1-decanol production using the reverse β-oxidation (rBOX) pathway. Metab Eng 2023; 79:173-181. [PMID: 37482328 DOI: 10.1016/j.ymben.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
1-Decanol has great value in the pharmaceutical and fragrance industries and plays an important role in the chemical industry. In this study, we engineered Escherichia coli to selectively synthesize 1-decanol by using enzymes of the core reverse β-oxidation (rBOX) pathway and termination module with overlapping chain-length specificity. Through screening for acyl-CoA reductase termination enzymes and proper regulation of rBOX pathway expression, a 1-decanol titer of 1.4 g/L was achieved. Further improvements were realized by engineering pyruvate dissimilation to ensure the generation of NADH through pyruvate dehydrogenase (PDH) and reducing byproduct synthesis via a tailored YigI thioesterase knockout, increasing 1-decanol titer to 1.9 g/L. The engineered strain produced about 4.4 g/L 1-decanol with a yield of 0.21 g/g in 36 h in a bi-phasic fermentation that used a dodecane overlay to increase 1-decanol transport and reduce its toxicity. Adjustment of pathway expression (varying inducer concentration) and cell growth (oxygen availability) enabled 1-decanol production at 6.1 g/L (0.26 g/g yield) and 10.05 g/L (0.2 g/g yield) using rich medium in shake flasks and bioreactor, respectively. Remarkably, the use of minimal medium resulted in 1-decanol production with 100% specificity at 2.8 g/L (0.14 g/g yield) and a per cell mass yield higher than rich medium. These 1-decanol titers, yields and purity are at least 10-fold higher than others reported to date and the engineered strain shows great potential for industrial production. Taken together, our findings suggest that using rBOX pathway and termination enzymes of proper chain-length specificity in combination with optimal chassis engineering should be an effective approach for the selective production of alcohols.
Collapse
Affiliation(s)
- Jing Chen
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Ramon Gonzalez
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Su H, Lin J. Biosynthesis pathways of expanding carbon chains for producing advanced biofuels. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:109. [PMID: 37400889 DOI: 10.1186/s13068-023-02340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
Because the thermodynamic property is closer to gasoline, advanced biofuels (C ≥ 6) are appealing for replacing non-renewable fossil fuels using biosynthesis method that has presented a promising approach. Synthesizing advanced biofuels (C ≥ 6), in general, requires the expansion of carbon chains from three carbon atoms to more than six carbon atoms. Despite some specific biosynthesis pathways that have been developed in recent years, adequate summary is still lacking on how to obtain an effective metabolic pathway. Review of biosynthesis pathways for expanding carbon chains will be conducive to selecting, optimizing and discovering novel synthetic route to obtain new advanced biofuels. Herein, we first highlighted challenges on expanding carbon chains, followed by presentation of two biosynthesis strategies and review of three different types of biosynthesis pathways of carbon chain expansion for synthesizing advanced biofuels. Finally, we provided an outlook for the introduction of gene-editing technology in the development of new biosynthesis pathways of carbon chain expansion.
Collapse
Affiliation(s)
- Haifeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural and Resources, Xian, 710075, Shanxi, China
| | - JiaFu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
3
|
Liu D, Hwang HJ, Otoupal PB, Geiselman GM, Kim J, Pomraning KR, Kim YM, Munoz N, Nicora CD, Gao Y, Burnum-Johnson KE, Jacobson O, Coradetti S, Kim J, Deng S, Dai Z, Prahl JP, Tanjore D, Lee TS, Magnuson JK, Gladden JM. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate. Metab Eng 2023; 78:72-83. [PMID: 37201565 DOI: 10.1016/j.ymben.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.
Collapse
Affiliation(s)
- Di Liu
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA.
| | - Hee Jin Hwang
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Peter B Otoupal
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Gina M Geiselman
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Joonhoon Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kyle R Pomraning
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathalie Munoz
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Oslo Jacobson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Coradetti
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Jinho Kim
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shuang Deng
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ziyu Dai
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jan-Philip Prahl
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Deepti Tanjore
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jon K Magnuson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John M Gladden
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
| |
Collapse
|
4
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Li Y, Zhai X, Yu W, Feng D, Shah AA, Gao J, Zhou YJ. Production of free fatty acids from various carbon sources by Ogataea polymorpha. BIORESOUR BIOPROCESS 2022; 9:78. [PMID: 38647893 PMCID: PMC10992350 DOI: 10.1186/s40643-022-00566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
Energy shortage and environmental concern urgently require establishing the feasible bio-refinery process from various feedstocks. The methylotrophic yeast Ogataea polymorpha is thermo-tolerant and can utilize various carbon sources, such as glucose, xylose and methanol, which makes it a promising host for bio-manufacturing. Here, we explored the capacity of O. polymorpha for overproduction of free fatty acids (FFAs) from multiple substrates. The engineered yeast produced 674 mg/L FFA from 20 g/L glucose in shake flask and could sequentially utilize the mixture of glucose and xylose. However, the FFA producing strain failed to survive in sole methanol and supplementing co-substrate xylose promoted methanol metabolism. A synergistic utilization of xylose and methanol was observed in the FFA producing strain. Finally, a mixture of glucose, xylose and methanol was evaluated for FFA production (1.2 g/L). This study showed that O. polymorpha is an ideal host for chemical production from various carbon sources.
Collapse
Affiliation(s)
- Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - XiaoXin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dao Feng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
7
|
Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc Natl Acad Sci U S A 2022; 119:e2201711119. [PMID: 35858340 PMCID: PMC9303929 DOI: 10.1073/pnas.2201711119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Methanol-based biorefinery is a promising strategy to achieve carbon neutrality goals by linking CO2 capture and solar energy storage. As a typical methylotroph, Pichia pastoris shows great potential in methanol biotransformation. However, challenges still remain in engineering methanol metabolism for chemical overproduction. Here, we present the global rewiring of the central metabolism for efficient production of free fatty acids (FFAs; 23.4 g/L) from methanol, with an enhanced supply of precursors and cofactors, as well as decreased accumulation of formaldehyde. Finally, metabolic transforming of the fatty acid cell factory enabled overproduction of fatty alcohols (2.0 g/L) from methanol. This study demonstrated that global metabolic rewiring released the great potential of P. pastoris for methanol biotransformation toward chemical overproduction.
Collapse
|
8
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
9
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Li M, Zhang J, Bai Q, Fang L, Song H, Cao Y. Non-homologous End Joining-Mediated Insertional Mutagenesis Reveals a Novel Target for Enhancing Fatty Alcohols Production in Yarrowia lipolytica. Front Microbiol 2022; 13:898884. [PMID: 35547152 PMCID: PMC9082995 DOI: 10.3389/fmicb.2022.898884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Non-homologous end joining (NHEJ)-mediated integration is effective in generating random mutagenesis to identify beneficial gene targets in the whole genome, which can significantly promote the performance of the strains. Here, a novel target leading to higher protein synthesis was identified by NHEJ-mediated integration that seriously improved fatty alcohols biosynthesis in Yarrowia lipolytica. One batch of strains transformed with fatty acyl-CoA reductase gene (FAR) showed significant differences (up to 70.53-fold) in fatty alcohol production. Whole-genome sequencing of the high-yield strain demonstrated that a new target YALI0_A00913g ("A1 gene") was disrupted by NHEJ-mediated integration of partial carrier DNA, and reverse engineering of the A1 gene disruption (YlΔA1-FAR) recovered the fatty alcohol overproduction phenotype. Transcriptome analysis of YlΔA1-FAR strain revealed A1 disruption led to strengthened protein synthesis process that was confirmed by sfGFP gene expression, which may account for enhanced cell viability and improved biosynthesis of fatty alcohols. This study identified a novel target that facilitated synthesis capacity and provided new insights into unlocking biosynthetic potential for future genetic engineering in Y. lipolytica.
Collapse
Affiliation(s)
- Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jinlai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Qiuyan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Lixia Fang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Brar KK, Raheja Y, Chadha BS, Magdouli S, Brar SK, Yang YH, Bhatia SK, Koubaa A. A paradigm shift towards production of sustainable bioenergy and advanced products from Cannabis/hemp biomass in Canada. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-22. [PMID: 35342682 PMCID: PMC8934023 DOI: 10.1007/s13399-022-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 05/22/2023]
Abstract
The global cannabis (Cannabis sativa) market was 17.7 billion in 2019 and is expected to reach up to 40.6 billion by 2024. Canada is the 2nd nation to legalize cannabis with a massive sale of $246.9 million in the year 2021. Waste cannabis biomass is managed using disposal strategies (i.e., incineration, aerobic/anaerobic digestion, composting, and shredding) that are not good enough for long-term environmental sustainability. On the other hand, greenhouse gas emissions and the rising demand for petroleum-based fuels pose a severe threat to the environment and the circular economy. Cannabis biomass can be used as a feedstock to produce various biofuels and biochemicals. Various research groups have reported production of ethanol 9.2-20.2 g/L, hydrogen 13.5 mmol/L, lipids 53.3%, biogas 12%, and biochar 34.6% from cannabis biomass. This review summarizes its legal and market status (production and consumption), the recent advancements in the lignocellulosic biomass (LCB) pre-treatment (deep eutectic solvents (DES), and ionic liquids (ILs) known as "green solvents") followed by enzymatic hydrolysis using glycosyl hydrolases (GHs) for the efficient conversion efficiency of pre-treated biomass. Recent advances in the bioconversion of hemp into oleochemicals, their challenges, and future perspectives are outlined. A comprehensive insight is provided on the trends and developments of metabolic engineering strategies to improve product yield. The thermochemical processing of disposed-off hemp lignin into bio-oil, bio-char, synthesis gas, and phenol is also discussed. Despite some progress, barricades still need to be met to commercialize advanced biofuels and compete with traditional fuels.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 India
| | | | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Ahmed Koubaa
- Institut de Recherche Sur Les Forêts, Université du Québec en Abitibi-Témiscamingue, Université, Rouyn-Noranda, 445 Boulevard de l’ Université, Rouyn-Noranda, QC J9X5E4 Canada
| |
Collapse
|
12
|
Yan C, Yu W, Zhai X, Yao L, Guo X, Gao J, Zhou YJ. Characterizing and engineering promoters for metabolic engineering of Ogataea polymorpha. Synth Syst Biotechnol 2022; 7:498-505. [PMID: 34977394 PMCID: PMC8685918 DOI: 10.1016/j.synbio.2021.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Bio-manufacturing via microbial cell factory requires large promoter library for fine-tuned metabolic engineering. Ogataea polymorpha, one of the methylotrophic yeasts, possesses advantages in broad substrate spectrum, thermal-tolerance, and capacity to achieve high-density fermentation. However, a limited number of available promoters hinders the engineering of O. polymorpha for bio-productions. Here, we systematically characterized native promoters in O. polymorpha by both GFP fluorescence and fatty alcohol biosynthesis. Ten constitutive promoters (PPDH, PPYK, PFBA, PPGM, PGLK, PTRI, PGPI, PADH1, PTEF1 and PGCW14) were obtained with the activity range of 13%–130% of the common promoter PGAP (the promoter of glyceraldehyde-3-phosphate dehydrogenase), among which PPDH and PGCW14 were further verified by biosynthesis of fatty alcohol. Furthermore, the inducible promoters, including ethanol-induced PICL1, rhamnose-induced PLRA3 and PLRA4, and a bidirectional promoter (PMal-PPer) that is strongly induced by sucrose, further expanded the promoter toolbox in O. polymorpha. Finally, a series of hybrid promoters were constructed via engineering upstream activation sequence (UAS), which increased the activity of native promoter PLRA3 by 4.7–10.4 times without obvious leakage expression. Therefore, this study provided a group of constitutive, inducible, and hybrid promoters for metabolic engineering of O. polymorpha, and also a feasible strategy for rationally regulating the promoter strength.
Collapse
Affiliation(s)
- Chunxiao Yan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, PR China.,Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| |
Collapse
|
13
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
14
|
Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y, Deng Z, Qu X. A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Yaya Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Kai Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Xinru Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Wenlu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
15
|
Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y, Deng Z, Qu X. A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors. Angew Chem Int Ed Engl 2021; 60:5414-5420. [PMID: 33258169 DOI: 10.1002/anie.202015462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 12/15/2022]
Abstract
4-Androstenedione (4-AD) and progesterone (PG) are two of the most important precursors for synthesis of steroid drugs, however their current manufacturing processes suffer from low efficiency and severe environmental issues. In this study, we decipher a dual-role reductase (mnOpccR) in the phytosterols catabolism, which engages in two different metabolic branches to produce the key intermediate 20-hydroxymethyl pregn-4-ene-3-one (4-HBC) through a 4-e reduction of 3-oxo-4-pregnene-20-carboxyl-CoA (3-OPC-CoA) and 2-e reduction of 3-oxo-4-pregnene-20-carboxyl aldehyde (3-OPA), respectively. Inactivation or overexpression of mnOpccR in the Mycobacterium neoaurum can achieve exclusive production of either 4-AD or 4-HBC from phytosterols. By utilizing a two-step synthesis, 4-HBC can be efficiently converted into PG in a scalable manner (100 gram scale). This study deciphers a pivotal biosynthetic mechanism of phytosterol catabolism and provides very efficient production routes of 4-AD and PG.
Collapse
Affiliation(s)
- Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Yaya Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Kai Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Xinru Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Wenlu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| |
Collapse
|
16
|
Liu Y, Benitez MG, Chen J, Harrison E, Khusnutdinova AN, Mahadevan R. Opportunities and Challenges for Microbial Synthesis of Fatty Acid-Derived Chemicals (FACs). Front Bioeng Biotechnol 2021; 9:613322. [PMID: 33575251 PMCID: PMC7870715 DOI: 10.3389/fbioe.2021.613322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Global warming and uneven distribution of fossil fuels worldwide concerns have spurred the development of alternative, renewable, sustainable, and environmentally friendly resources. From an engineering perspective, biosynthesis of fatty acid-derived chemicals (FACs) is an attractive and promising solution to produce chemicals from abundant renewable feedstocks and carbon dioxide in microbial chassis. However, several factors limit the viability of this process. This review first summarizes the types of FACs and their widely applications. Next, we take a deep look into the microbial platform to produce FACs, give an outlook for the platform development. Then we discuss the bottlenecks in metabolic pathways and supply possible solutions correspondingly. Finally, we highlight the most recent advances in the fast-growing model-based strain design for FACs biosynthesis.
Collapse
Affiliation(s)
- Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mauricio Garcia Benitez
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Emma Harrison
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Krishnan A, McNeil BA, Stuart DT. Biosynthesis of Fatty Alcohols in Engineered Microbial Cell Factories: Advances and Limitations. Front Bioeng Biotechnol 2020; 8:610936. [PMID: 33344437 PMCID: PMC7744569 DOI: 10.3389/fbioe.2020.610936] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Concerns about climate change and environmental destruction have led to interest in technologies that can replace fossil fuels and petrochemicals with compounds derived from sustainable sources that have lower environmental impact. Fatty alcohols produced by chemical synthesis from ethylene or by chemical conversion of plant oils have a large range of industrial applications. These chemicals can be synthesized through biological routes but their free forms are produced in trace amounts naturally. This review focuses on how genetic engineering of endogenous fatty acid metabolism and heterologous expression of fatty alcohol producing enzymes have come together resulting in the current state of the field for production of fatty alcohols by microbial cell factories. We provide an overview of endogenous fatty acid synthesis, enzymatic methods of conversion to fatty alcohols and review the research to date on microbial fatty alcohol production. The primary focus is on work performed in the model microorganisms, Escherichia coli and Saccharomyces cerevisiae but advances made with cyanobacteria and oleaginous yeasts are also considered. The limitations to production of fatty alcohols by microbial cell factories are detailed along with consideration to potential research directions that may aid in achieving viable commercial scale production of fatty alcohols from renewable feedstock.
Collapse
Affiliation(s)
- Anagha Krishnan
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Bonnie A McNeil
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David T Stuart
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Cracking the chemical code: European common lizards (Zootoca vivipara) respond to an hexane soluble predator kairomone. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Cordova LT, Butler J, Alper HS. Direct production of fatty alcohols from glucose using engineered strains of Yarrowia lipolytica. Metab Eng Commun 2019; 10:e00105. [PMID: 32547923 PMCID: PMC7283507 DOI: 10.1016/j.mec.2019.e00105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/26/2019] [Indexed: 11/22/2022] Open
Abstract
Fatty alcohols are important industrial oleochemicals with broad applications and a growing market. Here, we sought to engineer Yarrowia lipolytica to serve as a renewable source of fatty alcohols (specifically hexadecanol, heptadecanol, octadecanol, and oleyl alcohol) directly from glucose. Through screening four fatty acyl-CoA reductase (FAR) enzyme variants across two engineered background strains, we identified that MhFAR enabled the highest production. Further strain engineering, fed-batch flask cultivation, and extractive fermentation improved the fatty alcohol titer to 1.5 g/L. Scale-up of this strain in a 2L bioreactor led to 5.8 g/L total fatty alcohols at an average yield of 36 mg/g glucose with a maximum productivity of 39 mg/L hr. Finally, we utilized this fatty alcohol reductase to generate a customized fatty alcohol, linolenyl alcohol, from α-linolenic acid. Overall, this work demonstrates Y. lipolytica is a robust chassis for diverse fatty alcohol production and highlights the capacity to obtain high titers and yields from a purely minimal media formulation directly from glucose without the need for complex additives. Survey of FAR function was assessed in two background strains. Direct production of fatty alcohols from glucose was enabled in minimal media. Fatty alcohol was produced at titers of 5.8 g/L in bioreactors with 36 mg/g average yield. Production of a customized fatty alcohol, linolenyl alcohol, was demonstrated.
Collapse
Affiliation(s)
- Lauren T Cordova
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Jonathan Butler
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| |
Collapse
|
20
|
Jaroensuk J, Intasian P, Kiattisewee C, Munkajohnpon P, Chunthaboon P, Buttranon S, Trisrivirat D, Wongnate T, Maenpuen S, Tinikul R, Chaiyen P. Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway. J Biol Chem 2019; 294:11536-11548. [PMID: 31182484 DOI: 10.1074/jbc.ra119.008246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/08/2019] [Indexed: 11/06/2022] Open
Abstract
An engineered metabolic pathway consisting of reactions that convert fatty acids to aldehydes and eventually alkanes would provide a means to produce biofuels from renewable energy sources. The enzyme aldehyde-deformylating oxygenase (ADO) catalyzes the conversion of aldehydes and oxygen to alkanes and formic acid and uses oxygen and a cellular reductant such as ferredoxin (Fd) as co-substrates. In this report, we aimed to increase ADO-mediated alkane production by converting an unused by-product, formate, to a reductant that can be used by ADO. We achieved this by including the gene (fdh), encoding formate dehydrogenase from Xanthobacter sp. 91 (XaFDH), into a metabolic pathway expressed in Escherichia coli Using this approach, we could increase bacterial alkane production, resulting in a conversion yield of ∼50%, the highest yield reported to date. Measuring intracellular nicotinamide concentrations, we found that E. coli cells harboring XaFDH have a significantly higher concentration of NADH and a higher NADH/NAD+ ratio than E. coli cells lacking XaFDH. In vitro analysis disclosed that ferredoxin (flavodoxin):NADP+ oxidoreductase could use NADH to reduce Fd and thus facilitate ADO-mediated alkane production. As formic acid can decrease the cellular pH, the addition of formate dehydrogenase could also maintain the cellular pH in the neutral range, which is more suitable for alkane production. We conclude that this simple, dual-pronged approach of increasing NAD(P)H and removing extra formic acid is efficient for increasing the production of renewable alkanes via synthetic biology-based approaches.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Cholpisit Kiattisewee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pobthum Munkajohnpon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Paweenapon Chunthaboon
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Duangthip Trisrivirat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
21
|
Yan Q, Pfleger BF. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2019; 58:35-46. [PMID: 31022535 DOI: 10.1016/j.ymben.2019.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
Microbial production of oleochemicals from renewable feedstocks remains an attractive route to produce high-energy density, liquid transportation fuels and high-value chemical products. Metabolic engineering strategies have been applied to demonstrate production of a wide range of oleochemicals, including free fatty acids, fatty alcohols, esters, olefins, alkanes, ketones, and polyesters in both bacteria and yeast. The majority of these demonstrations synthesized products containing long-chain fatty acids. These successes motivated additional effort to produce analogous molecules comprised of medium-chain fatty acids, molecules that are less common in natural oils and therefore of higher commercial value. Substantial progress has been made towards producing a subset of these chemicals, but significant work remains for most. The other primary challenge to producing oleochemicals in microbes is improving the performance, in terms of yield, rate, and titer, of biocatalysts such that economic large-scale processes are feasible. Common metabolic engineering strategies include blocking pathways that compete with synthesis of oleochemical building blocks and/or consume products, pulling flux through pathways by removing regulatory signals, pushing flux into biosynthesis by overexpressing rate-limiting enzymes, and engineering cells to tolerate the presence of oleochemical products. In this review, we describe the basic fundamentals of oleochemical synthesis and summarize advances since 2013 towards improving performance of heterotrophic microbial cell factories.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
22
|
Tsai YY, Ohashi T, Wu CC, Bataa D, Misaki R, Limtong S, Fujiyama K. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. J Biosci Bioeng 2019; 127:430-440. [DOI: 10.1016/j.jbiosc.2018.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023]
|
23
|
Anankanbil S, Pérez B, Cheng W, Gouveia Ambrosio G, Guo Z. Caffeoyl maleic fatty alcohol monoesters: Synthesis, characterization and antioxidant assessment. J Colloid Interface Sci 2019; 536:399-407. [PMID: 30380439 DOI: 10.1016/j.jcis.2018.10.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023]
Abstract
HYPOTHESIS Caffeoyl malate anhydride, as a good nucleophilic acceptor, can react with lipophilic fatty alcohols to yield interface-confined amphiphiles. The resulting novel molecules are hypothesized to deliver combined functionalities of parent natural building blocks, as emulsifier, stabilizer, ion chelator and free radical scavenger. EXPERIMENTS Ring-opening reactions of caffeoyl malate anhydride with fatty alcohols of different chain lengths generated a new group of antioxidant amphiphiles. Structural verification was by MS (mass spectrometry), 1H/13C NMR (nuclear magnetic resonance) and FT-IR (Fourier transform infra-red) spectroscopy. Physicochemical characterization was done by use of DSC (differential scanning calorimetry), FT-IR, determinations of critical micelle concentrations (CMC) and calculations of HLB. Antioxidant activity was assessed by DPPH (2, 2-diphenyl-1-picrylhydrazyl) and hydroxyl radical scavenging activities. Dynamic light scattering (DLS) studies demonstrated surface-activity of G8-G18. Inhibition of iron- and thermally-accelerated lipid oxidation was monitored by thiobarbituric acid reactive substances (TBARS) assay. FINDINGS Derivatization of caffeoyl malate anhydride with fatty alcohols maintained free radical scavenging activity, and improved hydroxyl radical scavenging activity of caffeic acid. Lipid oxidation at 22 °C was significantly inhibited (up to 3.5 times) in emulsions stabilized by G8-G18 with or without chitosan compared to emulsions stabilized by commercial emulsifiers and stabilizers. Thermal oxidation (at 80 °C) was 10 times less in emulsions facilitated by G8-G18 in combination with chitosan compared to emulsions stabilized by commercial emulsifiers and stabilizers. This study has developed a simple and straightforward approach for developing value-added compounds from underexplored fatty alcohols.
Collapse
Affiliation(s)
- Sampson Anankanbil
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Bianca Pérez
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Weiwei Cheng
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark; School of Food Science and Engineering, South China University of Technology, China
| | - Gustavo Gouveia Ambrosio
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Zheng Guo
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
24
|
Tupec M, Buček A, Valterová I, Pichová I. Biotechnological potential of insect fatty acid-modifying enzymes. ACTA ACUST UNITED AC 2018; 72:387-403. [PMID: 28742527 DOI: 10.1515/znc-2017-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
There are more than one million described insect species. This species richness is reflected in the diversity of insect metabolic processes. In particular, biosynthesis of secondary metabolites, such as defensive compounds and chemical signals, encompasses an extraordinarily wide range of chemicals that are generally unparalleled among natural products from other organisms. Insect genomes, transcriptomes and proteomes thus offer a valuable resource for discovery of novel enzymes with potential for biotechnological applications. Here, we focus on fatty acid (FA) metabolism-related enzymes, notably the fatty acyl desaturases and fatty acyl reductases involved in the biosynthesis of FA-derived pheromones. Research on insect pheromone-biosynthetic enzymes, which exhibit diverse enzymatic properties, has the potential to broaden the understanding of enzyme specificity determinants and contribute to engineering of enzymes with desired properties for biotechnological production of FA derivatives. Additionally, the application of such pheromone-biosynthetic enzymes represents an environmentally friendly and economic alternative to the chemical synthesis of pheromones that are used in insect pest management strategies.
Collapse
|
25
|
Xue SJ, Chi Z, Zhang Y, Li YF, Liu GL, Jiang H, Hu Z, Chi ZM. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Crit Rev Biotechnol 2018; 38:1049-1060. [DOI: 10.1080/07388551.2018.1428167] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Si-Jia Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan-Feng Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Yang X, Sun W, Shen H, Zhang S, Jiao X, Zhao ZK. Expression of phosphotransacetylase in Rhodosporidium toruloides leading to improved cell growth and lipid production. RSC Adv 2018; 8:24673-24678. [PMID: 35539198 PMCID: PMC9082159 DOI: 10.1039/c8ra03028f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Microbial lipids (MLs) are potential alternatives to vegetable oils and animal fats for production of biofuels and oleochemicals. It remains critical to improve ML production efficiency and costs for further commercial development. In the present study, we overexpressed a gene encoding phosphotransacetylase (Pta) in the oleaginous yeast Rhodosporidium toruloides for enhanced cell growth and lipid production. Compared with the parental strain R. toruloides NP11, the engineered strain NP-Pta-15 showed significant improvement in glucose consumption, cell growth and lipid accumulation when cultivated under nitrogen limited conditions in an Erlenmeyer flask as well as a stirred tank bioreactor. The introduction of Pta may establish an additional acetyl-CoA formation route by utilization of acetylphosphate. Our results should inspire more engineering efforts to facilitate the economic viability of ML technology. Microbial lipids (MLs) are potential alternatives to vegetable oils and animal fats for production of biofuels and oleochemicals.![]()
Collapse
Affiliation(s)
- Xiaobing Yang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Wenyi Sun
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Hongwei Shen
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Sufang Zhang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Xiang Jiao
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Zongbao K. Zhao
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| |
Collapse
|
27
|
Microbial synthesis of medium-chain chemicals from renewables. Nat Biotechnol 2017; 35:1158-1166. [PMID: 29220020 DOI: 10.1038/nbt.4022] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
Abstract
Linear, medium-chain (C8-C12) hydrocarbons are important components of fuels as well as commodity and specialty chemicals. As industrial microbes do not contain pathways to produce medium-chain chemicals, approaches such as overexpression of endogenous enzymes or deletion of competing pathways are not available to the metabolic engineer; instead, fatty acid synthesis and reversed β-oxidation are manipulated to synthesize medium-chain chemical precursors. Even so, chain lengths remain difficult to control, which means that purification must be used to obtain the desired products, titers of which are typically low and rarely exceed milligrams per liter. By engineering the substrate specificity and activity of the pathway enzymes that generate the fatty acyl intermediates and chain-tailoring enzymes, researchers can boost the type and yield of medium-chain chemicals. Development of technologies to both manipulate chain-tailoring enzymes and to assay for products promises to enable the generation of g/L yields of medium-chain chemicals.
Collapse
|
28
|
Fillet S, Ronchel C, Callejo C, Fajardo MJ, Moralejo H, Adrio JL. Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils. Appl Microbiol Biotechnol 2017; 101:7271-7280. [DOI: 10.1007/s00253-017-8461-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/03/2017] [Accepted: 07/30/2017] [Indexed: 12/26/2022]
|
29
|
Adrio JL. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels. Biotechnol Bioeng 2017; 114:1915-1920. [DOI: 10.1002/bit.26337] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/05/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Affiliation(s)
- José L. Adrio
- Neol Biosolutions; SA. Avicena, 4. Parque Tecnológico de la Salud 18016 Granada Spain
| |
Collapse
|