1
|
Ma D, Chen H, Liu D, Feng C, Hua Y, Gu T, Guo X, Zhou Y, Wang H, Tong G, Li H, Zhang K. Soil-derived cellulose-degrading bacteria: screening, identification, the optimization of fermentation conditions, and their whole genome sequencing. Front Microbiol 2024; 15:1409697. [PMID: 39050626 PMCID: PMC11266136 DOI: 10.3389/fmicb.2024.1409697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Straw cellulose is an abundant renewable resource in nature. In recent years, the conversion of cellulose from waste straw into biofuel by specific microorganisms' fragmentation has attracted extensive attention. Although many bacteria with the ability to degrade cellulose have been identified, comprehensive bioinformatics analyses of these bacteria remain limited, and research exploring optimal fragmentation conditions is scarce. Our study involved the isolation and screening of bacteria from various locations in Yangzhou using carboxymethyl cellulose (CMC) media. Then, the cellulose-degrading bacteria were identified using 16S rRNA and seven candidate bacterial strains with cellulose degrading ability were identified in Yangzhou city for the first time. The cellulase activity was determined by the 3,5-dinitrosalicylic acid (DNS) method in different fragmentation conditions, and finally two bacteria strains with the strongest cellulose degradation ability were selected for whole genome sequencing analysis. Sequencing results revealed that the genome sizes of Rhodococcus wratislaviensis YZ02 and Pseudomonas Xanthosomatis YZ03 were 8.51 Mb and 6.66 Mb, containing 8,466 and 5,745 genes, respectively. A large number of cellulose degradation-related genes were identified and annotated using KEGG, GO and COG analyses. In addition, genomic CAZyme analysis indicated that both R. wratislaviensis YZ02 and P. Xanthosomatis YZ03 harbor a series of glycoside hydrolase family (GH) genes and other genes related to cellulose degradation. Our finding provides new options for the development of cellulose-degrading bacteria and a theoretical basis for improving the cellulose utilization of straw.
Collapse
Affiliation(s)
- Degao Ma
- Yangzhou Environmental Monitoring Center of Jiangsu Province, Yangzhou, China
| | - Haoyu Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Duxuan Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chenwei Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yanhong Hua
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tianxiao Gu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao Guo
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yuchen Zhou
- Department of Pharmacy, Medical School of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Houjun Wang
- Yangzhou Environmental Monitoring Center of Jiangsu Province, Yangzhou, China
| | - Guifeng Tong
- Yangzhou Environmental Monitoring Center of Jiangsu Province, Yangzhou, China
| | - Hua Li
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Kun Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Chaoua S, Flahaut S, Cornu B, Hiligsmann S, Chaouche NK. Unlocking the potential of Algerian lignocellulosic biomass: exploring indigenous microbial diversity for enhanced enzyme and sugar production. Arch Microbiol 2024; 206:277. [PMID: 38789671 DOI: 10.1007/s00203-024-04011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Nowadays, natural resources like lignocellulosic biomass are gaining more and more attention. This study was conducted to analyse chemical composition of dried and ground samples (500 μm) of various Algerian bioresources including alfa stems (AS), dry palms (DP), olive pomace (OP), pinecones (PC), and tomato waste (TW). AS exhibited the lowest lignin content (3.60 ± 0.60%), but the highest cellulose (58.30 ± 2.06%), and hemicellulose (20.00 ± 3.07%) levels. DP, OP, and PC had around 30% cellulose, and 10% hemicellulose. OP had the highest lignin content (29.00 ± 6.40%), while TW contained (15.70 ± 2.67% cellulose, 13.70 ± 0.002% hemicellulose, and 17.90 ± 4.00% lignin). Among 91 isolated microorganisms, nine were selected for cellulase, xylanase, and/or laccase production. The ability of Bacillus mojavensis to produce laccase and cellulase, as well as B. safensis to produce cellulase and xylanase, is being reported for the first time. In submerged conditions, TW was the most suitable substrate for enzyme production. In this conditions, T. versicolor K1 was the only strain able to produce laccase (4,170 ± 556 U/L). Additionally, Coniocheata hoffmannii P4 exhibited the highest cellulase activity (907.62 ± 26.22 U/L), and B. mojavensis Y3 the highest xylanase activity (612.73 ± 12.73 U/L). T. versicolor K1 culture showed reducing sugars accumulation of 18.87% compared to initial concentrations. Sucrose was the predominant sugar detected by HPLC analysis (13.44 ± 0.02 g/L). Our findings suggest that T. versicolor K1 holds promise for laccase production, while TW represents a suitable substrate for sucrose production.
Collapse
Affiliation(s)
- Samah Chaoua
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria.
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium.
| | - Sigrid Flahaut
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Serge Hiligsmann
- Bioengineering Department, CELABOR Research Center, Herve, Belgium
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
3
|
Sun Q, Vega NM, Cervantes B, Mancuso CP, Mao N, Taylor MN, Collins JJ, Khalil AS, Gore J, Lu TK. Enhancing nutritional niche and host defenses by modifying the gut microbiome. Mol Syst Biol 2022; 18:e9933. [PMID: 36377768 PMCID: PMC9664710 DOI: 10.15252/msb.20209933] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 08/18/2023] Open
Abstract
The gut microbiome is essential for processing complex food compounds and synthesizing nutrients that the host cannot digest or produce, respectively. New model systems are needed to study how the metabolic capacity provided by the gut microbiome impacts the nutritional status of the host, and to explore possibilities for altering host metabolic capacity via the microbiome. Here, we colonized the nematode Caenorhabditis elegans gut with cellulolytic bacteria that enabled C. elegans to utilize cellulose, an otherwise indigestible substrate, as a carbon source. Cellulolytic bacteria as a community component in the worm gut can also support additional bacterial species with specialized roles, which we demonstrate by using Lactobacillus plantarum to protect C. elegans against Salmonella enterica infection. This work shows that engineered microbiome communities can be used to endow host organisms with novel functions, such as the ability to utilize alternate nutrient sources or to better fight pathogenic bacteria.
Collapse
Affiliation(s)
- Qing Sun
- Synthetic Biology CenterMITCambridgeMAUSA
- Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Nic M Vega
- Department of PhysicsMITCambridgeMAUSA
- Biology DepartmentEmory UniversityAtlantaGAUSA
| | - Bernardo Cervantes
- Institute for Medical Engineering & Science and Department of Biological EngineeringMITCambridgeMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Microbiology Graduate ProgramMITCambridgeMAUSA
| | - Christopher P Mancuso
- Biological Design CenterBoston UniversityBostonMAUSA
- Department of Biomedical EngineeringBoston UniversityBostonMAUSA
| | - Ning Mao
- Department of Biomedical EngineeringBoston UniversityBostonMAUSA
| | | | - James J Collins
- Synthetic Biology CenterMITCambridgeMAUSA
- Institute for Medical Engineering & Science and Department of Biological EngineeringMITCambridgeMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMAUSA
| | - Ahmad S Khalil
- Biological Design CenterBoston UniversityBostonMAUSA
- Department of Biomedical EngineeringBoston UniversityBostonMAUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMAUSA
| | - Jeff Gore
- Department of PhysicsMITCambridgeMAUSA
| | - Timothy K Lu
- Synthetic Biology CenterMITCambridgeMAUSA
- Department of Electrical Engineering and Computer ScienceMITCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
| |
Collapse
|
4
|
Yan L, Yan N, Gao XY, Liu Y, Liu ZP. Degradation of amoxicillin by newly isolated Bosea sp. Ads-6. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154411. [PMID: 35288139 DOI: 10.1016/j.scitotenv.2022.154411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Amoxicillin (AMX), one of the micro-amount hazardous pollutants, was frequently detected in environments, and of great risks to environments and human health. Microbial degradation is a promising method to eliminate pollutants. In this study, an efficient AMX-degrading strain, Ads-6, was isolated and characterized. Strain Ads-6, belonging to the genus Bosea, was also able to grow on AMX as the sole carbon and nitrogen source, with a removal of ~60% TOC. Ads-6 exhibited strong AMX-degrading ability at initial concentrations of 0.5-2 mM and pH 6-8. Addition of yeast extract could significantly enhance its degrading ability. Many degradation intermediates were identified by HPLC-MS, including new ones such as two phosphorylated products which were firstly defined in AMX degradation. A new AMX degradation pathway was proposed accordingly. Moreover, the results of comparative transcriptomes and proteomes revealed that β-lactamase, L, D-transpeptidase or its homologous enzymes were responsible for the initial degradation of AMX. Protocatechuate branch of the beta-ketoadipate pathway was confirmed as the downstream degradation pathway. These results in the study suggested that Ads-6 is great potential in biodegradation of antibiotics as well as in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Lei Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xi-Yan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Supplemental Bacillus subtilis PB6 Improves Growth Performance and Gut Health in Broilers Challenged with Clostridium perfringens. J Immunol Res 2021; 2021:2549541. [PMID: 34746321 PMCID: PMC8566084 DOI: 10.1155/2021/2549541] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023] Open
Abstract
Clostridium perfringens (CP) is the principal pathogenic bacterium of chicken necrotic enteritis (NE), which causes substantial economic losses in poultry worldwide. Although probiotics are known to provide multiple benefits, little is known about the potential effects of Bacillus subtilis (B. subtilis) application in preventing CP-induced necrotic enteritis. In this study, 450 male Arbor Acres broilers were divided into 5 experimental treatments: A: basal diet (control group); B: basal diet and CP challenge (model group); C: CP challenge+10 mg/kg enramycin (positive control group); D: CP challenge+4 × 107 CFU/kg of feed B. subtilis PB6 (PB6 low-dosage group); and E: CP challenge+6 × 107 CFU/kg of feed B. subtilis PB6 (PB6 high-dosage group). There were 6 replicate pens per treatment with 15 broilers per pen. The present research examined the effect of Bacillus subtilis PB6 (B. subtilis PB6) on growth performance, mRNA expression of intestinal cytokines and tight junctions, and gut flora composition in broilers challenged with CP. The entire experiment was divided into two phases: the non-CP challenge phase (d0–18) and the CP challenge phase (d18–26). PB6 did not increase the growth performance during the first stage, but the PB6 high-dosage group was found to have larger body weight gain and ADFI during the CP challenge stage. Feed supplementation with PB6 reduced the lesion score of challenged chicks, with increased tight junction-related gene expression (occludin and ZO-1) and decreased TNF-α expression compared with CP-infected birds. A decrease in the abundance of Clostridium XI, Streptococcus, and Staphylococcus was observed after CP infection (P < 0.05), while supplementation with PB6 restored the ileal microbial composition. In conclusion, administration of B. subtilis PB6 improved growth performance, enhanced intestinal barrier function, and mitigated intestinal inflammation/lesions, which might be due to its restoring effects on the ileal microbial composition in CP-challenged broilers.
Collapse
|
6
|
Gares M, Hiligsmann S, Kacem Chaouche N. Lignocellulosic biomass and industrial bioprocesses for the production of second generation bio-ethanol, does it have a future in Algeria? SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03442-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Houfani AA, Větrovský T, Navarrete OU, Štursová M, Tláskal V, Beiko RG, Boucherba N, Baldrian P, Benallaoua S, Jorquera MA. Cellulase-Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems. MICROBIAL ECOLOGY 2019; 77:713-725. [PMID: 30209585 DOI: 10.1007/s00248-018-1251-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Soil microorganisms are important mediators of carbon cycling in nature. Although cellulose- and hemicellulose-degrading bacteria have been isolated from Algerian ecosystems, the information on the composition of soil bacterial communities and thus the potential of their members to decompose plant residues is still limited. The objective of the present study was to describe and compare the bacterial community composition in Algerian soils (crop, forest, garden, and desert) and the activity of cellulose- and hemicellulose-degrading enzymes. Bacterial communities were characterized by high-throughput 16S amplicon sequencing followed by the in silico prediction of their functional potential. The highest lignocellulolytic activity was recorded in forest and garden soils whereas activities in the agricultural and desert soils were typically low. The bacterial phyla Proteobacteria (in particular classes α-proteobacteria, δ-proteobacteria, and γ-proteobacteria), Firmicutes, and Actinobacteria dominated in all soils. Forest and garden soils exhibited higher diversity than agricultural and desert soils. Endocellulase activity was elevated in forest and garden soils. In silico analysis predicted higher share of genes assigned to general metabolism in forest and garden soils compared with agricultural and arid soils, particularly in carbohydrate metabolism. The highest potential of lignocellulose decomposition was predicted for forest soils, which is in agreement with the highest activity of corresponding enzymes.
Collapse
Affiliation(s)
- Aicha Asma Houfani
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Oscar U Navarrete
- Laboratorio de Ecología Microbiana Aplicada, Departmento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile
- Scientific and Biotechnological Bioresource Nucleus, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile
| | - Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada
| | - Nawel Boucherba
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Said Benallaoua
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departmento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile.
- Scientific and Biotechnological Bioresource Nucleus, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
8
|
Bacteria from the endosphere and rhizosphere of Quercus spp. use mainly cell wall-associated enzymes to decompose organic matter. PLoS One 2019; 14:e0214422. [PMID: 30908541 PMCID: PMC6433265 DOI: 10.1371/journal.pone.0214422] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 01/12/2023] Open
Abstract
Due to the ability of soil bacteria to solubilize minerals, fix N2 and mobilize nutrients entrapped in the organic matter, their role in nutrient turnover and plant fitness is of high relevance in forest ecosystems. Although several authors have already studied the organic matter decomposing enzymes produced by soil and plant root-interacting bacteria, most of the works did not account for the activity of cell wall-attached enzymes. Therefore, the enzyme deployment strategy of three bacterial collections (genera Luteibacter, Pseudomonas and Arthrobacter) associated with Quercus spp. roots was investigated by exploring both cell-bound and freely-released hydrolytic enzymes. We also studied the potential of these bacterial collections to produce enzymes involved in the transformation of plant and fungal biomass. Remarkably, the cell-associated enzymes accounted for the vast majority of the total activity detected among Luteibacter strains, suggesting that they could have developed a strategy to maintain the decomposition products in their vicinity, and therefore to reduce the diffusional losses of the products. The spectrum of the enzymes synthesized and the titres of activity were diverse among the three bacterial genera. While cellulolytic and hemicellulolytic enzymes were rather common among Luteibacter and Pseudomonas strains and less detected in Arthrobacter collection, the activity of lipase was widespread among all the tested strains. Our results indicate that a large fraction of the extracellular enzymatic activity is due to cell wall-attached enzymes for some bacteria, and that Quercus spp. root bacteria could contribute at different levels to carbon (C), phosphorus (P) and nitrogen (N) cycles.
Collapse
|
9
|
Li P, Tian W, Jiang Z, Liang Z, Wu X, Du B. Genomic Characterization and Probiotic Potency of Bacillus sp. DU-106, a Highly Effective Producer of L-Lactic Acid Isolated From Fermented Yogurt. Front Microbiol 2018; 9:2216. [PMID: 30294310 PMCID: PMC6158304 DOI: 10.3389/fmicb.2018.02216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/30/2018] [Indexed: 01/23/2023] Open
Abstract
Bacillus sp. DU-106, a newly isolated member of Bacillus cereus group, exhibits the predominant ability to produce L-lactic acid. The probiotic potency of test strain revealed its survivability at acidic pH, bile salts and viability in simulated gastric juice in vitro. The acute oral toxicity test indicated its no toxicity to laboratory mice in vivo. We further determined the complete genome of strain DU-106 to understand genetic basis as a potential probiotic. It has a circular chromosome and three plasmids for a total genome 5,758,208 bp in size with a G + C content of 35.10%. Genes associated with lactate synthesis were found in the DU-106 genome. We also annotated various stress-related, bile salt resistance, and adhesion-related domains in this strain, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival under gastrointestinal tract. Moreover, strain DU-106 genome lacks the virulence genes encodes cereulide synthetase, enterotoxin FM, and cytotoxin K. These phenotypic and genomic probiotic potencies facilitate its potential candidate as probiotic starter in food industry.
Collapse
Affiliation(s)
- Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenni Tian
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhuo Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zuanhao Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xueyin Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Zhou X, Wang Z, Jia H, Li L, Wu F. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances. Front Microbiol 2018; 9:705. [PMID: 29692769 PMCID: PMC5902710 DOI: 10.3389/fmicb.2018.00705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA, nirS, and nirK genes. Results showed that 1-2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity (P < 0.05). Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile (P < 0.001). At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria, Planctomycetes, and Cyanobacteria, the first cropping of JA with Actinobacteria, the second cropping of JA with Acidobacteria, Armatimonadetes, Gemmatimonadetes, and Proteobacteria. At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO terms nitrate reductase and nitrite reductase. The abundances of amoA genes decreased while nirK increased in the third cropping of JA, nirS continuously increased in the second and third cropping of JA (P < 0.05). Redundancy analysis and Mantel test found that soil organic carbon and Olsen phosphorus contents played important roles in shaping soil bacterial communities. Overall, our results revealed that continuous monocropping of JA changed soil bacterial community composition and its functional potentials.
Collapse
Affiliation(s)
- Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Northeast Region, Ministry of Agriculture, Harbin, China
| | - Zhilin Wang
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Huiting Jia
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Li Li
- Institute of Horticulture, Qinghai Academy of Agriculture and Forestry Sciences, Xining, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Northeast Region, Ministry of Agriculture, Harbin, China
| |
Collapse
|
11
|
Franco E, Troncozo MI, Baez M, Mirífico MV, Robledo GL, Balatti PA, Saparrat MCN. Fusarium equiseti LPSC 1166 and its in vitro role in the decay of Heterostachys ritteriana leaf litter. Folia Microbiol (Praha) 2017; 63:169-179. [DOI: 10.1007/s12223-017-0541-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/26/2017] [Indexed: 10/18/2022]
|