1
|
Indriani S, Srisakultiew N, Benjakul S, Boonchuen P, Petsong K, Pongsetkul J. The impact of hot-air oven drying combined with Bacillus subtilis KC3 inoculation on quality characteristics and microbial profiles of salted shrimp paste. Int J Food Microbiol 2024; 425:110867. [PMID: 39178663 DOI: 10.1016/j.ijfoodmicro.2024.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Abstract
This study used hot-air oven drying with Bacillus subtilis KC3 inoculation to improve shrimp paste production. The fermentation rate, quality characteristics, as well as microbial profiles, were compared to those produced using sun-drying with/without inoculation. B. subtilis inoculation increased the degree of hydrolysis of shrimp paste (22.3-32.1 %) during fermentation, compared to those without inoculation (12.7-25.4 %), regardless of different drying methods (p < 0.05). The result corresponded to the faster development of shrimp paste characteristics, particularly color and browning intensity of inoculated samples when fermented for the same duration. More abundant halophilic, proteolytic, and lipolytic bacteria (p < 0.05) were also obtained in inoculated samples, confirming accelerated fermentation. Interestingly, there was no difference in proximate composition, pH, and aw among samples (p > 0.05), which were still in the range regulated by the product's standard. However, the protein and lipid degradation products such as nitrogen contents, 5'-nucleotides, free fatty acids or TBARS values, varied among samples, potentially influencing the release of desirable flavor precursors to a certain extent. The inoculation increased microbial richness and evenness/uniformity, according to next-generation sequencing analysis on microbiota profiles. Pearson's correlation also revealed that these microbiota profiles were correlated with several desirable quality characteristics to varying degrees. Thus, combining the inoculation with B. subtilis KC3 can enhance shrimp paste fermentation and quality when produced using an alternative hot-air oven while maintaining quality characteristics. The findings suggested the possibility of achieving a more efficient and consistent production process for shrimp paste.
Collapse
Affiliation(s)
- Sylvia Indriani
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nattanan Srisakultiew
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kantiya Petsong
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Han J, Ullah M, Andoh V, Khan MN, Feng Y, Guo Z, Chen H. Engineering Bacterial Chitinases for Industrial Application: From Protein Engineering to Bacterial Strains Mutation! A Comprehensive Review of Physical, Molecular, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23082-23096. [PMID: 39388625 DOI: 10.1021/acs.jafc.4c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial chitinases are integral in breaking down chitin, the natural polymer in crustacean and insect exoskeletons. Their increasing utilization across various sectors such as agriculture, waste management, biotechnology, food processing, and pharmaceutical industries highlights their significance as biocatalysts. The current review investigates various scientific strategies to maximize the efficiency and production of bacterial chitinases for industrial use. Our goal is to optimize the heterologous production process using physical, molecular, and computational tools. Physical methods focus on isolating, purifying, and characterizing chitinases from various sources to ensure optimal conditions for maximum enzyme activity. Molecular techniques involve gene cloning, site-directed mutation, and CRISPR-Cas9 gene editing as an approach for creating chitinases with improved catalytic activity, substrate specificity, and stability. Computational approaches use molecular modeling, docking, and simulation techniques to accurately predict enzyme-substrate interactions and enhance chitinase variants' design. Integrating multidisciplinary strategies enables the development of highly efficient chitinases tailored for specific industrial applications. This review summarizes current knowledge and advances in chitinase engineering to serve as an indispensable guideline for researchers and industrialists seeking to optimize chitinase production for various uses.
Collapse
Affiliation(s)
- Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, P. R. China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| |
Collapse
|
3
|
Segura-Vega J, González-Herrera A, Molina-Bravo R, Solano-González S. Computational identification and characterization of chitinase 1 and chitinase 2 from neotropical isolates of Beauveria bassiana. FRONTIERS IN BIOINFORMATICS 2024; 4:1434442. [PMID: 39493578 PMCID: PMC11527780 DOI: 10.3389/fbinf.2024.1434442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background The fungus Beauveria bassiana is widely used for agronomical applications, mainly in biological control. B. bassiana uses chitinase enzymes to degrade chitin, a major chemical component found in insect exoskeletons and fungal cell walls. However, until recently, genomic information on neotropical isolates, as well as their metabolic and biotechnological potential, has been limited. Methods Eight complete B. bassiana genomes of Neotropical origin and three references were studied to identify chitinase genes and its corresponding proteins, which were curated and characterized using manual curation and computational tools. We conducted a computational study to highlight functional differences and similarities for chitinase proteins in these Neotropical isolates. Results Eleven chitinase 1 genes were identified, categorized as chitinase 1.1 and chitinase 1.2. Five chitinase 2 genes were identified but presented a higher sequence conservation across all sequences. Interestingly, physicochemical parameters were more similar between chitinase 1.1 and chitinase 2 than between chitinase 1.1 and 1.2. Conclusion Chitinases 1 and 2 demonstrated variations, especially within chitinase 1, which presented a potential paralog. These differences were observed in their physical parameters. Additionally, CHIT2 completely lacks a signal peptide. This implies that CHIT1 might be associated with infection processes, while CHIT2 could be involved in morphogenesis and cellular growth. Therefore, our work highlights the importance of computational studies on local isolates, providing valuable resources for further experimental validation. Intrinsic changes within local species can significantly impact our understanding of complex pathogen-host interactions and offer practical applications, such as biological control.
Collapse
Affiliation(s)
- Juan Segura-Vega
- Laboratorio de Bioinformática Aplicada, Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Allan González-Herrera
- Laboratorio de Control Biológico, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Ramón Molina-Bravo
- Programa de Biotecnología Vegetal y Recursos Genéticos para el Fitomejoramiento (BIOVERFI), Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefany Solano-González
- Laboratorio de Bioinformática Aplicada, Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| |
Collapse
|
4
|
López-García CL, Guerra-Sánchez G, Santoyo-Tepole F, Olicón-Hernández DR. Chitinase induction in Trichoderma harzianum: a solid-state fermentation approach using shrimp waste and wheat bran/commercial chitin for chitooligosaccharides synthesis. Prep Biochem Biotechnol 2024; 54:1040-1050. [PMID: 38344843 DOI: 10.1080/10826068.2024.2313631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study innovatively employed solid-state fermentation (SSF) to evaluate chitinase induction in Trichoderma harzianum. Solid-state fermentation minimizes water usage, a crucial global resource, and was applied using shrimp waste chitin and a mixture of commercial chitin with wheat bran as substrates. Shrimp waste and wheat bran were pretreated and characterized for SSF, and the fungus's utilization of the substrates was assessed using spectrophotometric and microscopic methods. The resulting enzymes' ability to produce chitooligosaccharides (COS) mixtures was studied. Wheat bran/commercial chitin demonstrated superior performance, with a 1.8-fold increase in chitinase activity (76.3 U/mg protein) compared to shrimp waste chitin (41.8 U/mg protein). Additionally, the COS mixture obtained from wheat bran/commercial chitin showed a higher concentration of reducing sugars, reaching 87.85 mM, compared to shrimp waste chitin (14.87 mM). The COS profile from wheat bran/commercial chitin included monomers to heptamers, while the profile from shrimp waste chitin was predominantly composed of monomers. These results highlight the advantages of SSF for chitinase induction and COS production in T. harzianum, offering potential applications as dietary fiber, antioxidants, and antimicrobial agents. The findings contribute to by-product valorization, waste reduction, and the sustainable generation of valuable products through SSF-based enzyme production.
Collapse
Affiliation(s)
- Cynthia Lizbeth López-García
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Fortunata Santoyo-Tepole
- Departamento de Investigación, Laboratorio Central de Instrumentación de Espectroscopía, Carpio y plan de Ayala s/n. Santo Tomás, Ciudad de México, México
| | - Dario Rafael Olicón-Hernández
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
5
|
Vasquez YMSC, Cueva-Yesquen LG, Duarte AWF, Rosa LH, Valladão R, Lopes AR, Costa Bonugli-Santos R, de Oliveira VM. Genomics, Proteomics, and Antifungal Activity of Chitinase from the Antarctic Marine Bacterium Curtobacterium sp. CBMAI 2942. Int J Mol Sci 2024; 25:9250. [PMID: 39273199 PMCID: PMC11395076 DOI: 10.3390/ijms25179250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to evaluate the genomic profile of the Antarctic marine Curtobacterium sp. CBMAI 2942, as well as to optimize the conditions for chitinase production and antifungal potential for biological control. Assembly and annotation of the genome confirmed the genomic potential for chitinase synthesis, revealing two ChBDs of chitin binding (Chi C). The optimization enzyme production using an experimental design resulted in a 3.7-fold increase in chitinase production. The chitinase enzyme was identified by SDS-PAGE and confirmed through mass spectrometry analysis. The enzymatic extract obtained using acetone showed antifungal activity against the phytopathogenic fungus Aspergillus sp. series Nigri CBMAI 1846. The genetic capability of Curtobacterium sp. CBMAI 2942 for chitin degradation was confirmed through genomic analysis. The basal culture medium was adjusted, and the chitinase produced by this isolate from Antarctica showed significant inhibition against Aspergillus sp. Nigri series CBMAI 1846, which is a tomato phytopathogenic fungus. This suggests that this marine bacterium could potentially be used as a biological control of agricultural pests.
Collapse
Affiliation(s)
- Yesenia Melissa Santa-Cruz Vasquez
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
- Institute of Biology, Campinas State University (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Luis Gabriel Cueva-Yesquen
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
- Institute of Biology, Campinas State University (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Alysson Wagner Fernandes Duarte
- Complexo de Ciências Médicas e de Enfermagem, Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca 57309-005, AL, Brazil
| | - Luiz Henrique Rosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo Valladão
- Laboratory of Biochemistry, Instituto Butantan, São Paulo 05585-000, SP, Brazil; (R.V.); (A.R.L.)
| | - Adriana Rios Lopes
- Laboratory of Biochemistry, Instituto Butantan, São Paulo 05585-000, SP, Brazil; (R.V.); (A.R.L.)
| | - Rafaella Costa Bonugli-Santos
- Instituto Latino Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu 85870-650, PR, Brazil;
| | - Valéria Maia de Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
| |
Collapse
|
6
|
Baev V, Iliev I, Apostolova E, Gozmanova M, Hristova Y, Ilieva Y, Yahubyan G, Gochev V. Genomic Exploration of a Chitinolytic Streptomyces albogriseolus PMB5 Strain from European mantis ( Mantis religiosa). Curr Issues Mol Biol 2024; 46:9359-9375. [PMID: 39329906 PMCID: PMC11430731 DOI: 10.3390/cimb46090554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
The genus Streptomyces is renowned not only for its natural antibiotic production but also for its abundant chitinolytic enzymes, which break down stubborn chitin into chitooligosaccharides. Despite this, there have been limited studies utilizing whole-genome sequencing to explore the repertoire of chitin degradation and utilization genes in Streptomyces. A particularly compelling source of novel antimicrobials and enzymes lies in the microbiota of insects, where bacterial symbionts produce antimicrobials to protect against opportunistic pathogens and enzymes to adapt to the environment. In this study, we present the chitinolytic strain Streptomyces albogriseolus PMB5, isolated from the insectivorous Mantis religiosa (European mantis). Whole-genome sequencing revealed that PMB5 harbors a linear chromosome of 7,211,961 bp and a linear plasmid of 327,989 bp. The genome comprises 6683 genes, including 6592 protein-coding sequences and 91 RNA genes. Furthermore, genome analysis revealed 19 biosynthetic gene clusters covering polyketides, terpenes, and RiPPs, with 10 clusters showing significant gene similarity (>80%) to known clusters like antimycin, hopene, and geosmin. In the genome of S. albogriseolus PMB5, we were able to identify several antibiotic resistance genes; these included cml (resistance to phenicol), gimA (resistance to macrolides), parY (resistance to aminocoumarin), oleC/oleD (resistance to macrolides), novA (resistance to aminocoumarin) and bla/blc (resistance to beta-lactams). Additionally, three clusters displayed no similarity to known sequences, suggesting novel bioactive compound discovery potential. Remarkably, strain PMB5 is the first reported S. albogriseolus capable of thriving on a medium utilizing chitin as a carbon source, with over 50 chitin-utilizing genes identified, including five AA10 family LPMOs, five GH18 chitinases, and one GH19 chitinase. This study significantly enhances the genomic understanding of S. albogriseolus, a species previously underrepresented in research, paving the way to further exploration of the biotechnological potential of the species.
Collapse
Affiliation(s)
- Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Ivan Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Yana Hristova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Yanitsa Ilieva
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Velizar Gochev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Ivanova AA, Naumoff DG, Kulichevskaya IS, Rakitin AL, Mardanov AV, Ravin NV, Dedysh SN. Planctomycetes of the Genus Singulisphaera Possess Chitinolytic Capabilities. Microorganisms 2024; 12:1266. [PMID: 39065035 PMCID: PMC11279305 DOI: 10.3390/microorganisms12071266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Planctomycetes of the genus Singulisphaera are common inhabitants of soils and peatlands. Although described members of this genus are characterized as possessing hydrolytic capabilities, the ability to degrade chitin has not yet been reported for these bacteria. In this study, a novel Singulisphaera representative, strain Ch08, was isolated from a chitinolytic enrichment culture obtained from a boreal fen in Northern European Russia. The 16S rRNA gene sequence of this isolate displayed 98.2% similarity to that of Singulisphaera acidiphila MOB10T. Substrate utilization tests confirmed that strain Ch08 is capable of growth on amorphous chitin. The complete genome of strain Ch08 determined in this study was 10.85 Mb in size and encoded two predicted chitinases, which were only distantly related to each other and affiliated with the glycoside hydrolase family GH18. One of these chitinases had a close homologue in the genome of S. acidiphila MOB10T. The experimental verification of S. acidiphila MOB10T growth on amorphous chitin was also positive. Transcriptome analysis performed with glucose- and chitin-growth cells of strain Ch08 showed upregulation of the predicted chitinase shared by strain Ch08 and S. acidiphila MOB10T. The gene encoding this protein was expressed in Escherichia coli, and the endochitinase activity of the recombinant enzyme was confirmed. The ability to utilize chitin, a major constituent of fungal cell walls and arthropod exoskeletons, appears to be one of the previously unrecognized ecological functions of Singulisphaera-like planctomycetes.
Collapse
Affiliation(s)
- Anastasia A. Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.A.I.); (D.G.N.); (I.S.K.)
| | - Daniil G. Naumoff
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.A.I.); (D.G.N.); (I.S.K.)
| | - Irina S. Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.A.I.); (D.G.N.); (I.S.K.)
| | - Andrey L. Rakitin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.L.R.); (A.V.M.); (N.V.R.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.L.R.); (A.V.M.); (N.V.R.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.L.R.); (A.V.M.); (N.V.R.)
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.A.I.); (D.G.N.); (I.S.K.)
| |
Collapse
|
8
|
Kaur M, Nagpal M, Dhingra GA, Rathee A. Exploring chitin: novel pathways and structures as promising targets for biopesticides. Z NATURFORSCH C 2024; 79:125-136. [PMID: 38760917 DOI: 10.1515/znc-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Chitin, the most prevalent polymer in nature, a significant structural polysaccharide that comes in second only to cellulose. Chitin is a crucial component of fungal cell walls and also present in many other creatures, such as viruses, plants, animals, insect exoskeletons, and crustacean shells. Chitin presents itself as a promising target for the development of biopesticides. It focuses on unraveling the unique structures and biochemical pathways associated with chitin, aiming to identify vulnerabilities that can be strategically leveraged for effective and environmentally sustainable pest control. It involves a comprehensive analysis of chitinase enzymes, chitin biosynthesis, and chitin-related processes across diverse organisms. By elucidating the molecular intricacies involved in chitin metabolism, this review seeks to unveil potential points of intervention that can disrupt essential biological processes in target pests without harming non-target species. This holistic approach to understanding chitin-related pathways aims to inform the design and optimization of biopesticides with enhanced specificity and reduced ecological impact. The outcomes of this study hold great promise for advancing innovative and eco-friendly pest management strategies. By targeting chitin structures and pathways, biopesticides developed based on these findings may offer a sustainable and selective alternative to conventional chemical pesticides, contributing to the ongoing efforts towards more environmentally conscious and effective pest control solutions.
Collapse
Affiliation(s)
- Malkiet Kaur
- 418665 University Institute of Pharma Sciences, Chandigarh University , Mohali, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, 154025 Chitkara University , Rajpura, Punjab, India
| | | | - Ankit Rathee
- 418665 University Institute of Pharma Sciences, Chandigarh University , Mohali, Punjab, India
| |
Collapse
|
9
|
Ichioka R, Kitazawa Y, Taguchi G, Shimosaka M. A novel N-acetylglucosamine-6-phosphate deacetylase that is essential for chitin utilization in the chitinolytic bacterium, Chitiniphilus shinanonensis. J Appl Microbiol 2024; 135:lxae117. [PMID: 38724455 DOI: 10.1093/jambio/lxae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
AIMS We aimed to investigate the function of an unidentified gene annotated as a PIG-L domain deacetylase (cspld) in Chitiniphilus shinanonensis SAY3. cspld was identified using transposon mutagenesis, followed by negatively selecting a mutant incapable of growing on chitin, a polysaccharide consisting of N-acetyl-d-glucosamine (GlcNAc). We focused on the physiological role of CsPLD protein in chitin utilization. METHODS AND RESULTS Recombinant CsPLD expressed in Escherichia coli exhibited GlcNAc-6-phosphate deacetylase (GPD) activity, which is involved in the metabolism of amino sugars. However, SAY3 possesses two genes (csnagA1 and csnagA2) in its genome that code for proteins whose primary sequences are homologous to those of typical GPDs. Recombinant CsNagA1 and CsNagA2 also exhibited GPD activity with 23 and 1.6% of catalytic efficiency (kcat/Km), respectively, compared to CsPLD. The gene-disrupted mutant, Δcspld was unable to grow on chitin or GlcNAc, whereas the three mutants, ΔcsnagA1, ΔcsnagA2, and ΔcsnagA1ΔcsnagA2 grew similarly to SAY3. The determination of GPD activity in the crude extracts of each mutant revealed that CsPLD is a major enzyme that accounts for almost all cellular activities. CONCLUSIONS Deacetylation of GlcNAc-6P catalyzed by CsPLD (but not by typical GPDs) is essential for the assimilation of chitin and its constituent monosaccharide, GlcNAc, as a carbon and energy source in C. shinanonensis.
Collapse
Affiliation(s)
- Ryotaro Ichioka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Yuri Kitazawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
10
|
Wang L, Xue M, Yan R, Xue J, Lu Z, Wen C. Insights into Chitin-Degradation Potential of Shewanella khirikhana JW44 with Emphasis on Characterization and Function of a Chitinase Gene SkChi65. Microorganisms 2024; 12:774. [PMID: 38674717 PMCID: PMC11052142 DOI: 10.3390/microorganisms12040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Chitin, a polymer of β-1,4-linked N-acetylglucosamine (GlcNAc), can be degraded into valuable oligosaccharides by various chitinases. In this study, the genome of Shewanella khirikhana JW44, displaying remarkable chitinolytic activity, was investigated to understand its chitin-degradation potential. A chitinase gene SkChi65 from this strain was then cloned, expressed, and purified to characterize its enzymatic properties and substrate hydrolysis. Genome analysis showed that, of the 14 genes related to chitin utilization in JW44, six belonged to glycoside hydrolase (GH) families because of their functional domains for chitin binding and catalysis. The recombinant chitinase SkChi65, consisting of 1129 amino acids, was identified as a member of the GH18 family and possessed two chitin-binding domains with a typical motif of [A/N]KWWT[N/S/Q] and one catalytic domain with motifs of DxxDxDxE, SxGG, YxR, and [E/D]xx[V/I]. SkChi65 was heterologously expressed as an active protein of 139.95 kDa best at 37 °C with 1.0 mM isopropyl-β-d-thiogalactopyranoside induction for 6 h. Purified SkChi65 displayed high stability over the ranges of 30-50 °C and pH 5.5-8.0 with optima at 40 °C and pH 7.0. The kinetic parameters Km, Vmax, and kcat of SkChi65 towards colloidal chitin were 27.2 μM, 299.2 μMs-1, and 10,203 s-1, respectively. In addition to colloidal chitin, SkChi65 showed high activity towards glycol chitosan and crystalline chitin. After analysis by thin-layer chromatography, the main products were N,N'-diacetylchitobiose, and GlcNAc with (GlcNAc)2-6 used as substrates. Collectively, SkChi65 could exhibit both exo- and endochitinase activities towards diverse substrates, and strain JW44 has a high potential for industrial application with an excellent capacity for chitin bioconversion.
Collapse
Affiliation(s)
- Ling Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ming Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Rui Yan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhipeng Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chongqing Wen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
11
|
Kumari N, Hussain A, Ghosh Sachan S. Microbes as a tool for the bioremediation of fish waste from the environment and the production of value-added compounds: a review. Lett Appl Microbiol 2024; 77:ovae028. [PMID: 38490739 DOI: 10.1093/lambio/ovae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024]
Abstract
Fish are the most edible protein source worldwide and generate several remnants such as scales, viscera, head, bone, and skin. Fish wastes are not disposed of properly, which adversely affects the environment, especially the water bodies where fish processing industries dispose of their waste. Fish waste mainly contains nitrogen, oil, fat, salts, heavy metals, and organic compounds, which increase the biological oxygen demand and chemical oxygen demand. Fish waste can degrade in various ways, such as physicochemical or by enzymatic action, but using microbes is an environmentally friendly approach that can provide valuable compounds such as products such as collagen, chitin, minerals, and fish protein concentrates. This review is designed to focus on the suitability of microbes as tools for fish waste degradation and the production of certain associated. This study also provides insight into the production of other compounds such as protease, chitinase, and chitin applicability of these products. After processing, fish waste as a microbial growth media for enzyme production since microorganisms synthesize enzymes such as proteases, protein hydrolysates, lipids, and chitinase, which have broader applications in the pharmaceutical, cosmetic, biomedical material, and food processing industries.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi 835215 Jharkhand, India
| | - Ahmed Hussain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi 835215 Jharkhand, India
| | - Shashwati Ghosh Sachan
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi 835215 Jharkhand, India
| |
Collapse
|
12
|
Subramani AK, Ramachandra R, Thote S, Govindaraj V, Vanzara P, Raval R, Raval K. Engineering a recombinant chitinase from the marine bacterium Bacillus aryabhattai with targeted activity on insoluble crystalline chitin for chitin oligomer production. Int J Biol Macromol 2024; 264:130499. [PMID: 38462115 DOI: 10.1016/j.ijbiomac.2024.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Chitin, an abundant polysaccharide in India, is primary by-product of the seafood industry. Efficiently converting chitin into valuable products is crucial. Chitinase, transforms chitin into chitin oligomers, holds significant industrial potential. However, the crystalline and insoluble nature of chitin makes the conversion process challenging. In this study, a recombinant chitinase from marine bacteria Bacillus aryabhattai was developed. This enzyme exhibits activity against insoluble chitin substrates, chitin powder and flakes. The chitinase gene was cloned into the pET 23a plasmid and transformed into E. coli Rosetta pLysS. IPTG induction was employed to express chitinase, and purification using Ni-NTA affinity chromatography. Optimal chitinase activity against colloidal chitin was observed in Tris buffer at pH 8, temperature 55°C, with the presence of 400 mM sodium chloride. Enzyme kinetics studies revealed a Vmax of 2000 μmole min-1 and a Km of 4.6 mg mL-1. The highest chitinase activity against insoluble chitin powder and flakes reached 875 U mg-1 and 625 U mg-1, respectively. The chitinase demonstrated inhibition of Candida albicans, Fusarium solani, and Penicillium chrysogenum growth. Thin Layer Chromatography (TLC) and LC-MS analysis confirmed the production of chitin oligomers, chitin trimer, tetramer, pentamer, and hexamer, from chitin powder and flakes using recombinant chitinase.
Collapse
Affiliation(s)
- Arun Kumar Subramani
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Reshma Ramachandra
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Sachin Thote
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Vishnupriya Govindaraj
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Piyush Vanzara
- Department of Chemical Engineering, Vyavasayi Vidya Pratishthan Engineering College, Rajkot, Gujarat 360005, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Academy of Higher Education (MAHE), Karnataka 576104, India.
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India.
| |
Collapse
|
13
|
P V A, K M R, Raval K, Selvaraj S, Raval R. Identification and characterization of chitinase producing marine microorganism: Unleashing the potential of chitooligosaccharides for bioethanol synthesis. Int J Biol Macromol 2024; 265:130846. [PMID: 38492689 DOI: 10.1016/j.ijbiomac.2024.130846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The dwindling supply of the petroleum product and its carbon footprint has initiated search for a sustainable fuel and alternate feed-stocks. One such underexplored feedstock is chitin, a waste derived from sea food processing. The limitation of insolubility and crystallinity inherent in chitin is addressed with the chitin hydrolysates. In the present study, a chitinases producing marine isolate was isolated from the sediments of Arabian Sea from a depth of 20 m. In order to increase the expression of the chitinases, sequential optimisation using one factor at a time and Taguchi experimental designs were employed which resulted in a yield of 13.46 U/mL which was 2.62 fold higher than the initial bioprocess condition values. In a two-step refinery protocol, Candida albicans was evolved towards chitooligosaccharides using chemically synthesized hydrolysates. In a fed -batch fermentation design the Candida yielded a 12.8 % conversion of these commercial chitin oligosaccharides into bioethanol in a run time of 48 h. This is the first report demonstrating the potential of Candida to utilise chitin oligosaccharides for the production of bioethanol.
Collapse
Affiliation(s)
- Atheena P V
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rajesh K M
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, Karnataka, India
| | - Subbalaxmi Selvaraj
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
14
|
Zeng Q, Zhang Q, Fan Y, Gao Y, Yuan X, Zhou J, Dai H, Chen Y. Phosphorus availability regulates nitrogen fixation rate through a key diazotrophic assembly: Evidence from a subtropical Moso bamboo forest subjected to nitrogen application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169740. [PMID: 38160820 DOI: 10.1016/j.scitotenv.2023.169740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Biological N fixation (BNF) is an important N input process for terrestrial ecosystems. Long-term N application increases the availability of N, but may also lead to phosphorus (P) deficiency or an imbalance between N and P. Here, we performed a 5-year N application experiment in a subtropical Phyllostachys heterocycla forest in site and a P application experiment in vitro to investigate the effect of N application on the BNF rate and its regulatory factor. The BNF rate, nifH gene, free-living diazotrophic community composition and plant properties were measured. We found that N application suppressed the BNF rate and nifH gene abundance, whereas the BNF rate in soils with added P was significantly higher overall than that in soils without added P. Moreover, we identified a key diazotrophic assembly (Mod#2), primarily comprising Bradyrhizobium, Geobacter, Desulfovibrio, Anaeromyxobacter, and Pseudodesulfovibrio, which explained 77 % of the BNF rate variation. There was a significant positive correlation between the Mod#2 abundance and soil available P, and the random forest results showed that soil available P is the most important factor affecting the Mod#2 abundance. Our findings highlight the importance of soil P availability in regulating the activities of key diazotrophs, and thus increasing P supply may help to promote N accumulation and primary productivity through facilitating the BNF process in forest ecosystems.
Collapse
Affiliation(s)
- Quanxin Zeng
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
| | - Qiufang Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China.
| | - Yuexin Fan
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
| | - Yanli Gao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
| | - Xiaochun Yuan
- College of Tourism, Wuyi University, Wuyishan 354300, China
| | - Jiacong Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hui Dai
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
| | - Yuehmin Chen
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
15
|
Correa KCS, Facchinatto WM, Habitzreuter FB, Ribeiro GH, Rodrigues LG, Micocci KC, Campana-Filho SP, Colnago LA, Souza DHF. Activity of a Recombinant Chitinase of the Atta sexdens Ant on Different Forms of Chitin and Its Fungicidal Effect against Lasiodiplodia theobromae. Polymers (Basel) 2024; 16:529. [PMID: 38399907 PMCID: PMC10892911 DOI: 10.3390/polym16040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
This study evaluates the activity of a recombinant chitinase from the leaf-cutting ant Atta sexdens (AsChtII-C4B1) against colloidal and solid α- and β-chitin substrates. 1H NMR analyses of the reaction media showed the formation of N-acetylglucosamine (GlcNAc) as the hydrolysis product. Viscometry analyses revealed a reduction in the viscosity of chitin solutions, indicating that the enzyme decreases their molecular masses. Both solid state 13C NMR and XRD analyses showed minor differences in chitin crystallinity pre- and post-reaction, indicative of partial hydrolysis under the studied conditions, resulting in the formation of GlcNAc and a reduction in molecular mass. However, the enzyme was unable to completely degrade the chitin samples, as they retained most of their solid-state structure. It was also observed that the enzyme acts progressively and with a greater activity on α-chitin than on β-chitin. AsChtII-C4B1 significantly changed the hyphae of the phytopathogenic fungus Lasiodiplodia theobromae, hindering its growth in both solid and liquid media and reducing its dry biomass by approximately 61%. The results demonstrate that AsChtII-C4B1 could be applied as an agent for the bioproduction of chitin derivatives and as a potential antifungal agent.
Collapse
Affiliation(s)
- Katia Celina Santos Correa
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| | - William Marcondes Facchinatto
- Aveiro Institute of Materials, CICECO, Department of Chemistry, University of Aveiro, St. Santiago, 3810-193 Aveiro, Portugal;
| | - Filipe Biagioni Habitzreuter
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Ave. Trabalhador Sao-carlense 400, 13560-590 Sao Carlos, Brazil; (F.B.H.); (S.P.C.-F.)
| | - Gabriel Henrique Ribeiro
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, St. XV de Novembro 1452, 13560-970 Sao Carlos, Brazil; (G.H.R.); (L.A.C.)
| | - Lucas Gomes Rodrigues
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| | - Kelli Cristina Micocci
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| | - Sérgio Paulo Campana-Filho
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Ave. Trabalhador Sao-carlense 400, 13560-590 Sao Carlos, Brazil; (F.B.H.); (S.P.C.-F.)
| | - Luiz Alberto Colnago
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, St. XV de Novembro 1452, 13560-970 Sao Carlos, Brazil; (G.H.R.); (L.A.C.)
| | - Dulce Helena Ferreira Souza
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| |
Collapse
|
16
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
17
|
Okazaki S, Komatsu A, Nakano M, Taguchi G, Shimosaka M. A novel endo-type chitinase possessing chitobiase activity derived from the chitinolytic bacterium, Chitiniphilus shinanonensis SAY3T. Biosci Biotechnol Biochem 2023; 87:1543-1550. [PMID: 37715302 DOI: 10.1093/bbb/zbad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
One of the chitinases (ChiG) derived from the chitinolytic bacterium Chitiniphilus shinanonensis SAY3T exhibited chitobiase activity cleaving dimers of N-acetyl-D-glucosamine (GlcNAc) into monomers, which is not detected in typical endo-type chitinases. Analysis of the reaction products for GlcNAc hexamers revealed that all the five internal glycosidic bonds were cleaved at the initial stage. The overall reaction catalyzed by chitobiases toward GlcNAc dimers was similar to that catalyzed by N-acetyl-D-glucosaminidases (NAGs). SAY3 possesses two NAGs (ChiI and ChiT) that are thought to be important in chitin catabolism. Unexpectedly, a triple gene-disrupted mutant (ΔchiIΔchiTΔchiG) was still able to grow on synthetic medium containing GlcNAc dimers or powdered chitin, similar to the wild-type SAY3, although it exhibited only 3% of total cellular NAG activity compared to the wild-type. This indicates the presence of unidentified enzyme(s) capable of supporting normal bacterial growth on the chitin medium by NAG activity compensation.
Collapse
Affiliation(s)
- Sayaka Okazaki
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Akane Komatsu
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Moe Nakano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| |
Collapse
|
18
|
Sato H, Sonoda N, Nakano M, Matsuyama Y, Shizume A, Arai R, Nogawa M, Taguchi G, Shimosaka M. Multi-enzyme Machinery for Chitin Degradation in the Chitinolytic Bacterium Chitiniphilus shinanonensis SAY3 T. Curr Microbiol 2023; 80:360. [PMID: 37796346 DOI: 10.1007/s00284-023-03489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/19/2023] [Indexed: 10/06/2023]
Abstract
The chitinolytic bacterium, Chitiniphilus shinanonensis SAY3T was examined to characterize its chitin-degrading enzymes in view of its potential to convert biomass chitin into useful saccharides. A survey of the whole-genome sequence revealed 49 putative genes encoding polypeptides that are thought to be related to chitin degradation. Based on an analysis of the relative quantity of each transcript and an assay for chitin-degrading activity of recombinant proteins, a chitin degradation system driven by 19 chitinolytic enzymes was proposed. These include sixteen endo-type chitinases, two N-acetylglucosaminidases, and one lipopolysaccharide monooxygenase that catalyzes the oxidative cleavage of glycosidic bonds. Among the 16 chitinases, ChiL was characterized by its remarkable transglycosylation activity. Of the two N-acetylglucosaminidases (ChiI and ChiT), ChiI was the major enzyme, corresponding to > 98% of the total cellular activity. Surprisingly, a chiI-disrupted mutant was still able to grow on medium with powdered chitin or GlcNAc dimer. However, its growth rate was slightly lower compared to that of the wild-type SAY3. This multi-enzyme machinery composed of various types of chitinolytic enzymes may support SAY3 to efficiently utilize native chitin as a carbon and energy source and may play a role in developing an enzymatic process to decompose and utilize abundant chitin at the industrial scale.
Collapse
Affiliation(s)
- Hiroaki Sato
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Norie Sonoda
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Moe Nakano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Yuka Matsuyama
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Arisa Shizume
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Masahiro Nogawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
19
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. Int J Biol Macromol 2023; 249:126021. [PMID: 37506799 DOI: 10.1016/j.ijbiomac.2023.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chitinases are crucial for the survival of bacterial and fungal pathogens both during host infection and outside the host in the environment. Chitinases facilitate adhesion onto host cells, act as virulence factors during infection, and provide protection from the host immune system, making them crucial factors in the survival of microbial pathogens. Understanding the mechanisms behind chitinase action is beneficial to design novel therapeutics to control microbial infections. This review explores the role of chitinases in the pathogenesis of bacterial, fungal, and viral infections. The mechanisms underlying the action of chitinases of bacterial, fungal, and viral pathogens in host cells are thoroughly reviewed. The evolutionary relationships between chitinases of various bacterial, fungal, and viral pathogens are discussed to determine their involvement in processes, such as adhesion and host immune system modulation. Gaining a better understanding of the distribution and activity of chitinases in these microbial pathogens can help elucidate their role in the invasion and infection of host cells.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
20
|
Wax N, Walke JB, Haak DC, Belden LK. Comparative genomics of bacteria from amphibian skin associated with inhibition of an amphibian fungal pathogen, Batrachochytrium dendrobatidis. PeerJ 2023; 11:e15714. [PMID: 37637170 PMCID: PMC10452622 DOI: 10.7717/peerj.15714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/16/2023] [Indexed: 08/29/2023] Open
Abstract
Chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is a skin disease associated with worldwide amphibian declines. Symbiotic microbes living on amphibian skin interact with Bd and may alter infection outcomes. We completed whole genome sequencing of 40 bacterial isolates cultured from the skin of four amphibian species in the Eastern US. Each isolate was tested in vitro for the ability to inhibit Bd growth. The aim of this study was to identify genomic differences among the isolates and generate hypotheses about the genomic underpinnings of Bd growth inhibition. We identified sixty-five gene families that were present in all 40 isolates. Screening for common biosynthetic gene clusters revealed that this set of isolates contained a wide variety of clusters; the two most abundant clusters with potential antifungal activity were siderophores (N=17 isolates) and Type III polyketide synthases (N=22 isolates). We then examined various subsets of the 22 isolates in the phylum Proteobacteria for genes encoding specific compounds that may inhibit fungal growth, including chitinase and violacein. We identified differences in Agrobacterium and Sphingomonas isolates in the chitinase genes that showed some association with anti-Bd activity, as well as variation in the violacein genes in the Janthinobacterium isolates. Using a comparative genomics approach, we generated several testable hypotheses about differences among bacterial isolates from amphibian skin communities that could contribute to variation in the ability to inhibit Bd growth. Further work is necessary to explore and uncover the various mechanisms utilized by amphibian skin bacterial isolates to inhibit Bd.
Collapse
Affiliation(s)
- Noah Wax
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Jenifer B. Walke
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
- Department of Biology, Eastern Washington University, Cheney, WA, United States of America
| | - David C. Haak
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
21
|
Kotb E, Alabdalall AH, Alghamdi AI, Ababutain IM, Aldakeel SA, Al-Zuwaid SK, Algarudi BM, Algarudi SM, Ahmed AA, Albarrag AM. Screening for chitin degrading bacteria in the environment of Saudi Arabia and characterization of the most potent chitinase from Streptomyces variabilis Am1. Sci Rep 2023; 13:11723. [PMID: 37474592 PMCID: PMC10359409 DOI: 10.1038/s41598-023-38876-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
Forty-six promising chitinolytic isolates were recovered during a screening for chitinolytic bacteria in the environment of Saudi Arabia. The top three isolates belonged to the genus Streptomyces. Streptomyces variabilis Am1 was able to excrete the highest amount of chitinases, reaching the maximum at 84 h with 0.5% yeast extract and nitrogen source and 2% galactose as a carbon source. Purification of chitinase by DEAE-Cellulose and Sephadex G75 improved the specific activity to 18.6-fold and the recovery to 23.8% and showed a mass at 56 kDa. The optimal catalysis of the purified chitinase was at 40 °C and pH 8 with high thermostability and pH stability as reflected by a midpoint temperature value of 66.6 °C and stability at pH 4-9. The protein reagents SDS, EDTA, and EGTA significantly inhibited the enzyme and the EDTA-chelated chitinase restored its activity after the addition of Fe2+ ions suggesting a metallo-chitinase type with ferric ions as cofactors. Chitinase exerted high antifungal activity against some phytopathogenic fungi. Interestingly, the tested Streptomyces were able to produce chitosan nanocubes along with chitosan from chitin degradation which may be an additional power in their antifungal activity in nature. This work also reveals the importance of unexplored environments as a pool of promising microorganisms with biotechnological applications.
Collapse
Affiliation(s)
- Essam Kotb
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia.
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Amira H Alabdalall
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Azzah I Alghamdi
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ibtisam M Ababutain
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sumayh A Aldakeel
- The National Center for Genomic Technology (NCGT), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Genomic of Infectious Diseases Laboratory, Saudi Center for Disease Prevention and Control, Public Health Authority, Riyadh, Saudi Arabia
| | - Safa K Al-Zuwaid
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Batool M Algarudi
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sakina M Algarudi
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Asmaa A Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University (Girls' Branch), P.O. Box 11751, Cairo, Egypt
| | - Ahmed M Albarrag
- Department of Pathology, School of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Gonçalves CGE, Lourenço LDFH, Philippsen HK, Santos AS, Santos LND, Ferreira NR. Crude Enzyme Concentrate of Filamentous Fungus Hydrolyzed Chitosan to Obtain Oligomers of Different Sizes. Polymers (Basel) 2023; 15:polym15092079. [PMID: 37177223 PMCID: PMC10181246 DOI: 10.3390/polym15092079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Chitosan is a non-cytotoxic polysaccharide that, upon hydrolysis, releases oligomers of different sizes that may have antioxidant, antimicrobial activity and the inhibition of cancer cell growth, among other applications. It is, therefore, a hydrolysis process with great biotechnological relevance. Thus, this study aims to use a crude enzyme concentrate (CEC) produced by a filamentous fungus to obtain oligomers with different molecular weights. The microorganism was cultivated in a liquid medium (modified Czapeck-with carboxymethylcellulose as enzyme inducer). The enzymes present in the CEC were identified by LC-MS/MS, with an emphasis on cellobiohydrolase (E.C 3.2.1.91). The fungus of the Aspergillus genus was identified by amplifying the ITS1-5.8S-ITS2 rDNA region and metaproteomic analysis, where the excreted enzymes were identified with sequence coverage greater than 84% to A. nidulans. Chitosan hydrolysis assays compared the CEC with the commercial enzyme (Celluclast 1.5 L®). The ability to reduce the initial molecular mass of chitosan by 47.80, 75.24, and 93.26% after 2.0, 5.0, and 24 h of reaction, respectively, was observed. FTIR analyses revealed lower absorbance of chitosan oligomers' spectral signals, and their crystallinity was reduced after 3 h of hydrolysis. Based on these results, we can conclude that the crude enzyme concentrate showed a significant technological potential for obtaining chitosan oligomers of different sizes.
Collapse
Affiliation(s)
| | | | - Hellen Kempfer Philippsen
- Faculty of Biology, Socioenvironmental and Water Resources Institute, Federal Rural University of the Amazon, Campus Belém, Belem 66077-830, PA, Brazil
| | - Alberdan Silva Santos
- Faculty of Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belem 66075-110, PA, Brazil
| | - Lucely Nogueira Dos Santos
- Graduate Program in Food Science and Technology, Federal University of Pará, Belem 66075-110, PA, Brazil
| | - Nelson Rosa Ferreira
- Graduate Program in Food Science and Technology, Federal University of Pará, Belem 66075-110, PA, Brazil
- Faculty of Food Engineering, Technology Institute, Federal University of Pará, Belem 66075-110, PA, Brazil
| |
Collapse
|
23
|
Wei X, Sui Z, Guo M, Chen S, Zhang Z, Geng J, Xiao J, Huang D. The potential of degrading natural chitinous wastes to oligosaccharides by chitinolytic enzymes from two Talaromyces sp. isolated from rotten insects (Hermetia illucens) under solid state fermentation. Braz J Microbiol 2023; 54:223-238. [PMID: 36547866 PMCID: PMC9944152 DOI: 10.1007/s42770-022-00882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
It is difficult to produce chitin oligosaccharides by hydrolyzing untreated natural chitinous waste directly. In this study, two fungi Talaromyces allahabadensis Hi-4 and Talaromyces funiculosus Hi-5 from rotten black soldier fly were isolated and identified through multigene phylogenetic and morphological analyses. The chitinolytic enzymes were produced by solid state fermentation, and the growth conditions were optimized by combining single-factor and central composite design. The best carbon sources were powder of molting of mealworms (MMP) and there was no need for additional nitrogen sources in two fungi, then the maximum chitinolytic enzyme production of 46.80 ± 3.30 (Hi-4) and 55.07 ± 2.48 (Hi-5) U/gds were achieved after analyzing the 3D response surface plots. Pure chitin (colloidal chitin) and natural chitinous substrates (represented by MMP) were used to optimize degradation abilities by crude enzymes obtained from the two fungi. The optimum temperature for hydrolyzing MMP (40 °C both in two fungi) were lower and closer to room temperature than colloidal chitin (55 °C for Hi-4 and 45 °C for Hi-5). Then colloidal chitin, MMP and the powder of shrimp shells (SSP) were used for analyzing the products after 5-day degradation. The amounts of chitin oligosaccharides from SSP and MMP were about 1/6 (Hi-4), 1/17 (Hi-5) and 1/8 (Hi-4), 1/10 (Hi-5), respectively, in comparison to colloidal chitin. The main components of the products were GlcNAc for colloidal chitin, (GlcNAc)2 for MMP, and oligosaccharides with higher degree of polymerization (4-6) were obtained when hydrolyzing SSP, which is significant for applications in medicine and health products.
Collapse
Affiliation(s)
- Xunfan Wei
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuoxiao Sui
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengyuan Guo
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sicong Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zongqi Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin Geng
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Wang L, Xie Y, Chang J, Wang J, Liu H, Shi M, Zhong Y. A novel sucrose-inducible expression system and its application for production of biomass-degrading enzymes in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:23. [PMID: 36782304 PMCID: PMC9926565 DOI: 10.1186/s13068-023-02274-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Filamentous fungi are extensively exploited as important enzyme producers due to the superior secretory capability. However, the complexity of their secretomes greatly impairs the titer and purity of heterologous enzymes. Meanwhile, high-efficient evaluation and production of bulk enzymes, such as biomass-degrading enzymes, necessitate constructing powerful expression systems for bio-refinery applications. RESULTS A novel sucrose-inducible expression system based on the host strain Aspergillus niger ATCC 20611 and the β-fructofuranosidase promoter (PfopA) was constructed. A. niger ATCC 20611 preferentially utilized sucrose for rapid growth and β-fructofuranosidase production. Its secretory background was relatively clean because β-fructofuranosidase, the key enzyme responsible for sucrose utilization, was essentially not secreted into the medium and the extracellular protease activity was low. Furthermore, the PfopA promoter showed a sucrose concentration-dependent induction pattern and was not subject to glucose repression. Moreover, the strength of PfopA was 7.68-fold higher than that of the commonly used glyceraldehyde-3-phosphate dehydrogenase promoter (PgpdA) with enhanced green fluorescence protein (EGFP) as a reporter. Thus, A. niger ATCC 20611 coupled with the PfopA promoter was used as an expression system to express a β-glucosidase gene (bgla) from A. niger C112, allowing the production of β-glucosidase at a titer of 17.84 U/mL. The crude β-glucosidase preparation could remarkably improve glucose yield in the saccharification of pretreated corncob residues when added to the cellulase mixture of Trichoderma reesei QM9414. The efficacy of this expression system was further demonstrated by co-expressing the T. reesei-derived chitinase Chi46 and β-N-acetylglucosaminidase Nag1 to obtain an efficient chitin-degrading enzyme cocktail, which could achieve the production of N-acetyl-D-glucosamine from colloidal chitin with a conversion ratio of 91.83%. Besides, the purity of the above-secreted biomass-degrading enzymes in the crude culture supernatant was over 86%. CONCLUSIONS This PfopA-driven expression system expands the genetic toolbox of A. niger and broadens the application field of the traditional fructo-oligosaccharides-producing strain A. niger ATCC 20611, advancing it to become a high-performing enzyme-producing cell factory. In particular, the sucrose-inducible expression system possessed the capacity to produce biomass-degrading enzymes at a high level and evade endogenous protein interference, providing a potential purification-free enzyme production platform for bio-refinery applications.
Collapse
Affiliation(s)
- Lu Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yijia Xie
- Qingdao Academy, Qingdao, 266111 People’s Republic of China
| | - Jingjing Chang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Juan Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Hong Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
25
|
Zhang H, Zhou H, Zhao Y, Li T, Yin H. Comparative studies of two AA10 family lytic polysaccharide monooxygenases from Bacillus thuringiensis. PeerJ 2023; 11:e14670. [PMID: 36684673 PMCID: PMC9851047 DOI: 10.7717/peerj.14670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Bacillus thuringiensis, known to be one of the most important biocontrol microorganisms, contains three AA10 family lytic polysaccharide monooxygenases (LPMOs) in its genome. In previous reports, two of them, BtLPMO10A and BtLPMO10B, have been preliminarily characterized. However, some important biochemical features and substrate preference, as well as their potential applications in chitin degradation, still deserve further investigation. Results from present study showed that both BtLPMO10A and BtLPMO10B exhibit similar catalytic domains as well as highly conserved substrate-binding planes. However, unlike BtLPMO10A, which has comparable binding ability to both crystalline and amorphous form of chitins, BtLPMO10B exhibited much stronger binding ability to colloidal chitin, which mainly attribute to its carbohydrate-binding module-5 (CBM5). Interestingly, the relative high binding ability of BtLPMO10B to colloidal chitin does not lead to high catalytic activity of the enzyme. In contrast, the enzyme exhibited higher activity on β-chitin. Further experiments showed that the binding of BtLPMO10B to colloidal chitin was mainly non-productive, indicating a complicated role for CBM5 in LPMO activity. Furthermore, synergistic experiments demonstrated that both LPMOs boosted the activity of the chitinase, and the higher efficiency of BtLPMO10A can be overridden by BtLPMO10B.
Collapse
Affiliation(s)
- Huiyan Zhang
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haichuan Zhou
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Zhao
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tang Li
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heng Yin
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
26
|
Teng XN, Wang SC, Zeb L, Dong YS, Xiu ZL. Two-Step Enzymolysis of Antarctic Krill for Simultaneous Preparation of Value-Added Oil and Enzymolysate. Mar Drugs 2023; 21:md21010047. [PMID: 36662220 PMCID: PMC9863247 DOI: 10.3390/md21010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Antarctic krill is a crucial marine resource containing plenty of high-valued nutrients. However, krill oil as a single product has been developed by the current solvent extraction with high cost. From the perspective of comprehensive utilization of Antarctic krill, this study proposed a novel two-step enzymolysis-assisted extraction in attempt to produce value-added oil and enzymolysate simultaneously. After two-step chitinase/protease hydrolysis, the lipid yield increased from 2.09% to 4.18%, reaching 112% of Soxhlet extraction. The method greatly improved the yields of main components while reducing the impurity content without further refining. After optimization, the oil contained 246.05 mg/g of phospholipid, 80.96 mg/g of free eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and 0.82 mg/g of astaxanthin. The by-product enzymolysate was abundant in water-soluble proteins (34.35 mg/g), oligopeptides (13.92 mg/g), amino acids (34.24 mg/g), and carbohydrates (5.79 mg/g), which was a good source of functional nutrients. In addition, both oil and enzymolysate showed high antioxidant capacity. This novel method could simultaneously provide oil and enzymolysate amounting for 58.61% of dried krill.
Collapse
|
27
|
Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules 2023; 13:biom13010114. [PMID: 36671499 PMCID: PMC9855744 DOI: 10.3390/biom13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Archaea represents the third domain of life, displaying a closer relationship with eukaryotes than bacteria. These microorganisms are valuable model systems for molecular biology and biotechnology. In fact, nowadays, methanogens, halophiles, thermophilic euryarchaeota, and crenarchaeota are the four groups of archaea for which genetic systems have been well established, making them suitable as model systems and allowing for the increasing study of archaeal genes' functions. Furthermore, thermophiles are used to explore several aspects of archaeal biology, such as stress responses, DNA replication and repair, transcription, translation and its regulation mechanisms, CRISPR systems, and carbon and energy metabolism. Extremophilic archaea also represent a valuable source of new biomolecules for biological and biotechnological applications, and there is growing interest in the development of engineered strains. In this review, we report on some of the most important aspects of the use of archaea as a model system for genetic evolution, the development of genetic tools, and their application for the elucidation of the basal molecular mechanisms in this domain of life. Furthermore, an overview on the discovery of new enzymes of biotechnological interest from archaea thriving in extreme environments is reported.
Collapse
|
28
|
Liu Q, Wei G, Yang P, Wang C, Chen K, Ouyang P, Zhang A. One-pot biosynthesis of N-acetylneuraminic acid from chitin via combination of chitin-degrading enzymes, N-acetylglucosamine-2-epimerase, and N-neuraminic acid aldolase. Front Microbiol 2023; 14:1156924. [PMID: 37025634 PMCID: PMC10072123 DOI: 10.3389/fmicb.2023.1156924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
N-acetylneuraminic acid (Neu5Ac) possesses the ability to promote mental health and enhance immunity and is widely used in both medicine and food fields as a supplement. Enzymatic production of Neu5Ac using N-acetyl-D-glucosamine (GlcNAc) as substrate was significant. However, the high-cost GlcNAc limited its development. In this study, an in vitro multi-enzyme catalysis was built to produce Neu5Ac using affordable chitin as substrate. Firstly, exochitinase SmChiA from Serratia proteamaculans and N-acetylglucosaminosidase CmNAGase from Chitinolyticbacter meiyuanensis SYBC-H1 were screened and combined to produce GlcNAc, effectively. Then, the chitinase was cascaded with N-acetylglucosamine-2-epimerase (AGE) and N-neuraminic acid aldolase (NanA) to produce Neu5Ac; the optimal conditions of the multi-enzyme catalysis system were 37°C and pH 8.5, the ratio of AGE to NanA (1:4) and addition of pyruvate (70 mM), respectively. Finally, 9.2 g/L Neu5Ac could be obtained from 20 g/L chitin within 24 h along with two supplementations with pyruvate. This work will lay a good foundation for the production of Neu5Ac from cheap chitin resources.
Collapse
|
29
|
Waraczewski R, Muszyński S, Sołowiej BG. An Analysis of the Plant- and Animal-Based Hydrocolloids as Byproducts of the Food Industry. Molecules 2022; 27:8686. [PMID: 36557824 PMCID: PMC9782133 DOI: 10.3390/molecules27248686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrocolloids are naturally occurring polysaccharides or proteins, which are used to gelatinize, modify texture, and thicken food products, and are also utilized in edible films and drug capsule production. Moreover, several hydrocolloids are known to have a positive impact on human health, including prebiotics rich in bioactive compounds. In this paper, plant-derived hydrocolloids from arrowroot (Maranta arundinacea), kuzu (Pueraria montana var lobata), Sassafras tree (Sassafras albidum) leaves, sugarcane, acorn, and animal-derived gelatin have been reviewed. Hydrocolloid processing, utilization, physicochemical activities, composition, and health benefits have been described. The food industry generates waste such as plant parts, fibers, residue, scales, bones, fins, feathers, or skin, which are often discarded back into the environment, polluting it or into landfills, where they provide no use and generate transport and storage costs. Food industry waste frequently contains useful compounds, which can yield additional income if acquired, thus decreasing the environmental pollution. Despite conventional manufacturing, the aforementioned hydrocolloids can be recycled as byproducts, which not only minimizes waste, lowers transportation and storage expenses, and boosts revenue, but also enables the production of novel, functional, and healthy food additives for the food industry worldwide.
Collapse
Affiliation(s)
- Robert Waraczewski
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Bartosz G. Sołowiej
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
30
|
Dahiya D, Pilli A, Chirra PRR, Sreeramula V, Mogili NV, Ayothiraman S. Morphological and structural characterization of chitin as a substrate for the screening, production, and molecular characterization of chitinase by Bacillus velezensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86550-86561. [PMID: 35895172 DOI: 10.1007/s11356-022-22166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The processing of shellfishery industrial wastes is gaining much interest in recent times due to the presence of valuable components. Chitin is one of the valuable components and is insoluble in most common solvents including water. In this study, a novel gram-positive bacterial strain capable of solubilizing chitin was screened from a prawn shell dumping yard. The chitinolytic activity of the isolated strain was observed through the zone of hydrolysis plate assay. The hyper-producing isolate was identified as Bacillus velezensis through the 16S rRNA sequencing technique. The structural and morphological characterization of raw and colloidal chitin preparation was carried out using FTIR, XRD, and SEM analysis. The residual protein and mineral content, degree of polymerization, and degree of acetylation were reported for both raw and colloidal chitin preparations. There was a linear increase in the chitinase activity with an increase in the colloidal chitin concentration. The maximum activity of chitinase was observed as 38.98 U/mL for the initial colloidal chitin concentration of 1.5%. Supplement of additional carbon sources, viz., glucose and maltose, did not improve the production of chitinase and resulted in a diauxic growth pattern. The maximum chitinase activity was observed to be 33.10 and 30.28 U/mL in the colloidal chitin-containing medium with and without glucose as a secondary carbon source, respectively. Interestingly, the addition of complex nitrogen sources has increased the production of chitinase. A 1.95- and 2.14-fold increase in the enzyme activity was observed with peptone and yeast extract, respectively. The chitinase was confirmed using SDS-PAGE, native PAGE, and zymograms. The optimum pH and temperature for chitinase enzyme activity were found to be 7.0 and 44 °C, respectively.
Collapse
Affiliation(s)
- Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Akhil Pilli
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Pratap Raja Reddy Chirra
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Vinay Sreeramula
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Nitish Venkateswarlu Mogili
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101.
| |
Collapse
|
31
|
Coleman MI, Khan M, Gbodossou E, Diop A, DeBarros K, Duong H, Bond VC, Floyd V, Kondwani K, Montgomery Rice V, Villinger F, Powell MD. Identification of a Novel Anti-HIV-1 Protein from Momordica balsamina Leaf Extract. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192215227. [PMID: 36429944 PMCID: PMC9690441 DOI: 10.3390/ijerph192215227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 05/12/2023]
Abstract
Our lab investigates the anti-HIV-1 activity in Momordica balsamina (M. balsamina) leaf extract. Traditional Senegalese healers have used M. balsamina leaf extract as a part of a plant-based treatment for HIV/AIDS infections. Our overall goal is to define and validate the scientific basis for using M. balsamina leaf extract as a part of the traditional Senegalese treatment. As an initial characterization of this extract, we used activity-guided fractionation to determine the active ingredient's solubility and relative size. We found that M. balsamina leaf extract inhibits HIV-1 infection by >50% at concentrations of 0.02 mg/mL and above and is not toxic over its inhibitory range (0-0.5 mg/mL). We observed significantly more antiviral activity in direct water and acetonitrile extractions (p ≤ 0.05). We also observed significantly more antiviral activity in the aqueous phases of ethyl acetate, chloroform, and diethyl ether extractions (p ≤ 0.05). Though most of the antiviral activity partitioned into the aqueous layers, some antiviral activity was present in the organic layers. We show that the active agent in the plant extracts is at least 30 kD in size. Significantly more antiviral activity was retained in 3, 10, and 30 kD molecular weight cutoff filters (p ≤ 0.05). In contrast, most of the antiviral activity passed through the 100 kD filter (p ≤ 0.05). Because the active anti-HIV-1 agent presented as a large, amphiphilic molecule we ran the purified extract on an SDS-page gel. We show that the anti-HIV-1 activity in the leaf extracts is attributed to a 30 kDa protein we call MoMo30. This article describes how MoMo30 was determined to be responsible for its anti-HIV-1 activity.
Collapse
Affiliation(s)
- Morgan I. Coleman
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Mahfuz Khan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | | | - Amad Diop
- Malango Traditional Healers Association, Fatick BP 1763, Senegal
| | - Kenya DeBarros
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Hao Duong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Vincent C. Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Virginia Floyd
- Department of Community Health and Prevention, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Kofi Kondwani
- Department of Community Health and Prevention, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Valerie Montgomery Rice
- Office of the President, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Francois Villinger
- Department of Biology Director, New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA 70560, USA
| | - Michael D. Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
- Correspondence: ; Tel.: +1-404-752-1582
| |
Collapse
|
32
|
Huang CH, Lin CH, Huang HH, Tsai GJ. Development of Fermented Shrimp Shell Product with Hypoglycemic and Hypolipidemic Effects on Diabetic Rats. Metabolites 2022; 12:metabo12080695. [PMID: 35893262 PMCID: PMC9332839 DOI: 10.3390/metabo12080695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
In 2020, approximately 9.3 billion tons of crustaceans were consumed, and 45–48% of shrimp shell (SS) by-products were discarded as waste. In this study, the SS of Litopenaeus vannamei was fermented by Lactobacillus plantarum LV33204, Stenotrophomonas maltophilia LV2122 (strong proteolytic activity), and Aeromonas dhakensis LV1111 (chitin-degrading activity), and the optimal fermentation conditions of liquid-fermented SS was established. Contents of total peptide, astaxanthin, and total phenolic content of the fermented SS were significantly higher than that of unfermented SS. In the presence of fermented SS, glucose uptake and insulin resistance of TNF-α-stimulated FL83B hepatocytes were markedly improved. Furthermore, daily oral supplement of fermented SS to streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats for 7 weeks significantly reduced plasma glucose and insulin resistance. Meanwhile, ingestion of fermented SS might enhance hepatic catabolism of glucose by increasing hexokinase and glucose-6-phosphate dehydrogenase activity and decreasing glucose-6-phosphatase activity. In addition, the fermented SS downregulated plasma total cholesterol (TG), triglycerides (TCs), low-density lipoprotein cholesterol (LDL-C), liver TG, and TC and lipid peroxidation levels in diabetic rats. In conclusion, a biorefinery process for waste SS was established through mixed strain fermentation. The in vitro and in vivo data reveal that the fermented SS is a promising functional food for the management of diabetic hyperglycemia and hyperlipidemia.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Chih-Heng Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Hsiao-Han Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Guo-Jane Tsai
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence:
| |
Collapse
|
33
|
Kinetic, Thermodynamic and Bio-applicable Studies on Aspergillus niger Mk981235 Chitinase. Catal Letters 2022. [DOI: 10.1007/s10562-022-04045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractChitinases have many applications in food, agricultural, medical, and pharmaceutical fields. This study succeeded in investigating Aspergillus niger MK981235 chitinase in the spot of its physiochemical, kinetic, thermodynamic, and application. The optimum temperature, pH and p-nitrophenyl-β-d-N-acetyl glucosaminide (PNP-β-GlcNAc) concentration to obtain the highest chitinase activity of 2334.79 U ml−1 were at 60 °C, 5 and 0.25%, respectively. The kinetic parameters, including Km and Vmax were determined to be 0.78 mg ml−1 and 2222.22 µmol ml−1 min−1, respectively. Furthermore, the thermodynamic parameters T1/2, D-values, ΔH, ΔG and ΔS at 40, 50 and 60 °C were determined to be (864.10, 349.45, 222.34 min), (2870.99, 1161.07, 738.74 min), (126.40, 126.36, 126.32 kJ mol−1), (101.59, 100.62, 100.86 kJ mol−1), (74.50, 76.17, 47.24 J mol−1 K−1), respectively. A. niger chitinase showed, insecticidal activity on Galleria mellonella by feeding and spraying treatments (72 and 52%, respectively), anti-lytic activity against Candida albicans, and effectiveness in improving the dye removal in the presence of crab shell powder as bio-absorbant. A. niger chitinase can be used in the pharmaceutical field for the bio-control of diseases caused by C. albicans and for the pretreatment of wastewater from the textile industry.
Graphical Abstract
Collapse
|
34
|
Yurgel SN, Nadeem M, Cheema M. Microbial Consortium Associated with Crustacean Shells Composting. Microorganisms 2022; 10:1033. [PMID: 35630475 PMCID: PMC9145653 DOI: 10.3390/microorganisms10051033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Soil microbes play an essential role in the biodegradation of crustacean shells, which is the process of sustainable bioconversion to chitin derivatives ultimately resulting in the promotion of plant growth properties. While a number of microorganisms with chitinolytic properties have been characterized, little is known about the microbial taxa that participate in this process either by active chitin degradation or by facilitation of this activity through nutritional cooperation and composting with the chitinolytic microorganisms. In this study, we evaluated the transformation of the soil microbiome triggered by close approximation to the green crab shell surface. Our data indicate that the microbial community associated with green crab shell matter undergoes significant specialized changes, which was reflected in a decreased fungal and bacterial Shannon diversity and evenness and in a dramatic alteration in the community composition. The relative abundance of several bacterial and fungal genera including bacteria Flavobacterium, Clostridium, Pseudomonas, and Sanguibacter and fungi Mortierella, Mycochlamys, and Talaromyces were increased with approximation to the shell surface. Association with the shell triggered significant changes in microbial cooperation that incorporate microorganisms that were previously reported to be involved in chitin degradation as well as ones with no reported chitinolytic activity. Our study indicates that the biodegradation of crab shells in soil incorporates a consortium of microorganisms that might provide a more efficient way for bioconversion.
Collapse
Affiliation(s)
- Svetlana N. Yurgel
- USDA-ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA
| | - Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, NL A2H 5G4, Canada; (M.N.); (M.C.)
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, NL A2H 5G4, Canada; (M.N.); (M.C.)
| |
Collapse
|
35
|
Polyextremophilic Chitinolytic Activity by a Marine Strain (IG119) of Clonostachys rosea. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030688. [PMID: 35163952 PMCID: PMC8838608 DOI: 10.3390/molecules27030688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
The investigation for novel unique extremozymes is a valuable business for which the marine environment has been overlooked. The marine fungus Clonostachys rosea IG119 was tested for growth and chitinolytic enzyme production at different combinations of salinity and pH using response surface methodology. RSM modelling predicted best growth in-between pH 3.0 and 9.0 and at salinity of 0-40‱, and maximum enzyme activity (411.137 IU/L) at pH 6.4 and salinity 0‱; however, quite high production (>390 IU/L) was still predicted at pH 4.5-8.5. The highest growth and activity were obtained, respectively, at pH 4.0 and 8.0, in absence of salt. The crude enzyme was tested at different salinities (0-120‱) and pHs (2.0-13.0). The best activity was achieved at pH 4.0, but it was still high (in-between 3.0 and 12.0) at pH 2.0 and 13.0. Salinity did not affect the activity in all tested conditions. Overall, C. rosea IG119 was able to grow and produce chitinolytic enzymes under polyextremophilic conditions, and its crude enzyme solution showed more evident polyextremophilic features. The promising chitinolytic activity of IG119 and the peculiar characteristics of its chitinolytic enzymes could be suitable for several biotechnological applications (i.e., degradation of salty chitin-rich materials and biocontrol of spoiling organisms, possibly solving some relevant environmental issues).
Collapse
|
36
|
Gutiérrez Román AIF, Laynes Zela PF, Acuña Payano RK, Nolasco Cárdenas OP, Santa-Cruz Carpio CM, Leiva Eriksson NR. Production of Sustainable Proteins Through the Conversion of Insects to Proteins Using Beauveria bassiana Cultures. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2021.760274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Various strategies are being suggested to solve the challenges in the food system, such as changing the source of nutrients, including the use of non-traditional food sources such as insects. Although insects are promoted as a cheap and sustainable source of protein, consumers are reluctant to eat them. The mycoproteins produced by fungi, on the other hand, are very well received and appreciated by consumers. Thus, in this work we have studied the use of the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) for the production of protein using insects as feed. B. bassiana was cultivated in culture medium containing entire insects from the species Eurysacca and Hypothenemus or single carbon sources such as glucose or laminarin from Laminaria digitata. The results showed that B. bassiana can produce up to 16-fold more biomass and 8-fold more protein when grown in insect-based medium than when grown in glucose. The results also indicated that the production of proteins continuously increased when B. bassiana was grown in medium containing insects, reaching its maximum at 9 days (up to 3 mg/mL). On the other hand, when cultivated in glucose-supplemented medium, the production of proteins was constantly low (~0.5 mg/mL). In conclusion, B. bassiana was a large biomass producer and exuded a large amount of protein when grown in medium containing insect powder, making it an ideal intermediate link between insects and protein. Furthermore, the proteins produced by fungi such as B. bassiana can be used in the food, health, and cosmetic industries.
Collapse
|
37
|
Potentials of Endophytic Fungi in the Biosynthesis of Versatile Secondary Metabolites and Enzymes. FORESTS 2021. [DOI: 10.3390/f12121784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
World population growth and modernization have engendered multiple environmental problems: the propagation of humans and crop diseases and the development of multi-drug-resistant fungi, bacteria and viruses. Thus, a considerable shift towards eco-friendly products has been seen in medicine, pharmacy, agriculture and several other vital sectors. Nowadays, studies on endophytic fungi and their biotechnological potentials are in high demand due to their substantial, cost-effective and eco-friendly contributions in the discovery of an array of secondary metabolites. For this review, we provide a brief overview of plant–endophytic fungi interactions and we also state the history of the discovery of the untapped potentialities of fungal secondary metabolites. Then, we highlight the huge importance of the discovered metabolites and their versatile applications in several vital fields including medicine, pharmacy, agriculture, industry and bioremediation. We then focus on the challenges and on the possible methods and techniques that can be used to help in the discovery of novel secondary metabolites. The latter range from endophytic selection and culture media optimization to more in-depth strategies such as omics, ribosome engineering and epigenetic remodeling.
Collapse
|
38
|
Hernandez-Montiel LG, Droby S, Preciado-Rangel P, Rivas-García T, González-Estrada RR, Gutiérrez-Martínez P, Ávila-Quezada GD. A Sustainable Alternative for Postharvest Disease Management and Phytopathogens Biocontrol in Fruit: Antagonistic Yeasts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122641. [PMID: 34961112 PMCID: PMC8708500 DOI: 10.3390/plants10122641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 05/06/2023]
Abstract
Postharvest diseases of fruits caused by phytopathogens cause losses up to 50% of global production. Phytopathogens control is performed with synthetic fungicides, but the application causes environmental contamination problems and human and animal health in addition to generating resistance. Yeasts are antagonist microorganisms that have been used in the last years as biocontrol agents and in sustainable postharvest disease management in fruits. Yeast application for biocontrol of phytopathogens has been an effective action worldwide. This review explores the sustainable use of yeasts in each continent, the main antagonistic mechanisms towards phytopathogens, their relationship with OMIC sciences, and patents at the world level that involve yeast-based-products for their biocontrol.
Collapse
Affiliation(s)
- Luis G. Hernandez-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Calle Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro, Km 7.5, Ejido Ana, Torreón 27170, Mexico;
| | - Tomás Rivas-García
- Departamento de Sociología Rural, Universidad Autónoma Chapingo, Carr. Federal México-Texcoco, Km 38.5, San Diego 56230, Mexico;
| | - Ramsés R. González-Estrada
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Porfirio Gutiérrez-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Graciela D. Ávila-Quezada
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Escorza 900, Col. Centro, Chihuahua 31000, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| |
Collapse
|
39
|
Bai L, Kim J, Son KH, Chung CW, Shin DH, Ku BH, Kim DY, Park HY. Novel Bi-Modular GH19 Chitinase with Broad pH Stability from a Fibrolytic Intestinal Symbiont of Eisenia fetida, Cellulosimicrobium funkei HY-13. Biomolecules 2021; 11:1735. [PMID: 34827733 PMCID: PMC8615386 DOI: 10.3390/biom11111735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Endo-type chitinase is the principal enzyme involved in the breakdown of N-acetyl-d-glucosamine-based oligomeric and polymeric materials through hydrolysis. The gene (966-bp) encoding a novel endo-type chitinase (ChiJ), which is comprised of an N-terminal chitin-binding domain type 3 and a C-terminal catalytic glycoside hydrolase family 19 domain, was identified from a fibrolytic intestinal symbiont of the earthworm Eisenia fetida, Cellulosimicrobium funkei HY-13. The highest endochitinase activity of the recombinant enzyme (rChiJ: 30.0 kDa) toward colloidal shrimp shell chitin was found at pH 5.5 and 55 °C and was considerably stable in a wide pH range (3.5-11.0). The enzyme exhibited the highest biocatalytic activity (338.8 U/mg) toward ethylene glycol chitin, preferentially degrading chitin polymers in the following order: ethylene glycol chitin > colloidal shrimp shell chitin > colloidal crab shell chitin. The enzymatic hydrolysis of N-acetyl-β-d-chitooligosaccharides with a degree of polymerization from two to six and colloidal shrimp shell chitin yielded primarily N,N'-diacetyl-β-d-chitobiose together with a small amount of N-acetyl-d-glucosamine. The high chitin-degrading ability of inverting rChiJ with broad pH stability suggests that it can be exploited as a suitable biocatalyst for the preparation of N,N'-diacetyl-β-d-chitobiose, which has been shown to alleviate metabolic dysfunction associated with type 2 diabetes.
Collapse
Affiliation(s)
- Lu Bai
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Jonghoon Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Kwang-Hee Son
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Chung-Wook Chung
- Department of Biological Sciences, Andong National University, Andong 36729, Korea;
| | - Dong-Ha Shin
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Bon-Hwan Ku
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Do Young Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Ho-Yong Park
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| |
Collapse
|
40
|
Kumari M, Padhi S, Sharma S, Phukon LC, Singh SP, Rai AK. Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food processing applications. 3 Biotech 2021; 11:479. [PMID: 34790503 DOI: 10.1007/s13205-021-03008-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Microorganisms striving in extreme environments and exhibiting optimal growth and reproduction at low temperatures, otherwise known as psychrophilic microorganisms, are potential sources of cold-active enzymes. Owing to higher stability and cold activity, these enzymes are gaining enormous attention in numerous industrial bioprocesses. Applications of several cold-active enzymes have been established in the food industry, e.g., β-galactosidase, pectinase, proteases, amylases, xylanases, pullulanases, lipases, and β-mannanases. The enzyme engineering approaches and the accumulating knowledge of protein structure and function have made it possible to improve the catalytic properties of interest and express the candidate enzyme in a heterologous host for a higher level of enzyme production. This review compiles the relevant and recent information on the potential uses of different cold-active enzymes in the food industry.
Collapse
Affiliation(s)
- Megha Kumari
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| |
Collapse
|
41
|
Amin K, Tranchimand S, Benvegnu T, Abdel-Razzak Z, Chamieh H. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology. Biomolecules 2021; 11:1557. [PMID: 34827555 PMCID: PMC8615776 DOI: 10.3390/biom11111557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
Hyperthermophilic Archaea colonizing unnatural habitats of extremes conditions such as volcanoes and deep-sea hydrothermal vents represent an unmeasurable bioresource for enzymes used in various industrial applications. Their enzymes show distinct structural and functional properties and are resistant to extreme conditions of temperature and pressure where their mesophilic homologs fail. In this review, we will outline carbohydrate-active enzymes (CAZymes) from hyperthermophilic Archaea with specific focus on the two largest families, glycoside hydrolases (GHs) and glycosyltransferases (GTs). We will present the latest advances on these enzymes particularly in the light of novel accumulating data from genomics and metagenomics sequencing technologies. We will discuss the contribution of these enzymes from hyperthermophilic Archaea to industrial applications and put the emphasis on newly identifed enzymes. We will highlight their common biochemical and distinct features. Finally, we will overview the areas that remain to be explored to identify novel promising hyperthermozymes.
Collapse
Affiliation(s)
- Khadija Amin
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Sylvain Tranchimand
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Ziad Abdel-Razzak
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| | - Hala Chamieh
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| |
Collapse
|
42
|
Recombinant production and characterisation of two chitinases from Rasamsonia emersonii, and assessment of their potential industrial applicability. Appl Microbiol Biotechnol 2021; 105:7769-7783. [PMID: 34581845 DOI: 10.1007/s00253-021-11578-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Rasamsonia emersonii (previously Talaromyces emersonii) is a thermophilic filamentous fungus displaying optimum growth at 45 °C. It has a history of use in commercial food enzyme production. Its unfractionated chitinolytic secretome was partially characterised in the early 1990s; however, no individual chitinase from this source has been described in literature previously. This study describes two GH18 chitinases originating from the R. emersonii genome, expressed in the methylotrophic yeast P. pastoris. Chit1 comprises of a GH18 catalytic domain and Chit2 comprises of a GH18 catalytic domain and a chitin-binding motif at the C-terminal. The chitinases were expressed as glycoproteins. The apparent molecular weight of Chit1 was 35.8-42.1 kDa with a smearing tail associated with glyco-sidechains visible up to 72.2 kDa. This became two bands of 30.8 and 29.0 kDa upon de-glycosylation. The apparent molecular weight of Chit2 was 50.4 kDa, reducing to 48.2 kDa upon de-glycosylation. Both chitinases displayed endo-chitinase and chitobiosidase activity, temperature optima of 50-55 °C and low pH optima (pH 4.5 or lower); Chit1 displayed a pH optimum of 3.5, retaining > 60% maximum activity at pH 2.2, a pH range lower than most enzymes of fungal origin. Chit2 displayed the highest chitin-degrading ability at 3456 µmol/mg on 4-NP-triacetylchitotriose, but lost activity faster than Chit1, which displayed 403 µmol/mg on the same substrate. The predicted D values (time required to reduce the enzyme activity to 10% of its original value at 50 °C) were 19.2 and 2.3 days for Chit1 and Chit2, respectively. Thus, Chit1 can be considered one of few hyperthermostable chitinase enzymes described in literature to date. Their physicochemical properties render these chitinases likely suitable for shrimp chitin processing including one-step chitin hydrolysis and alternative sustainable protein processing and the attractive emerging application of mushroom food waste valorisation.Key points• Two GH18 chitinases originating from the industrially relevant thermophilic fungus R. emersonii were cloned and expressed in P. pastoris.• The purified recombinant chitinases showed low pH and high temperature optima and appreciable thermostability at industrially relevant temperatures.• The chitinases displayed characteristics that indicate their likely suitability to several industrial applications including sustainable alternative protein processing, food waste valorisation of commercial mushroom production and one-step shrimp chitin processing.
Collapse
|
43
|
Gomaa EZ. Microbial chitinases: properties, enhancement and potential applications. PROTOPLASMA 2021; 258:695-710. [PMID: 33483852 DOI: 10.1007/s00709-021-01612-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Chitinases are a category of hydrolytic enzymes that catalyze chitin and are formed by a wide variety of microorganisms. In nature, microbial chitinases are primarily responsible for chitin decomposition and play a vital role in the balance of carbon and nitrogen ratio in the ecosystem. The physicochemical attributes and the source of chitinase are the main bases that determine their functional characteristics and hydrolyzed products. Several chitinases have been reported and characterized, and they obtain a wider consideration for their utilization in a large number of uses such as in agriculture, food, environment, medicine and pharmaceutical companies. The antifungal and insecticidal impacts of several chitinases have been extensively studied, aiming to protect crops from phytopathogenic fungi and insects. Chitooligosaccharides synthesized by chitin degradation have been shown to improve human health through their antimicrobial, antioxidant, anti-inflammatory and antitumor properties. This review aims at investigating chitinase production, properties and their potential applications in various biotechnological fields.
Collapse
Affiliation(s)
- Eman Zakaria Gomaa
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
44
|
Hassan AA, Ismail SA. Production of antifungal N-acetyl-β-glucosaminidase chitinolytic enzyme using shrimp byproducts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Fenice M, Gorrasi S. Advances in Chitin and Chitosan Science. Molecules 2021; 26:molecules26061805. [PMID: 33806913 PMCID: PMC8005133 DOI: 10.3390/molecules26061805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
|
46
|
Singh RV, Sambyal K, Negi A, Sonwani S, Mahajan R. Chitinases production: A robust enzyme and its industrial applications. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1883004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Anjali Negi
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Shubham Sonwani
- Department of Biosciences, Christian Eminent College, Indore, India
| | - Ritika Mahajan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
47
|
Industrially Important Fungal Enzymes: Productions and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Bhagwat P, Amobonye A, Singh S, Pillai S. A comparative analysis of GH18 chitinases and their isoforms from Beauveria bassiana: An in-silico approach. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Symbiotic chitin degradation by a novel anaerobic thermophilic bacterium Hydrogenispora sp. UUS1-1 and the bacterium Tepidanaerobacter sp. GT38. Enzyme Microb Technol 2020; 144:109740. [PMID: 33541575 DOI: 10.1016/j.enzmictec.2020.109740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 01/21/2023]
Abstract
Chitin is the second most abundant organic compound in nature. Although mesophilic bacteria degrade insoluble chitin, there is a paucity of data describing degradation of insoluble chitin by anaerobic thermophilic bacteria. In this report, we screened cow manure compost for new chitin degradation systems, and identified a chitinolytic bacterial community (CBC) that showed high chitin degradation activity under thermophilic conditions, i.e., 1% (w/v) chitin powder degraded completely within 7 days at 60 °C. Metagenomic analysis revealed that the CBC was dominated by two bacterial genera from Hydrogenispora, an uncultured taxonomic group, and Tepidanaerobacter. Hydrogenispora were abundant in the early-to-mid stages of culturing with chitin, whereas the population of Tepidanaerobacter increased during the later stages of culturing. Strains UUS1-1 and GT38, which were isolated as pure cultures using the roll-tube method with colloidal chitin, N-acetyl-d-glucosamine, and glucose as carbon sources, were found to be closely related to H. ethanolica and T. acetatoxydans, respectively. Strain UUS1-1 readily degraded chitin and is the first anaerobic thermophilic chitinolytic bacterium reported, whereas strain GT38 showed no chitinolytic activity. Based on phylogenetic analysis, UUS1-1 and GT38 should be classified as novel genera and species. Zymogram analysis revealed that UUS1-1 produces at least two chitinases with molecular weights of 150 and 40 kDa. A coculture of UUS1-1 and GT38 degraded crystalline chitin faster with lower accumulation of lactate compared with UUS1-1 alone, indicating that the strains maintained a symbiotic association through assimilation of organic acids in chitin degradation and that strain GT38 consumed end-products to reduce end-product inhibition and enhance the degradation of crystalline chitin.
Collapse
|
50
|
Naumoff DG, Dedysh SN. Chitinases Encoded in the Genomes of Acidobacteria: Origin and Evolution. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|