1
|
Lin J, Xie J, Luo L, Gänzle M. Characterization of GshAB of Tetragenococcus halophilus: a two-domain glutathione synthetase. Appl Microbiol Biotechnol 2023; 107:2997-3008. [PMID: 36995384 DOI: 10.1007/s00253-023-12497-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
The γ-glutamyl tripeptide glutathione (γ-Glu-Cys-Gly) is a low molecular thiol that acts as antioxidant in response to oxidative stress in eukaryotes and prokaryotes. γ-Glutamyl dipeptides including γ-Glu-Cys, γ-Glu-Glu, and γ-Glu-Gly also have kokumi activity. Glutathione is synthesized by first ligating Glu with Cys by γ-glutamylcysteine ligase (Gcl/GshA), and then the resulting dipeptide γ-glutamylcysteine is ligated with Gly by glutathione synthetase (Gs/GshB). GshAB/GshF enzymes that contain both Gcl and Gs domains are capable of catalyzing both reactions. The current study aimed to characterize GshAB from Tetragenococcus halophilus after heterologous expression in Escherichia coli. The optimal conditions for GshAB from T. halophilus were pH 8.0 and 25 °C. The substrate specificity of the Gcl reaction of GshAB was also determined. GshAB has a high affinity to Cys. γ-Glu-Cys was the only dipeptide generated when Glu, Cys, Gly, and other amino acids were present in the reaction system. This specificity differentiates GshAB from T. halophilus from Gcl of heterofermentative lactobacilli and GshAB of Streptococcus agalactiae, which also use amino acids other than Cys as glutamyl-acceptor. Quantification of gshAB in cDNA libraries from T. halophilus revealed that gshAB was overexpressed in response to oxidative stress but not in response to acid, osmotic, or cold stress. In conclusion, GshAB in T. halophilus served as part of the oxidative stress response but this study did not provide any evidence for a contribution to the resistance to other stressors.Key points Glutathione synthesis in Tetragenococcus halophilus is carried out by the two-domain enzyme GshAB. GshAB is inhibited by glutathione and is highly specific for Cys as acceptor. T. halophilus synthesizes glutathione in response to oxidative stress.
Collapse
Affiliation(s)
- Jieting Lin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, T6G 2P5, Canada
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
- Present address: Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Jin Xie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, T6G 2P5, Canada
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, T6G 2P5, Canada.
| |
Collapse
|
2
|
Pechenov PY, Garagulya DA, Stanovov DS, Letarov AV. New Effective Method of Lactococcus Genome Editing Using Guide RNA-Directed Transposition. Int J Mol Sci 2022; 23:13978. [PMID: 36430465 PMCID: PMC9696066 DOI: 10.3390/ijms232213978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lactococcus lactis is an important industrial microorganism and a widely used model object for research in the field of lactic acid bacteria (LAB) biology. The development of new L. lactis and related LAB strains with improved properties, including phage-resistant strains for dairy fermentation, LAB-based vaccines or strains with altered genotypes for research purposes, are hindered by the lack of genome-editing tools that allow for the easy and straightforward incorporation of a significant amount of the novel genetic material, such as large genes or operons, into the chromosomes of these bacteria. We recently employed a suggested system based on the CRISPR-Cas-associated transposon for the editing of the L. lactis genome. After the in-depth redesign of the system, we were able to achieve the stable incorporation of the fragments that were sized up to 10 kbp into the L. lactis beta-galactosidase gene. The efficiency of editing under the optimized conditions were 2 × 10-4 and 4 × 10-5 for 1 kbp and 10 kbp, respectively, which are sufficient for fast and easy modifications if a positive selection marker can be used.
Collapse
Affiliation(s)
- Pavel Yu Pechenov
- Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia
| | | | | | - Andrey V. Letarov
- Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia
| |
Collapse
|
3
|
More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández‐Jerez A, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Younes M, Herman L, Pelaez C, van Loveren H, Vlak J, Revez J, Aguilera J, Schoonjans R, Cocconcelli PS. Evaluation of existing guidelines for their adequacy for the food and feed risk assessment of microorganisms obtained through synthetic biology. EFSA J 2022; 20:e07479. [PMID: 35991959 PMCID: PMC9380697 DOI: 10.2903/j.efsa.2022.7479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
EFSA was asked by the European Commission to evaluate synthetic biology (SynBio) developments for agri-food use in the near future and to determine whether or not they are expected to constitute potential new hazards/risks. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment of SynBio and if updated guidance is needed. The scope of this Opinion covers food and feed risk assessment, the variety of microorganisms that can be used in the food/feed chain and the whole spectrum of techniques used in SynBio. This Opinion complements a previously adopted Opinion with the evaluation of existing guidelines for the microbial characterisation and environmental risk assessment of microorganisms obtained through SynBio. The present Opinion confirms that microbial SynBio applications for food and feed use, with the exception of xenobionts, could be ready in the European Union in the next decade. New hazards were identified related to the use or production of unusual and/or new-to-nature components. Fifteen cases were selected for evaluating the adequacy of existing guidelines. These were generally adequate for assessing the product, the production process, nutritional and toxicological safety, allergenicity, exposure and post-market monitoring. The comparative approach and a safety assessment per se could be applied depending on the degree of familiarity of the SynBio organism/product with the non-genetically modified counterparts. Updated guidance is recommended for: (i) bacteriophages, protists/microalgae, (ii) exposure to plant protection products and biostimulants, (iii) xenobionts and (iv) feed additives for insects as target species. Development of risk assessment tools is recommended for assessing nutritional value of biomasses, influence of microorganisms on the gut microbiome and the gut function, allergenic potential of new-to-nature proteins, impact of horizontal gene transfer and potential risks of living cell intake. A further development towards a strain-driven risk assessment approach is recommended.
Collapse
|
4
|
Lu Q, Xu H, Zhou L, Zhang R, Li Z, Xu P, Bai T, Wang Z, Wu G, Ren J, Jiao D, Song Y, Zhu R, Li J, Wang W, Liang R, Li L, Ma X, Zu M, Sun Y. Alterations in Faecal Metagenomics and Serum Metabolomics Indicate Management Strategies for Patients With Budd-Chiari Syndrome. Front Cell Infect Microbiol 2021; 11:730091. [PMID: 34746022 PMCID: PMC8567795 DOI: 10.3389/fcimb.2021.730091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
We investigated the effects of gut microbiota and serum metabolite levels in patients with Budd-Chiari syndrome (B-CS) and their importance for guiding clinical management strategies. In total, 214 B-CS patients (93 untreated and 121 treated) and 41 healthy controls were enrolled. Gut microbiota and serum metabolome were analysed using shotgun metagenomics and liquid chromatography-mass spectrometry. The gut microbiota of the patients showed abundance of Campylobacter and low levels of Saccharomyces, Deinococcus, and Thiomonas (P < 0.05). Thirty metabolites, including taurocholate and (R)-3-hydroxybutyric acid, were identified in the patients (VIP > 1, P < 0.05 and FC > 1.2 or FC < 0.83). Random forest (RF) models showed that serum metabolome could effectively identify B-CS from healthy controls and RF-metabolomics exhibited perfect discrimination (AUC = 100%, 95% CI: 100% – 100%), which was significantly higher than that achieved by RF-metagenomics (AUC = 58.48%, 95% CI: 38.46% – 78.5%). Campylobacter concisus and taurocholate showed significant positive correlation in patients with clinical manifestations (P < 0.05). Actinobacteria levels were significantly higher in untreated patients than in treated patients (P < 0.05). Campylobacter and Veillonella levels were significantly higher in treated patients than in healthy controls (P < 0.05). We identified major alterations in the gut microbiota and serum metabolome of patients with B-CS. Faecal metagenomics- and serum metabolomics-guided management strategies are required for patients with B-CS.
Collapse
Affiliation(s)
- Qinwei Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| | - Hao Xu
- Department of Interventional Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lin Zhou
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China.,Department of Digestive, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruifang Zhang
- Department of Ultrasound Diagnosis, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Bai
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Song
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Department of Interventional Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuxian Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| | - Maoheng Zu
- Department of Interventional Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhang C, Sultan SA, T R, Chen X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. BIORESOUR BIOPROCESS 2021; 8:72. [PMID: 38650197 PMCID: PMC10992897 DOI: 10.1186/s40643-021-00425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
In the biosynthesis of natural products, methylation is a common and essential transformation to alter molecules' bioavailability and bioactivity. The main methylation reaction is performed by S-adenosylmethionine (SAM)-dependent methyltransferases (MTs). With advancements in genomic and chemical profiling technologies, novel MTs have been discovered to accept complex substrates and synthesize industrially valuable natural products. However, to achieve a high yield of small molecules in microbial hosts, many methyltransferase activities have been reported to be insufficient. Moreover, inadequate co-factor supplies and feedback inhibition of the by-product, S-adenosylhomocysteine (SAH), further limit MTs' activities. Here, we review recent advances in SAM-dependent MTs to produce and diversify natural products. First, we surveyed recently identified novel methyltransferases in natural product biosynthesis. Second, we summarized enzyme engineering strategies to improve methyltransferase activity, with a particular focus on high-throughput assay design and application. Finally, we reviewed innovations in co-factor regeneration and diversification, both in vitro and in vivo. Noteworthily, many MTs are able to accept multiple structurally similar substrates. Such promiscuous methyltransferases are versatile and can be tailored to design de novo pathways to produce molecules whose biosynthetic pathway is unknown or non-existent in nature, thus broadening the scope of biosynthesized functional molecules.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stella Amelia Sultan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
6
|
Xu ZS, Wang Z, Cui X, Liang Y, Wang T, Kong J. Peptide transporter-related protein 2 plays an important role in glutathione transport of Streptococcus thermophilus. J Dairy Sci 2021; 104:3990-4001. [PMID: 33589257 DOI: 10.3168/jds.2020-19234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 01/19/2023]
Abstract
Streptococcus thermophilus is widely used as a starter culture in the fermentation of yogurt. Glutathione (GSH; γ-glutamyl-cysteinyl-glycine), as a tripeptide, has an important physiological role for Strep. thermophilus. However, the scope of the GSH transport proteins is still unexplored in this species. In the present study, 5 peptide transporter-related proteins (Ptrp) of Strep. thermophilus strain ST-1 were selected and then inactivated by gene insertion, respectively. Through detection and comparison of intracellular GSH content of mutant strain and wild strain, we identified 2 proteins, named Ptrp-2 and Ptrp-4, that might be related to GSH transport. Reverse-transcriptase quantitative PCR was performed to verify the gene expressions of these 2 possible GSH transport-related proteins, and it was finally determined that Ptrp-2 plays an important role in GSH transport of Strep. thermophilus. Milk fermentation experiments were further conducted to test the effect of Ptrp-2 on the characteristics of yogurt. The results showed that the fermented milk hardly curds using the mutant strain, indicating that Ptrp-2 is important for Strep. thermophilus as a yogurt starter.
Collapse
Affiliation(s)
- Z S Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Z Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - X Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Y Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - T Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China.
| | - J Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| |
Collapse
|
7
|
Tan J, Sun M, Luo Q, Sun H, Wang M, Jiang C, Li S, He Y. Arsenic exposure increased expression of HOTAIR and LincRNA-p21 in vivo and vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:587-596. [PMID: 32816178 DOI: 10.1007/s11356-020-10487-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is an environmental contaminant, its multiple effects on human tend to increase the rate of disease, cancer and other health problems. Some of long non-coding RNAs (lncRNAs) can be induced in major cellular processes such as necrosis, proliferation, and mutation. While the toxicity of arsenic is well established, the association between arsenic exposure and long non-coding RNAs has not been studied enough. This study investigated the association between arsenic and the expression of HOTAIR and LincRNA-p21 in vivo and vitro. In epidemiological studies, the expression of HOTAIR and LincRNA-p21 was increased after long-term arsenic exposure. HOTAIR and LincRNA-p21 expression were positively linked to monomethylarsenic acid (MMA), dimethylarsenic acid (DMA), inorganic arsenic (iAs), total arsenic (tAs), and MMA% and negatively linked to secondary methylation index (SMI). In A549 cells, arsenic exposure resulted in enhanced HOTAIR and LincRNA-p21 expression dose-dependently. The expression of HOTAIR was considerably high in the presence of NaAsO2 and MMA but showed no difference in DMA compared with control group. And LincRNA-p21 expression was increased in the presence of NaAsO2, MMA, and DMA. The expression of HOTAIR and LincRNA-p21 induced by iAs was much higher than that induced by MMA and DMA. Compared with the control group, treatment of A549 cells with NaAsO2/S-adenosylmethionine (SAM) and NaAsO2/glutathione (GSH) combination increased HOTAIR and LincRNA-p21 expression. The expression of LincRNA-p21 in combination of NaAsO2/GSH was significantly decreased compared with NaAsO2 alone. Besides, in the presence of arsenic, both of HOTAIR and LincRNA-p21 were upregulated significantly when P53 was knocked down. We revealed that inorganic arsenic, its methylated metabolites, and arsenic metabolism efficiency affect the expression of HOTAIR and LincRNA-p21.
Collapse
Affiliation(s)
- Jingwen Tan
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Mingjun Sun
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Quan Luo
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Huiwen Sun
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Mengjie Wang
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Chenglan Jiang
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China.
| |
Collapse
|
8
|
Korotkyi O, Dvorshchenko K, Kot L. Oxidative/antioxidant balance and matrix metalloproteinases level in the knee cartilage of rats under experimental osteoarthritis and probiotic administration. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.06.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Chen YW, Liao Y, Kong WZ, Wang SH. ATP dynamic regeneration strategy for enhancing co-production of glutathione and S-adenosylmethionine in Escherichia coli. Biotechnol Lett 2020; 42:2581-2587. [PMID: 32808198 DOI: 10.1007/s10529-020-02989-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In general, a sufficient supply of ATP can promote the synthesis of ATP-driven metabolites, but excessive ATP will lead to the inhibition of cell growth. For enhancing the co-production of glutathione(GSH) and S-adenosylmethionine(SAM), a dynamic ATP regeneration strategy was developed. RESULTS The novel ATP regeneration strategy consisting of ATP-sensing riboswitch ydaO motif, polyphosphate kinase (PPK), and Vitreoscilla hemoglobin (VHb) was successfully applied in Escherichia coli. The intracellular ATP level was always around 0.60 mg/g dry cell weight during the fermentation process, resulting in significantly enhanced co-production of GSH and SAM. The GSH titer and SAM titer in the strain CGS-2 increased by 137.40% and 82.18% after fermentation for 24 h, compared with the control strain. CONCLUSIONS The ATP regulation strategy is expected to be a favorable tool to improve the efficiency of microbial cell factories. The proposed ATP dynamic regeneration approach may be applicable for cost-effective, high-yield production of ATP-driven metabolites.
Collapse
Affiliation(s)
- Ya Wei Chen
- College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, People's Republic of China.
| | - Yuan Liao
- College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Wei Zhen Kong
- College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Shu Han Wang
- College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| |
Collapse
|
10
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|