1
|
Raio A. Diverse roles played by "Pseudomonas fluorescens complex" volatile compounds in their interaction with phytopathogenic microrganims, pests and plants. World J Microbiol Biotechnol 2024; 40:80. [PMID: 38281212 PMCID: PMC10822798 DOI: 10.1007/s11274-023-03873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Pseudomonas fluorescens complex consists of environmental and some human opportunistic pathogenic bacteria. It includes mainly beneficial and few phytopathogenic species that are common inhabitants of soil and plant rhizosphere. Many members of the group are in fact known as effective biocontrol agents of plant pathogens and as plant growth promoters and for these attitudes they are of great interest for biotechnological applications. The antagonistic activity of fluorescent Pseudomonas is mainly related to the production of several antibiotic compounds, lytic enzymes, lipopeptides and siderophores. Several volatile organic compounds are also synthesized by fluorescent Pseudomonas including different kinds of molecules that are involved in antagonistic interactions with other organisms and in the induction of systemic responses in plants. This review will mainly focus on the volatile compounds emitted by some members of P. fluorescens complex so far identified, with the aim to highlight the role played by these molecules in the interaction of the bacteria with phytopathogenic micro and macro-organisms and plants.
Collapse
Affiliation(s)
- Aida Raio
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano, 10., 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
2
|
Rani A, Rana A, Dhaka RK, Singh AP, Chahar M, Singh S, Nain L, Singh KP, Minz D. Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope. Biotechnol Adv 2023; 63:108078. [PMID: 36513315 DOI: 10.1016/j.biotechadv.2022.108078] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Bacteria emit a large number of volatile organic compounds (VOCs) into the environment. VOCs are species-specific and their emission depends on environmental conditions, such as growth medium, pH, temperature, incubation time and interaction with other microorganisms. These VOCs can enhance plant growth, suppress pathogens and act as signaling molecules during plant-microorganism interactions. Some bacterial VOCs have been reported to show strong antimicrobial, nematicidal, pesticidal, plant defense, induced tolerance and plant-growth-promoting activities under controlled conditions. Commonly produced antifungal VOCs include dimethyl trisulfide, dimethyl disulfide, benzothiazole, nonane, decanone and 1-butanol. Species of Bacillus, Pseudomonas, Arthrobacter, Enterobacter and Burkholderia produce plant growth promoting VOCs, such as acetoin and 2,3-butenediol. These VOCs affect expression of genes involved in defense and development in plant species (i.e., Arabidopsis, tobacco, tomato, potato, millet and maize). VOCs are also implicated in altering pathogenesis-related genes, inducing systemic resistance, modulating plant metabolic pathways and acquiring nutrients. However, detailed mechanisms of action of VOCs need to be further explored. This review summarizes the bioactive VOCs produced by diverse bacterial species as an alternative to agrochemicals, their mechanism of action and challenges for employment of bacterial VOCs for sustainable agricultural practices. Future studies on technological improvements for bacterial VOCs application under greenhouse and open field conditions are warranted.
Collapse
Affiliation(s)
- Annu Rani
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India
| | - Anuj Rana
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India; Centre for Bio-Nanotechnology, CCS HAU, Hisar, India.
| | - Rahul Kumar Dhaka
- Centre for Bio-Nanotechnology, CCS HAU, Hisar, India; Department of Chemistry, College of Basic Science & Humanities, CCS HAU, Hisar, India
| | - Arvind Pratap Singh
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Madhvi Chahar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendargarh, India
| | - Lata Nain
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar, India; Vice Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, UP, India
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
3
|
Sidorova DE, Khmel IA, Chernikova AS, Chupriyanova TA, Plyuta VA. Biological activity of volatiles produced by the strains of two Pseudomonas and two Serratia species. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01038-y. [PMID: 36790684 DOI: 10.1007/s12223-023-01038-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S. proteamaculans 94 strain on Arabidopsis thaliana plants (on growth and germination of seeds). We demonstrated that total mixtures of volatile compounds emitted by these strains grown on Luria-Bertani agar, Tryptone Soya Agar, and Potato Dextrose Agar media inhibited the A. thaliana growth. When studied bacteria grew on Murashige and Skoog (MS) agar medium, volatile mixtures produced by bacteria could stimulate the growth of plants. Volatile compounds of bacteria slowed down the germination of plant seeds; in the presence of volatile mixtures of P. fluorescens B-4117, the seeds did not germinate. Of the individual VOCs, 2-heptanone had the most potent inhibitory effect on seed germination. We also showed that the tested VOCs did not cause oxidative stress in Escherichia coli cells using specific lux-biosensors. VOCs reduced the expression of the lux operon from the promoters of the katG, oxyS, and soxS genes (whose products involved in the protection of cells from oxidative stress) caused by the action of hydrogen peroxide and paraquat, respectively.
Collapse
Affiliation(s)
- Daria E Sidorova
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia
| | - Inessa A Khmel
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia
| | - Anastasya S Chernikova
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia
- Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Moscow, 125480, Russia
| | - Tanya A Chupriyanova
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia
- Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Moscow, 125480, Russia
| | - Vladimir A Plyuta
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia.
| |
Collapse
|
4
|
Almeida OAC, de Araujo NO, Mulato ATN, Persinoti GF, Sforça ML, Calderan-Rodrigues MJ, Oliveira JVDC. Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1056082. [PMID: 36844905 PMCID: PMC9948655 DOI: 10.3389/fpls.2022.1056082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting bacteria (PGPB) represent an eco-friendly alternative to reduce the use of chemical products while increasing the productivity of economically important crops. The emission of small gaseous signaling molecules from PGPB named volatile organic compounds (VOCs) has emerged as a promising biotechnological tool to promote biomass accumulation in model plants (especially Arabidopsis thaliana) and a few crops, such as tomato, lettuce, and cucumber. Rice (Oryza sativa) is the most essential food crop for more than half of the world's population. However, the use of VOCs to improve this crop performance has not yet been investigated. Here, we evaluated the composition and effects of bacterial VOCs on the growth and metabolism of rice. First, we selected bacterial isolates (IAT P4F9 and E.1b) that increased rice dry shoot biomass by up to 83% in co-cultivation assays performed with different durations of time (7 and 12 days). Metabolic profiles of the plants co-cultivated with these isolates and controls (without bacteria and non-promoter bacteria-1003-S-C1) were investigated via 1H nuclear magnetic resonance. The analysis identified metabolites (e.g., amino acids, sugars, and others) with differential abundance between treatments that might play a role in metabolic pathways, such as protein synthesis, signaling, photosynthesis, energy metabolism, and nitrogen assimilation, involved in rice growth promotion. Interestingly, VOCs from IAT P4F9 displayed a more consistent promotion activity and were also able to increase rice dry shoot biomass in vivo. Molecular identification by sequencing the 16S rRNA gene of the isolates IAT P4F9 and E.1b showed a higher identity with Serratia and Achromobacter species, respectively. Lastly, volatilomes of these and two other non-promoter bacteria (1003-S-C1 and Escherichia coli DH5α) were evaluated through headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Compounds belonging to different chemical classes, such as benzenoids, ketones, alcohols, sulfide, alkanes, and pyrazines, were identified. One of these VOCs, nonan-2-one, was validated in vitro as a bioactive compound capable of promoting rice growth. Although further analyses are necessary to properly elucidate the molecular mechanisms, our results suggest that these two bacterial isolates are potential candidates as sources for bioproducts, contributing to a more sustainable agriculture.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Aline Tieppo Nogueira Mulato
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Maurício Luís Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
5
|
Investigating plant-microbe interactions within the root. Arch Microbiol 2022; 204:639. [PMID: 36136275 DOI: 10.1007/s00203-022-03257-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
A diverse lineage of microorganisms inhabits plant roots and interacts with plants in various ways. Further, these microbes communicate and interact with each other within the root microbial community. These symbioses add an array of influences, such as plant growth promotion or indirect protection to the host plant. Omics technology and genetic manipulation have been applied to unravel these interactions. Recent studies probed plants' control over microbes. However, the activity of the root microbial community under host influence has not been elucidated enough. In this mini-review, we discussed the recent advances and limits of omics technology and genetics for dissecting the activity of the root-associated microbial community. These materials may help us formulate the correct experimental plans to capture the entire molecular mechanisms of the plant-microbe interaction.
Collapse
|
6
|
Koksharova OA, Safronov NA. The effects of secondary bacterial metabolites on photosynthesis in microalgae cells. Biophys Rev 2022; 14:843-856. [PMID: 36124259 PMCID: PMC9481811 DOI: 10.1007/s12551-022-00981-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Secondary metabolites of bacteria are regulatory molecules that act as "info-chemicals" that control some metabolic processes in the cells of microorganisms. These molecules provide the function of bacteria communication in microbial communities. As primary producers of organic matter in the biosphere, microalgae play a central ecological role in various ecosystems. Photosynthesis is a central process in microalgae cells, and it is exposed to various biotic and abiotic factors. Various secondary metabolites of bacteria confer a noticeable regulatory effect on photosynthesis in microalgae cells. The main purpose of this review is to highlight recent experimental results that demonstrate the impact of several types of common bacterial metabolites (volatile organic compounds, non-protein amino acids, and peptides) on photosynthetic activity in cells of microalgae. The use of these molecules as herbicides can be of great importance both for practical applications and for basic research.
Collapse
Affiliation(s)
- O. A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - N. A. Safronov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
| |
Collapse
|
7
|
Effects of Volatile Organic Compounds on Biofilms and Swimming Motility of Agrobacterium tumefaciens. Microorganisms 2022; 10:microorganisms10081512. [PMID: 35893570 PMCID: PMC9394263 DOI: 10.3390/microorganisms10081512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Volatile organic compounds (VOCs) emitted by bacteria play an important role in the interaction between microorganisms and other organisms. They can inhibit the growth of phytopathogenic microorganisms, modulate plant growth, and serve as infochemicals. Here, we investigated the effects of ketones, alcohols, and terpenes on the colony biofilms of plant pathogenic Agrobacterium tumefaciens strains and swimming motility, which can play an important role in the formation of biofilms. It was shown that 2-octanone had the greatest inhibitory effect on biofilm formation, acting in a small amount (38.7 g/m3). Ketone 2-butanone and unsaturated ketone β-ionone reduced the formation of biofilms at higher doses (145.2–580.6 and 387.1–1548.3 g/m3, respectively, up to 2.5–5 times). Isoamyl alcohol and 2-phenylethanol decreased the formation of biofilms at doses of 88.7 and 122.9 g/m3 by 1.7 and 5 times, respectively, with an increased effect at 177.4 and 245.9 g/m3, respectively. The agrobacteria cells in mature biofilms were more resistant to the action of ketones and alcohols. These VOCs also suppressed the swimming motility of agrobacteria; the radius of swimming zones decreased ~from 2 to 5 times. Terpenes (−)-limonene and (+)-α-pinene had no significant influence on the colony biofilms and swimming motility at the doses used. The results obtained represent new information about the effect of VOCs on biofilms and the motility of bacteria.
Collapse
|
8
|
Pérez-Corral DA, Ornelas-Paz JDJ, Olivas GI, Acosta-Muñiz CH, Salas-Marina MÁ, Berlanga-Reyes DI, Sepulveda DR, Mares-Ponce de León Y, Rios-Velasco C. Growth Promotion of Phaseolus vulgaris and Arabidopsis thaliana Seedlings by Streptomycetes Volatile Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:875. [PMID: 35406854 PMCID: PMC9002626 DOI: 10.3390/plants11070875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Streptomyces are recognized as antipathogenic agents and plant-growth-promoting rhizobacteria. The objective of this study was to evaluate the capacities of four antifungal Streptomyces strains to: produce the substances that are involved in plant growth; solubilize phosphates; and fix nitrogen. The effects of the volatile organic compounds (VOCs) that are emitted by these strains on the growth promotion of Arabidopsis thaliana and Phaseolus vulgaris L. (var. Pinto Saltillo) seedlings were also tested. All of the Streptomyces strains produced indole-3-acetic acid (IAA) (10.0 mg/L to 77.5 mg/L) and solubilized phosphates, but they did not fix nitrogen. In vitro assays showed that the VOCs from Streptomyces increased the shoot fresh weights (89-399%) and the root fresh weights (94-300%) in A. thaliana seedlings; however, these effects were less evident in P. vulgaris. In situ experiments showed that all the Streptomyces strains increased the shoot fresh weight (11.64-43.92%), the shoot length (11.39-29.01%), the root fresh weight (80.11-140.90%), the root length (40.06-59.01%), the hypocotyl diameter (up to 6.35%), and the chlorophyll content (up to 10.0%) in P. vulgaris seedlings. 3-Methyl-2-butanol had the highest effect among the ten pure VOCs on the growth promotion of A. thaliana seedlings. The tested Streptomyces strains favored biomass accumulation in A. thaliana and P. vulgaris seedlings.
Collapse
Affiliation(s)
- Daniel Alonso Pérez-Corral
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Guadalupe Isela Olivas
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Carlos Horacio Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Miguel Ángel Salas-Marina
- División de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Carretera Villacorzo-Ejido Monterrey Km 3.0., Tuxtla Gutiérrez C.P. 30520, Chiapas, Mexico;
| | - David Ignacio Berlanga-Reyes
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - David Roberto Sepulveda
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Yericka Mares-Ponce de León
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| |
Collapse
|
9
|
The Effect of Volatile Organic Compounds on Different Organisms: Agrobacteria, Plants and Insects. Microorganisms 2021; 10:microorganisms10010069. [PMID: 35056518 PMCID: PMC8781025 DOI: 10.3390/microorganisms10010069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 01/29/2023] Open
Abstract
Bacteria and fungi emit a huge variety of volatile organic compounds (VOCs) that can provide a valuable arsenal for practical use. However, the biological activities and functions of the VOCs are poorly understood. This work aimed to study the action of individual VOCs on the bacteria Agrobacterium tumefaciens, Arabidopsis thaliana plants, and fruit flies Drosophila melanogaster. VOCs used in the work included ketones, alcohols, and terpenes. The potent inhibitory effect on the growth of A. tumefaciens was shown for 2-octanone and isoamyl alcohol. Terpenes (−)-limonene and (+)-α-pinene practically did not act on bacteria, even at high doses (up to 400 µmol). 2-Butanone and 2-pentanone increased the biomass of A. thaliana at doses of 200–400 μmol by 1.5–2 times; 2-octanone had the same effect at 10 μmol and decreased plant biomass at higher doses. Isoamyl alcohol and 2-phenylethanol suppressed plant biomass several times at doses of 50–100 μmol. Plant seed germination was most strongly suppressed by isoamyl alcohol and 2-phenylethanol. The substantial killing effect (at low doses) on D. melanogaster was exerted by the terpenes and the ketones 2-octanone and 2-pentanone. The obtained data showed new information about the biological activities of VOCs in relation to organisms belonging to different kingdoms.
Collapse
|