1
|
Garces KR, Hanley TC, Deckert R, Noble A, Richards C, Gehring C, Hughes AR. Bacterial and fungal root endophytes alter survival, growth, and resistance to grazing in a foundation plant species. Oecologia 2024; 207:9. [PMID: 39658651 DOI: 10.1007/s00442-024-05650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Plants host an array of microbial symbionts, including both bacterial and fungal endophytes located within their roots. While bacterial and fungal endophytes independently alter host plant growth, response to stress and susceptibility to disease, their combined effects on host plants are poorly studied. To tease apart interactions between co-occurring endophytes on plant growth, morphology, physiology, and survival we conducted a greenhouse experiment. Different genotypes of Spartina alterniflora, a foundational salt marsh species, were inoculated with one bacterial endophyte, Kosakonia oryzae, one fungal endophyte, Magnaporthales sp., or co-inoculated. Within the greenhouse, an unplanned herbivory event occurred which allowed insight into the ways bacteria, fungi, and co-inoculation of both endophytic microbes alters plant defense chemicals and changes herbivory. Broadly, the individual inoculation of the bacterial endophyte increased survival, whereas the fungal endophyte increased plant growth traits. Following the herbivory event, the proportion of stems grazed was reduced when plants were inoculated with the individual endophytes and further reduced when both endophytes were present. Across genotypes, anti-herbivore defense chemicals varied by individual and co-inoculation of endophytes. Bacterial inoculation and genotype interactively affected above:below-ground biomass and S. alterniflora survival of ungrazed plants. Overall, our results highlight the variable outcomes of endophyte inoculation on Spartina growth, morphology, phenolics, and survival. This study furthers our understanding of the combined effects of symbionts and plant multitrophic interactions. Further, exploring intra and inter specific effects of plant--microbe symbiosis may be key in better predicting ecosystem level outcomes, particularly in response to global change.
Collapse
Affiliation(s)
- Kylea Rose Garces
- Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA, 01908, USA.
| | - Torrance C Hanley
- Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA, 01908, USA
- Sacred Heart University, 5151 Park Avenue, Fairfield, CT, 06825, USA
| | - Ron Deckert
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - Allison Noble
- Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA, 01908, USA
- LSU Department of Oceanography and Coastal Sciences, 93 South Quad Drive, Baton Rouge, LA, 70803, USA
- Louisiana Universities Marine Consortium, 8124 LA-56, Chauvin, LA, 70344, USA
| | - Christina Richards
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Catherine Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - A Randall Hughes
- Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA, 01908, USA
| |
Collapse
|
2
|
Silva LC, Saggin-Júnior OJ, Carneiro MAC, Silva EMRDA, Zilli JÉ, Berbara RLL. Characterization of dark septate endophytic fungi Periconia macrospinosa isolated from roots of sugarcane in São Paulo, Brazil. AN ACAD BRAS CIENC 2024; 96:e20231367. [PMID: 39661823 DOI: 10.1590/0001-3765202420231367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/09/2024] [Indexed: 12/13/2024] Open
Abstract
Dark Septate Endophytic (DSE) fungi can benefit plants by optimizing nutrient uptake, biosynthesis of phytohormones-like compounds, and stress relief such as toxic metals. The objective was to characterize in vitro 57 strains of the DSE Periconia macrospinosa isolated from sugarcane roots, indicating the most promising in solubilizing phosphate sources, growing in different metal and vinasse contents, and producing molecules related to indoleacetic acid (IAA). The strains were from the Embrapa Agrobiology Fungi Collection. Over 35% of the strains solubilize calcium phosphate, highlighting A356 and A155. No strain solubilizes aluminum phosphate. Three strains did not grow in the presence of Cd (A333, A334, A163), but A226, A332, and A423 stand out showing high growth with Cd. All strains grew in the presence of Cu, Zn, and Vinasse. A163, A164, and A328 were even stimulated by Cu addition. A331 and A335 showed a marked growth decrease with Zn. All strains are highly adapted to grow in vinasse presence. A257 and A226 produced the highest amount of IAA. The most biotechnological potential strains are indicated by presenting high growth under Cd, Cu, Zn, and vinasse stress, associated with a high tolerance index to these pollutants, further calcium phosphate solubilization, or IAA production.
Collapse
Affiliation(s)
- Luana C Silva
- Federal Rural University of Rio de Janeiro (UFRRJ), Department of Soil Sciences, Rodovia BR-465, km 07, s/n, Campus universitário, 23890-000 Seropédica, RJ, Brazil
| | - Orivaldo José Saggin-Júnior
- Brazilian Agricultural Research Corporation (Embrapa Agrobiology), Rodovia BR-465, km 07, s/n, Bairro Ecologia, 23891-000 Seropédica, RJ, Brazil
| | - Marco Aurélio C Carneiro
- Federal University of Lavras (UFLA), Department of Soil Sciences, Trevo Rotatório Professor Edmir Sá Santos, s/n, Campus universitário, 37203-202 Lavras, MG, Brazil
| | - Eliane Maria R DA Silva
- Brazilian Agricultural Research Corporation (Embrapa Agrobiology), Rodovia BR-465, km 07, s/n, Bairro Ecologia, 23891-000 Seropédica, RJ, Brazil
| | - Jerri Édson Zilli
- Brazilian Agricultural Research Corporation (Embrapa Agrobiology), Rodovia BR-465, km 07, s/n, Bairro Ecologia, 23891-000 Seropédica, RJ, Brazil
| | - Ricardo Luis L Berbara
- Federal Rural University of Rio de Janeiro (UFRRJ), Department of Soil Sciences, Rodovia BR-465, km 07, s/n, Campus universitário, 23890-000 Seropédica, RJ, Brazil
| |
Collapse
|
3
|
Lu B, Lin Y, He C, Wang Z, Li X, He X. Effects of dark septate endophyte on root growth, physiology and transcriptome of Ammopiptanthus mongolicus seedlings under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109367. [PMID: 39631347 DOI: 10.1016/j.plaphy.2024.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/26/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
As the only evergreen relict species in the desert environment of western China, Ammopiptanthus mongolicus (Leguminosae) roots is colonized with dark septate endophytes (DSE), but the potential of DSE to alleviate the adverse effects of drought on seedling roots remains uncertain. This study examined the effects of DSE on root growth, physiology and transcriptome of A. mongolicus under drought stress. Drought drastically reduced root biomass by 47.7%, while all DSE strains established positive symbiosis with A.mongolicus, with G.hyphopodioides having the most pronounced promoting effect. Inoculation with G. hyphopodioides alleviated drought stress injury by increasing CAT activity, AsA content and soluble sugar content in the roots, with a significant reduction in MDA accumulation by 97.7%. G. hyphopodioides also significantly increased zeatin and brassinosteroid contents, which in turn regulated the root structure and increased root activity, resulting in a 208.6% increase in root biomass. Transcriptome analysis screened 1246 differentially expressed genes (542 up-regulated and 704 down-regulated) between G. hyphopodioides inoculation under drought treatment, mainly associated with phenylpropanoid biosynthesis, ascorbic acid and aldehyde metabolism, hormone synthesis and signalling, sucrose and starch metabolism, and vitamin B6 metabolism, and further investigated and identified key potential genes and transcription factors (DREB, ERF, NAC, MYB, C2H2). These findings reveal the physiological and molecular mechanisms by which DSE symbiosis improves the drought resistance of A. mongolicus seedlings, providing valuable guidance on the use of DSE resources to promote ecological construction and production of desert plants.
Collapse
Affiliation(s)
- Bin Lu
- School of Life Sciences, Hebei University, Baoding, 071002, China; College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071001, China
| | - Yuli Lin
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhenzhou Wang
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xia Li
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xueli He
- School of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Noguchi M, Toju H. Mycorrhizal and endophytic fungi structure forest below-ground symbiosis through contrasting but interdependent assembly processes. ENVIRONMENTAL MICROBIOME 2024; 19:84. [PMID: 39488693 PMCID: PMC11531145 DOI: 10.1186/s40793-024-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Interactions between plants and diverse root-associated fungi are essential drivers of forest ecosystem dynamics. The symbiosis is potentially dependent on multiple ecological factors/processes such as host/symbiont specificity, background soil microbiome, inter-root dispersal of symbionts, and fungus-fungus interactions within roots. Nonetheless, it has remained a major challenge to reveal the mechanisms by which those multiple factors/processes determine the assembly of root-associated fungal communities. Based on the framework of joint species distribution modeling, we examined 1,615 root-tips samples collected in a cool-temperate forest to reveal how root-associated fungal community structure was collectively formed through filtering by host plants, associations with background soil fungi, spatial autocorrelation, and symbiont-symbiont interactions. In addition, to detect fungi that drive the assembly of the entire root-associated fungal community, we inferred networks of direct fungus-fungus associations by a statistical modeling that could account for implicit environmental effects. RESULTS The fine-scale community structure of root-associated fungi were best explained by the statistical model including the four ecological factors/processes. Meanwhile, among partial models, those including background soil fungal community structure and within-root fungus-fungus interactions showed the highest performance. When fine-root distributions were examined, ectomycorrhizal fungi tended to show stronger associations with background soil community structure and spatially autocorrelated patterns than other fungal guilds. In contrast, the distributions of root-endophytic fungi were inferred to depend greatly on fungus-fungus interactions. An additional statistical analysis further suggested that some endophytic fungi, such as Phialocephala and Leptodontidium, were placed at the core positions within the web of direct associations with other root-associated fungi. CONCLUSION By applying emerging statistical frameworks to intensive datasets of root-associated fungal communities, we demonstrated background soil fungal community structure and fungus-fungus associations within roots, as well as filtering by host plants and spatial autocorrelation in ecological processes, could collectively drive the assembly of root-associated fungi. We also found that basic assembly rules could differ between mycorrhizal and endophytic fungi, both of which were major components of forest ecosystems. Consequently, knowledge of how multiple ecological factors/processes differentially drive the assembly of multiple fungal guilds is indispensable for comprehensively understanding the mechanisms by which terrestrial ecosystem dynamics are organized by plant-fungal symbiosis.
Collapse
Affiliation(s)
- Mikihito Noguchi
- Center for Ecological Research, Kyoto University, Otsu, 520-2133, Shiga, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Hirokazu Toju
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Bi B, Xiao Y, Xu X, Chen Q, Li H, Zhao Z, Li T. Diversity and Functional Roles of Root-Associated Endophytic Fungi in Two Dominant Pioneer Trees Reclaimed from a Metal Mine Slag Heap in Southwest China. Microorganisms 2024; 12:2067. [PMID: 39458376 PMCID: PMC11509953 DOI: 10.3390/microorganisms12102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The utilization of fast-growing, economically valuable woody plants with strong stress resistance, such as poplar and willow, to revegetate severely metal-contaminated mine tailings not only offers a productive and profitable use of abandoned polluted soil resources but also facilitates the phytoremediation of these polluted soils. This study examines the diversity and functional roles of endophytic fungi naturally colonizing the roots of an artificially established Populus yunnanensis forest and the naturally reclaimed pioneer species Coriaria sinica on an abandoned tailing dam in southwest China. Culture-independent analyses revealed that the root systems of both plant species were abundantly colonized by arbuscular mycorrhizal fungi and endophytic fungi, forming rich and diverse endophytic fungal communities predominantly represented by the genera Ilyonectria, Tetracladium, Auricularia, and unclassified members of Helotiales. However, the composition of root endophytic fungal communities differed significantly between the two plant species. Using a culture-dependent approach, a total of 192 culturable endophytic fungal strains were isolated from the roots. The dominant genera included Cadophora, Cladosporium, Cyphellophora, and Paraphoma, most of which were previously identified as dark septate endophytes (DSE). Six representative DSE strains were selected for further study, and significant cadmium tolerance and various plant growth-promoting traits were observed, including the solubilization of insoluble inorganic and organic phosphorus, indole-3-acetic acid (IAA) production, and siderophore synthesis. In greenhouse experiments, inoculating two DSE strains mitigated the inhibitory effects of metal-polluted tailing soil on the growth of P. yunnanensis. This was achieved by reducing heavy metal uptake in roots and limiting metal translocation to the above-ground tissues, thereby promoting plant growth and adaptability. Our findings suggest that as plants reclaim metal-polluted tailings, root-associated endophytic fungal communities also undergo natural succession, playing a critical role in enhancing the host plant's tolerance to stress. Therefore, these restored root-associated fungi, particularly DSE, are essential functional components of the root systems in plants used for tailing reclamation.
Collapse
Affiliation(s)
- Bo Bi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (B.B.); (Y.X.); (X.X.); (Q.C.)
| | - Yuqing Xiao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (B.B.); (Y.X.); (X.X.); (Q.C.)
| | - Xiaonan Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (B.B.); (Y.X.); (X.X.); (Q.C.)
| | - Qianqian Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (B.B.); (Y.X.); (X.X.); (Q.C.)
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming 650504, China;
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (B.B.); (Y.X.); (X.X.); (Q.C.)
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (B.B.); (Y.X.); (X.X.); (Q.C.)
| |
Collapse
|
6
|
Hong L, Wang Q, Zhang J, Chen X, Liu Y, Asiegbu FO, Wu P, Ma X, Wang K. Advances in the beneficial endophytic fungi for the growth and health of woody plants. FORESTRY RESEARCH 2024; 4:e028. [PMID: 39524434 PMCID: PMC11524292 DOI: 10.48130/forres-0024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 11/16/2024]
Abstract
In recent years, the importance of microorganisms for plant survival has been increasingly recognized. Endophytic fungi, as part of holobiont, can confer growth advantages to plants. Most studies have shown that the endophytic fungi of forest trees can promote host plant growth, increase adversity resistance, and thus improve the survival competitiveness of forest trees. However, the beneficial examples of endophytic fungi on the growth and development of woody plants have not been systematically summarized. This review is focused on various aspects of beneficial endophytic fungi in forest trees (definition, classification, colonization mechanisms, etc.), with an emphasis on their beneficial roles in woody plant growth, protection against biotic and abiotic stresses, as well as the response of forest trees to endophytic fungi. In addition, this review lists a series of experiments on screening beneficial endophytic fungi from Chinese fir (Cunninghamia lanceolata) and verifying their beneficial functions, to explore the mutualistic relationships between them. This review not only provides a theoretical basis for the study of beneficial endophytic fungi in forest trees in the future but also sheds light on the molecular perspectives for a mechanistic understanding of their potential future significance for the sustainable utilization of forest resources and ecological environment protection.
Collapse
Affiliation(s)
- Liang Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Qingao Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Junhao Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Fred O. Asiegbu
- Department of Forest Sciences, PO Box 27, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Kai Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
7
|
Wang D, Xie Y, Zhang W, Yao L, He C, He X. Study on the Biological Characteristics of Dark Septate Endophytes under Drought and Cadmium Stress and Their Effects on Regulating the Stress Resistance of Astragalus membranaceus. J Fungi (Basel) 2024; 10:491. [PMID: 39057377 PMCID: PMC11277632 DOI: 10.3390/jof10070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Astragalus membranaceus is a famous traditional medicinal plant. However, drought and cadmium (Cd) pollution are the main abiotic stress factors that affect plant growth and yield and the ability to improve the host's stress resistance through the use of beneficial endophytic fungi. To evaluate the tolerance of dark septate endophytes (DSE) to various abiotic stresses, 10 DSE strains [Microsphaeropsis cytisi (Mc), Alternaria alstroemeriae (Aa), Stagonosporopsis lupini (Sl), Neocamarosporium phragmitis (Np), Paraphoma chlamydocopiosa (Pc), Macrophomina phaseolina (Mp'), Papulaspora equi (Pe), Alternaria tellustris (At), Macrophomina pseudophaseolina (Mp), and Paraphoma radicina (Pr)] were investigated under different drought and Cd stressors in vitro by using solid-plate cultures and liquid-shaker cultures in the current study. The experiments involved using varying concentrations of PEG (0, 9, 18, and 27%) and Cd2+ (0, 25, 50, and 100 mg/L) to simulate different stress conditions on DSE. Additionally, the effect of DSE (Np and At) on the growth of A. membranaceus at different field water capacities (70% and 40%) and at different CdCl2 concentrations (0, 5, 10, and 15 mg Cd/kg) in soil was studied. The results demonstrated that the colony growth rates of Aa, Np, Pc, Mp', and Mp were the first to reach the maximum diameter at a PEG concentration of 18%. Aa, Np, and At remained growth-active at 100 mg Cd/L. In addition, Aa, Np, and At were selected for drought and Cd stress tests. The results of the drought-combined-with-Cd-stress solid culture indicated that the growth rate of Np was significantly superior to that of the other strains. In the liquid culture condition, the biomasses of Np and Aa were the highest, with biomasses of 1.39 g and 1.23 g under the concentration of 18% + 25 mg Cd/L, and At had the highest biomass of 1.71 g at 18% + 50 mg Cd/L concentration, respectively. The CAT and POD activities of Np reached their peak levels at concentrations of 27% + 50 mg Cd/L and 27% + 25 mg Cd/L, respectively. Compared to the control, these levels indicated increases of 416.97% and 573.12%, respectively. Aa, Np, and At positively influenced SOD activity. The glutathione (GSH) contents of Aa, Np, and At were increased under different combined stressors of drought and Cd. The structural-equation-modeling (SEM) analysis revealed that Aa positively influenced biomass and negatively affected Cd content, while Np and At positively influenced Cd content. Under the stress of 40% field-water capacity and the synergistic stress of 40% field-water capacity and 5 mg Cd/kg soil, Np and At significantly increased root weight of A. membranaceus. This study provides guidance for the establishment of agricultural planting systems and has good development and utilization value.
Collapse
Affiliation(s)
- Duo Wang
- School of Life Sciences, Hebei University, Baoding 071002, China; (D.W.); (Y.X.); (W.Z.); (L.Y.)
| | - Yali Xie
- School of Life Sciences, Hebei University, Baoding 071002, China; (D.W.); (Y.X.); (W.Z.); (L.Y.)
| | - Wanyi Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China; (D.W.); (Y.X.); (W.Z.); (L.Y.)
| | - Li Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; (D.W.); (Y.X.); (W.Z.); (L.Y.)
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xueli He
- School of Life Sciences, Hebei University, Baoding 071002, China; (D.W.); (Y.X.); (W.Z.); (L.Y.)
| |
Collapse
|
8
|
Tan JY, Yue ZC, Li ST, Pan YY, Chu ZY, Ban YH, Xu ZY. Alleviation of Salt Stress and Changes in Glycyrrhizic Acid Accumulation by Dark Septate Endophytes in Glycyrrhiza glabra Grown under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14557-14569. [PMID: 38957088 DOI: 10.1021/acs.jafc.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
This study aimed to investigate the mechanisms by which dark septate endophytes (DSE) regulate salt tolerance and the accumulation of bioactive constituents in licorice. First, the salt stress tolerance and resynthesis with the plant effect of isolated DSE from wild licorice were tested. Second, the performance of licorice inoculated with DSE, which had the best salt-tolerant and growth-promoting effects, was examined under salt stress. All isolated DSE showed salt tolerance and promoted plant growth, withCurvularia lunata D43 being the most effective. Under salt stress, C. lunata D43 could promote growth, increase antioxidant enzyme activities, enhance glycyrrhizic acid accumulation, improve key enzyme activities in the glycyrrhizic acid synthesis pathway, and induce the expression of the key enzyme gene and salt tolerance gene of licorice. The structural equation model demonstrated that DSE alleviate the negative effects of salt stress through direct and indirect pathways. Variations in key enzyme activities, gene expression, and bioactive constituent concentration can be attributed to the effects of DSE. These results contribute to revealing the value of DSE for cultivating medicinal plants in saline soils.
Collapse
Affiliation(s)
- Jia-Yuan Tan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zheng-Chu Yue
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| | - Su-Tong Li
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| | - Yue-Yang Pan
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| | - Zhen-Ya Chu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yi-Hui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
- Weihai Research Institute of Wuhan University of Technology, Weihai 264300, China
| | - Zhou-Ying Xu
- Weihai Research Institute of Wuhan University of Technology, Weihai 264300, China
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| |
Collapse
|
9
|
Dhar SK, Kaur J, Singh GB, Chauhan A, Tamang J, Lakhara N, Asyakina L, Atuchin V, Mudgal G, Abdi G. Novel Bacillus and Prestia isolates from Dwarf century plant enhance crop yield and salinity tolerance. Sci Rep 2024; 14:14645. [PMID: 38918548 PMCID: PMC11199671 DOI: 10.1038/s41598-024-65632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Soil salinity is a major environmental stressor impacting global food production. Staple crops like wheat experience significant yield losses in saline environments. Bioprospecting for beneficial microbes associated with stress-resistant plants offers a promising strategy for sustainable agriculture. We isolated two novel endophytic bacteria, Bacillus cereus (ADJ1) and Priestia aryabhattai (ADJ6), from Agave desmettiana Jacobi. Both strains displayed potent plant growth-promoting (PGP) traits, such as producing high amounts of indole-3-acetic acid (9.46, 10.00 µgml-1), ammonia (64.67, 108.97 µmol ml-1), zinc solubilization (Index of 3.33, 4.22, respectively), ACC deaminase production and biofilm formation. ADJ6 additionally showed inorganic phosphate solubilization (PSI of 2.77), atmospheric nitrogen fixation, and hydrogen cyanide production. Wheat seeds primed with these endophytes exhibited enhanced germination, improved growth profiles, and significantly increased yields in field trials. Notably, both ADJ1 and ADJ6 tolerated high salinity (up to 1.03 M) and significantly improved wheat germination and seedling growth under saline stress, acting both independently and synergistically. This study reveals promising stress-tolerance traits within endophytic bacteria from A. desmettiana. Exploiting such under-explored plant microbiomes offers a sustainable approach to developing salt-tolerant crops, mitigating the impact of climate change-induced salinization on global food security.
Collapse
Affiliation(s)
- Sanjoy Kumar Dhar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Jaspreet Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Gajendra Bahadur Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeewan Tamang
- University Institute of Agricultural Sciences, Chandigarh University, Mohali, Punjab, 140413, India
- Khaniyabas Rural Municipality, Province 3, Dhading, Bagmati Zone, 45100, Nepal
| | - Nikita Lakhara
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Lyudmila Asyakina
- Laboratory for Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Krasnaya Street, 6, Kemerovo, Russia, 650000
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, Russia, 630090
- Research and Development Department, Kemerovo State University, Kemerovo, Russia, 650000
- Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk, Russia, 630073
- R&D Center "Advanced Electronic Technologies", Tomsk State University, Tomsk, Russia, 634034
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
- Center for Waste Management and Renewable Energy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
10
|
Wani AK, Khan Z, Sena S, Akhtar N, Alreshdi MA, Yadav KK, Alkahtani AM, Wani AW, Rahayu F, Tafakresnanto C, Latifah E, Hariyono B, Arifin Z, Eltayeb LB. Carbon nanotubes in plant dynamics: Unravelling multifaceted roles and phytotoxic implications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108628. [PMID: 38636256 DOI: 10.1016/j.plaphy.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Carbon nanotubes (CNTs) have emerged as a promising frontier in plant science owing to their unique physicochemical properties and versatile applications. CNTs enhance stress tolerance by improving water dynamics and nutrient uptake and activating defence mechanisms against abiotic and biotic stresses. They can be taken up by roots and translocated within the plant, impacting water retention, nutrient assimilation, and photosynthesis. CNTs have shown promise in modulating plant-microbe interactions, influencing symbiotic relationships and mitigating the detrimental effects of phytopathogens. CNTs have demonstrated the ability to modulate gene expression in plants, offering a powerful tool for targeted genetic modifications. The integration of CNTs as sensing elements in plants has opened new avenues for real-time monitoring of environmental conditions and early detection of stress-induced changes. In the realm of agrochemicals, CNTs have been explored for their potential as carriers for targeted delivery of nutrients, pesticides, and other bioactive compounds. CNTs have the potential to demonstrate phytotoxic effects, detrimentally influencing both the growth and developmental processes of plants. Phytotoxicity is characterized by induction of oxidative stress, impairment of cellular integrity, disruption of photosynthetic processes, perturbation of nutrient homeostasis, and alterations in gene expression. This review aims to provide a comprehensive overview of the current state of knowledge regarding the multifaceted roles of CNTs in plant physiology, emphasizing their potential applications and addressing the existing challenges in translating this knowledge into sustainable agricultural practices.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India.
| | - Zehra Khan
- Department of Biology, College of Science, Jazan University, 45142 Jazan, Saudi Arabia
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | | | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 4620044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Chendy Tafakresnanto
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Evy Latifah
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Budi Hariyono
- Research Center for Estate Crops, Research Organization for Agriculture and Food, National Research Innovation Agenc (BRIN), Bogor, 16911, Indonesia
| | - Zainal Arifin
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Sciences, Prince Sattam Bin AbdulAziz University-Al-Kharj, 11942, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Netherway T, Bengtsson J, Buegger F, Fritscher J, Oja J, Pritsch K, Hildebrand F, Krab EJ, Bahram M. Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe. Nat Commun 2024; 15:159. [PMID: 38167673 PMCID: PMC10761831 DOI: 10.1038/s41467-023-44172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Trees interact with a multitude of microbes through their roots and root symbionts such as mycorrhizal fungi and root endophytes. Here, we explore the role of fungal root symbionts as predictors of the soil and root-associated microbiomes of widespread broad-leaved trees across a European latitudinal gradient. Our results suggest that, alongside factors such as climate, soil, and vegetation properties, root colonization by ectomycorrhizal, arbuscular mycorrhizal, and dark septate endophytic fungi also shapes tree-associated microbiomes. Notably, the structure of root and soil microbiomes across our sites is more strongly and consistently associated with dark septate endophyte colonization than with mycorrhizal colonization and many abiotic factors. Root colonization by dark septate endophytes also has a consistent negative association with the relative abundance and diversity of nutrient cycling genes. Our study not only indicates that root-symbiotic interactions are an important factor structuring soil communities and functions in forest ecosystems, but also that the hitherto less studied dark septate endophytes are likely to be central players in these interactions.
Collapse
Affiliation(s)
- Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden.
| | - Jan Bengtsson
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
| | - Franz Buegger
- Research Unit for Environmental Simulation (EUS), German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Joachim Fritscher
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Jane Oja
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| | - Karin Pritsch
- Research Unit for Environmental Simulation (EUS), German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Eveline J Krab
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07, Uppsala, Sweden
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| |
Collapse
|
12
|
Bi Y, Xue Z. Dark septate endophyte inoculation enhances antioxidant activity in Astragalus membranaceus var. mongholicus under heat stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14054. [PMID: 38148191 DOI: 10.1111/ppl.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 12/28/2023]
Abstract
The influence of dark septate endophytic (DSE) on the antioxidant activity of Astragalus membranaceus var. mongholicus under heat stress was investigated. A. membranaceus plants, with or without DSE inoculation, were grown at 28°C for 8 weeks in a greenhouse and subsequently subjected to heat stress conditions (42°C) in an artificial climate chamber. DSE inoculation significantly decreased the malondialdehyde (MDA) content during the initial three days of heat stress. The activities of superoxide dismutase (SOD) and peroxidase (POD) of A. membranaceus leaves were significantly enhanced by DSE inoculation under heat stress, with SOD activities being 63-81% higher than in other treatments. The glutathione (GSH) and putrescine (Put) contents accumulated significantly on the third day under heat stress with DSE inoculation. Additionally, the contents of soluble sugars and proline (Pro) exhibited significant increases on the seventh day of heat stress and were 33-55% and 81-83% higher than in other treatments, respectively. Three-way ANOVA shows that DSE inoculation under heat stress exerted a significant impact on MDA. Multivariate linear regression and structural equality modelling (SEM) further show that the interaction among these antioxidants significantly decreased MDA content and maintained the normal function of cell membranes. In conclusion, DSE inoculation enhanced the heat tolerance of A. membranaceus by boosting its antioxidant capacity and reducing MDA production. This study highlights the potential of utilizing DSE as a strategy to enhance plant heat tolerance.
Collapse
Affiliation(s)
- Yinli Bi
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), Beijing, China
- Institute of Ecological Environment Restoration in Mine Areas of West China, Xi'an University of Science and Technology, China
| | - Zike Xue
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), Beijing, China
| |
Collapse
|
13
|
Sun X, Zhao Y, Ding G. Morphogenesis and metabolomics reveal the compatible relationship among Suillus bovinus, Phialocephala fortinii, and their co-host, Pinus massoniana. Microbiol Spectr 2023; 11:e0145323. [PMID: 37676026 PMCID: PMC10580909 DOI: 10.1128/spectrum.01453-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023] Open
Abstract
Ectomycorrhizal (ECM) fungi and dark septate endophytes (DSEs) can both form a symbiotic relationship with the same host plant. However, the interactions that occur among these two types of fungi and their co-hosts are largely unknown. Here, we investigated interactions that occur among the ECM fungus Suillus bovinus, the DSE Phialocephala fortinii, and their co-host Pinus massoniana. We used both scanning electron microscopy and optical microscopy to characterize the morphogenesis of the two symbionts and employed the ultra-high-performance liquid chromatography-tandem mass spectrometry technique to assess the effects of fungal inoculation on the root metabolome. Under pure culture conditions, no synergistic or antagonistic effects were observed between Phi. fortinii and S. bovinus. Generally, S. bovinus and Phi. fortinii can simultaneously colonize P. massoniana roots without affecting each other's symbiotic processes. S. bovinus can colonize the root locus where Phi. fortinii has already invaded but not vice versa, which may be due to the physical barrier effect of the mantle. Both fungi can significantly promote the growth of P. massoniana, and they have a synergistic effect on host N and K uptake. Metabolite accumulation patterns in roots inoculated with Phi. fortinii and/or S. bovinus were greatly altered, especially with respect to organic acids, flavonoids, lipids, and phenolic acids. S. bovinus inoculation significantly enhanced root flavonoid biosynthesis, whereas Phi. fortinii and dual-inoculation treatments mainly induced phenylpropanoid biosynthesis. These findings reveal compatible relationships among P. massoniana, S. bovinus, and Phi. fortinii, and suggest a theoretical basis for ECM fungi and DSE co-application when cultivating seedlings. IMPORTANCE The prevalence of both ectomycorrhizal fungi and dark septate endophytes in the roots of a wide spectrum of tree species is well recognized. In this study, we investigated the interactions that occur among the ECM fungus S. bovinus, the DSE Phi. fortinii, and their co-host, P. massoniana. The two fungi can simultaneously colonize P. massoniana roots without affecting each other's symbiotic processes. S. bovinus appears to be superior to Phi. fortinii in microniche competition, which may be due to the physical barrier effect of the mantle. The two fungi have different effects on root metabolite accumulation patterns. S. bovinus inoculation significantly enhanced root flavonoid biosynthesis, whereas Phi. fortinii and dual-inoculation treatments mainly induced phenylpropanoid biosynthesis. This is the first study revealing the morphological and metabolic mechanisms that contribute to the compatible relationship among ECM fungi, DSEs, and their co-host.
Collapse
Affiliation(s)
- Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, China
| | - Yanzhen Zhao
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Wani AK, Akhtar N, Naqash N, Rahayu F, Djajadi D, Chopra C, Singh R, Mulla SI, Sher F, Américo-Pinheiro JHP. Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81450-81473. [PMID: 36637649 PMCID: PMC9838310 DOI: 10.1007/s11356-023-25192-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants persisting almost everywhere in the environment. With the increase in anthropogenic activities, MP accumulation is increasing enormously in aquatic, marine, and terrestrial ecosystems. Owing to the slow degradation of plastics, MPs show an increased biomagnification probability of persistent, bioaccumulative, and toxic substances thereby creating a threat to environmental biota. Thus, remediation of MP-pollutants requires efficient strategies to circumvent the mobilization of contaminants leaching into the water, soil, and ultimately to human beings. Over the years, several microorganisms have been characterized by the potential to degrade different plastic polymers through enzymatic actions. Metagenomics (MGs) is an effective way to discover novel microbial communities and access their functional genetics for the exploration and characterization of plastic-degrading microbial consortia and enzymes. MGs in combination with metatranscriptomics and metabolomics approaches are a powerful tool to identify and select remediation-efficient microbes in situ. Advancement in bioinformatics and sequencing tools allows rapid screening, mining, and prediction of genes that are capable of polymer degradation. This review comprehensively summarizes the growing threat of microplastics around the world and highlights the role of MGs and computational biology in building effective response strategies for MP remediation.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nafiaah Naqash
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Djajadi Djajadi
- Research Center for Horticulture and Plantation, National Research Innovation Agency, Bogor, 16111, Indonesia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
15
|
Chen S, Zhang G, Liang X, Wang L, Li Z, He Y, Li B, Zhan F. A Dark Septate Endophyte Improves Cadmium Tolerance of Maize by Modifying Root Morphology and Promoting Cadmium Binding to the Cell Wall and Phosphate. J Fungi (Basel) 2023; 9:jof9050531. [PMID: 37233243 DOI: 10.3390/jof9050531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Dark septate endophytes (DSEs) can improve the performance of host plants grown in heavy metal-polluted soils, but the mechanism is still unclear. A sand culture experiment was performed to investigate the effects of a DSE strain (Exophiala pisciphila) on maize growth, root morphology, and cadmium (Cd) uptake under Cd stress at different concentrations (0, 5, 10, and 20 mg·kg-1). The results indicated that the DSE significantly improved the Cd tolerance of maize, causing increases in biomass, plant height, and root morphology (length, tips, branch, and crossing number); enhancing the Cd retention in roots with a decrease in the transfer coefficient of Cd in maize plants; and increasing the Cd proportion in the cell wall by 16.0-25.6%. In addition, DSE significantly changed the chemical forms of Cd in maize roots, resulting in decreases in the proportions of pectates and protein-integrated Cd by 15.6-32.4%, but an increase in the proportion of insoluble phosphate Cd by 33.3-83.3%. The correlation analysis revealed a significantly positive relationship between the root morphology and the proportions of insoluble phosphate Cd and Cd in the cell wall. Therefore, the DSE improved the Cd tolerance of plants both by modifying root morphology, and by promoting Cd binding to the cell walls and forming an insoluble phosphate Cd of lower activity. These results of this study provide comprehensive evidence for the mechanisms by which DSE colonization enhances Cd tolerance in maize in root morphology with Cd subcellular distribution and chemical forms.
Collapse
Affiliation(s)
- Si Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Guangqun Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
16
|
Miranda V, Silva-Castro GA, Ruiz-Lozano JM, Fracchia S, García-Romera I. Fungal Endophytes Enhance Wheat and Tomato Drought Tolerance in Terms of Plant Growth and Biochemical Parameters. J Fungi (Basel) 2023; 9:jof9030384. [PMID: 36983552 PMCID: PMC10051184 DOI: 10.3390/jof9030384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Drought is a major threat to plant growth in many parts of the world. During periods of drought, multiple aspects of plant physiology are negatively affected. For instance, water shortages induce osmotic imbalance, inhibit photosynthesis, decrease nutrient uptake, and increases the production of reactive oxygen species (ROS). In this context, it is necessary to develop sustainable strategies for crops that would help mitigate these conditions. In previous studies, endophytic Zopfiella erostrata strains were found to extensively colonize plant roots, forming a profuse melanized mycelium in the rhizosphere, which could be involved in improving water uptake and nutrient mineralization in plants. The aim of this study is to evaluate the effect of different strains of Z. erostrata on stress mitigation in wheat and tomato plants grown under water deficit conditions. General plant growth variables, as well as physiological and biochemical parameters, related to oxidative status were determined. Our data demonstrate that inoculation with both Zopfiella strains had a very significant effect on plant growth, even under water deficit conditions. However, we observed an even more pronounced impact, depending on the plant and strain involved, suggesting a certain degree of plant/strain compatibility. The biochemical aspects, the accumulation of proline, the oxidative damage to lipids, and the activity of antioxidant enzymes varied considerably depending on the endophyte and the plant evaluated.
Collapse
Affiliation(s)
- Victoria Miranda
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET, Provincia de La Rioja, UNLAR, SEGEMAR, UNCa), Entre Ríos y Mendoza s/n, Anillaco La Rioja 5301, Argentina
| | - Gloria Andrea Silva-Castro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1 Apdo. 419, E-18008 Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1 Apdo. 419, E-18008 Granada, Spain
| | - Sebastian Fracchia
- The Mycology Laboratory, PROPLAME-PRHIDEB-CONICET, Department of Biodiversity and Experimental Biology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires 1053, Argentina
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1 Apdo. 419, E-18008 Granada, Spain
| |
Collapse
|
17
|
Adedayo AA, Babalola OO. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J Fungi (Basel) 2023; 9:239. [PMID: 36836352 PMCID: PMC9966197 DOI: 10.3390/jof9020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The fungi species dwelling in the rhizosphere of crop plants, revealing functions that endeavor sustainability of the plants, are commonly referred to as 'plant-growth-promoting fungi' (PGPF). They are biotic inducers that provide benefits and carry out important functions in agricultural sustainability. The problem encountered in the agricultural system nowadays is how to meet population demand based on crop yield and protection without putting the environment and human and animal health at risk based on crop production. PGPF including Trichoderma spp., Gliocladium virens, Penicillium digitatum, Aspergillus flavus, Actinomucor elegans, Podospora bulbillosa, Arbuscular mycorrhizal fungi, etc., have proven their ecofriendly nature to ameliorate the production of crops by improving the growth of the shoots and roots of crop plants, the germination of seeds, the production of chlorophyll for photosynthesis, and the abundant production of crops. PGPF's potential mode of action is as follows: the mineralization of the major and minor elements required to support plants' growth and productivity. In addition, PGPF produce phytohormones, induced resistance, and defense-related enzymes to inhibit or eradicate the invasion of pathogenic microbes, in other words, to help the plants while encountering stress. This review portrays the potential of PGPF as an effective bioagent to facilitate and promote crop production, plant growth, resistance to disease invasion, and various abiotic stresses.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
18
|
Wani AK, Akhtar N, Singh R, Chopra C, Kakade P, Borde M, Al-Khayri JM, Suprasanna P, Zimare SB. Prospects of advanced metagenomics and meta-omics in the investigation of phytomicrobiome to forecast beneficial and pathogenic response. Mol Biol Rep 2022; 49:12165-12179. [PMID: 36169892 DOI: 10.1007/s11033-022-07936-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022]
Abstract
Microorganisms dwell in diverse plant niches as non-axenic biotic components that are beneficial as well pathogenic for the host. They improve nutrients-uptake, stress tolerance, phytohormone synthesis, and strengthening the defense system through phyllosphere, rhizosphere, and endosphere. The negative consequences of the microbial communities are largely in the form of diseases characterized by certain symptoms such as gall, cankers, rots etc. Uncultivable and unspecified nature of different phytomicrobiomes communities is a challenge in the management of plant disease, a leading cause for the loss of the plant products. Metagenomics has opened a new gateway for the exploration of microorganisms that are hitherto unknown, enables investigation of the functional aspect of microbial gene products through metatranscriptomics and metabolomics. Metagenomics offers advantages of characterizing previously unknown microorganisms from extreme environments like hot springs, glaciers, deep seas, animal gut etc. besides bioprospecting gene products such as Taq polymerase, bor encoded indolotryptoline, hydrolases, and polyketides. This review provides a detailed account of the phytomicrobiome networks and highlights the importance and limitations of metagenomics and other meta-omics approaches for the understanding of plant microbial diversity with special focus on the disease control and its management.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Prachi Kakade
- Department of Botany, Amdar Shashikant Shinde Mahavidyalay, 415012, Medha, Satara, India
| | - Mahesh Borde
- Department of Botany, Savitribai Phule Pune University, 411007, Pune, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, 31982, Al- Ahsa, Saudi Arabia
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, 400094, Mumbai, India
| | - Saurabha B Zimare
- Department of Botany, Amdar Shashikant Shinde Mahavidyalay, 415012, Medha, Satara, India. .,Department of Botany, D. P. Bhosale College, Koregaon, , Satara, 415501, Maharashtra, India.
| |
Collapse
|
19
|
Sharma VK, Parmar S, Tang W, Hu H, White JF, Li H. Effects of fungal seed endophyte FXZ2 on Dysphania ambrosioides Zn/Cd tolerance and accumulation. Front Microbiol 2022; 13:995830. [PMID: 36212824 PMCID: PMC9532605 DOI: 10.3389/fmicb.2022.995830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Metal-induced oxidative stress in contaminated soils affects plant growth. In the present study, we evaluated the role of seed endophyte FXZ2 on Dysphania ambrosioides Zn/Cd tolerance and accumulation. A series of pot experiments were conducted under variable Zn (500, 1,000, and 1,500 mg kg–1) and Cd (5, 15, 30, and 60 mg kg–1). The results demonstrated that FXZ2-inoculation significantly enhanced the growth of D. ambrosioides and improved its chlorophyll and GSH content. In the rhizosphere, FXZ2 inoculation changed the chemical speciation of Zn/Cd and thus affected their uptake and accumulation in host plants. The exchangeable and carbonate-bound fractions (F1 + F2) of Zn decreased in the rhizosphere of FXZ2-inoculated plants (E+) as compared to non-inoculated plants (E-) under Zn stress (500 and 1,000 mg kg–1), correspondingly, Zn in the shoots of E+ decreased (p < 0.05). However, at Cd stress (30 and 60 mg kg–1), the F1 + F2 fractions of Cd in E+ rhizospheric soils increased; subsequently, Cd in the shoots of E+ increased (p < 0.05). FXZ2 could exogenously secrete phytohormones IAA, GA, and JA. The study suggests that seed endophyte FXZ2 can increase Zn/Cd tolerance of host plant by altering Zn/Cd speciation in rhizospheric soils, as well as exogenous production of phytohormones to promote growth, lowering oxidative damage while enhancing antioxidant properties. For Zn/Cd accumulation, it has opposite effects: Zn uptake in E+ plants was significantly (p < 0.05) decreased, while Cd accumulation in E+ plants was significantly (p < 0.05) increased. Thus, FXZ2 has excellent application prospects in Cd phytoextraction and decreasing Zn toxicity in agriculturally important crops.
Collapse
Affiliation(s)
- Vijay K. Sharma
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Shobhika Parmar
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wenting Tang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Haiyan Li,
| |
Collapse
|
20
|
Shaffique S, Khan MA, Wani SH, Pande A, Imran M, Kang SM, Rahim W, Khan SA, Bhatta D, Kwon EH, Lee IJ. A Review on the Role of Endophytes and Plant Growth Promoting Rhizobacteria in Mitigating Heat Stress in Plants. Microorganisms 2022; 10:microorganisms10071286. [PMID: 35889005 PMCID: PMC9319882 DOI: 10.3390/microorganisms10071286] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Among abiotic stresses, heat stress is described as one of the major limiting factors of crop growth worldwide, as high temperatures elicit a series of physiological, molecular, and biochemical cascade events that ultimately result in reduced crop yield. There is growing interest among researchers in the use of beneficial microorganisms. Intricate and highly complex interactions between plants and microbes result in the alleviation of heat stress. Plant–microbe interactions are mediated by the production of phytohormones, siderophores, gene expression, osmolytes, and volatile compounds in plants. Their interaction improves antioxidant activity and accumulation of compatible osmolytes such as proline, glycine betaine, soluble sugar, and trehalose, and enriches the nutrient status of stressed plants. Therefore, this review aims to discuss the heat response of plants and to understand the mechanisms of microbe-mediated stress alleviation on a physio-molecular basis. This review indicates that microbes have a great potential to enhance the protection of plants from heat stress and enhance plant growth and yield. Owing to the metabolic diversity of microorganisms, they can be useful in mitigating heat stress in crop plants. In this regard, microorganisms do not present new threats to ecological systems. Overall, it is expected that continued research on microbe-mediated heat stress tolerance in plants will enable this technology to be used as an ecofriendly tool for sustainable agronomy.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Muhammad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops Khudwani, Shere-e-Kashmir University of Agriculture Sciences and Technology Srinagar, Anantnag 190025, Jammu and Kashmir, India;
| | - Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41944, Korea; (A.P.); (W.R.)
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Waqas Rahim
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41944, Korea; (A.P.); (W.R.)
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 45000, Pakistan;
| | - Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
- Correspondence: ; Tel.: +82-53-950-5708
| |
Collapse
|