1
|
Chen H, Hu P, Wang Y, Liu H, Zheng J, Huang Z, Zhang X, Liu Y, Zhou T. From quorum sensing inhibition to antimicrobial defense: The dual role of eugenol-gold nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2025; 247:114415. [PMID: 39622152 DOI: 10.1016/j.colsurfb.2024.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
To address the pressing challenge of antibiotic resistance, particularly the robust defense mechanisms of Pseudomonas aeruginosa (P. aeruginosa) against conventional antibiotics, this study employs nanotechnology to enhance antimicrobial efficacy while ensuring good biocompatibility with the host. In this study, gold nanoparticles were chemically decorated with eugenol, a phenol-rich natural compound, using a one-pot synthesis method. The successful synthesis and functionalization of eugenol-decorated gold nanoparticles (Eugenol_Au NPs) were validated by comprehensive physicochemical analyses, demonstrating their stability and biocompatibility. These nanoparticles exhibited potent antimicrobial activity against both planktonic and biofilm-embedded carbapenem-resistant P. aeruginosa strains. Eugenol_Au NPs disrupted the bacterial quorum sensing system and stimulated intracellular reactive oxygen species production, which enhance their antibacterial effects. This dual mechanism of action has promising clinical implications for the treatment of infections associated with antibiotic-resistant P. aeruginosa. In vivo assessments in a murine peritoneal infection model showed that Eugenol_Au NPs significantly reduced bacterial loads and mitigated inflammatory responses, thereby improving survival rates. The study highlights the potential of Eugenol_Au NPs as an alternative strategy for refractory infections caused by carbapenem-resistant P. aeruginosa, and underscores the feasibility and promise of further clinical research and development of new therapeutic approaches targeting this resistant pathogen.
Collapse
Affiliation(s)
- Huale Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panjie Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yaran Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Junyuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Taslimi Eshkalak M, Mazloumi Jourkouyeh E, Faezi Ghasemi M, Zamani H, Zahmatkesh H, Rasti B. ZnO-Rutin nanostructure as a potent antibiofilm agent against Pseudomonasaeruginosa. Microb Pathog 2025; 198:107156. [PMID: 39608510 DOI: 10.1016/j.micpath.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Pseudomonas aeruginosa is a common human pathogen that is resistant to multiple antibiotics due to its ability to form biofilms. Developing novel nanoformulations capable of inhibiting and removing biofilms offers a promising solution for controlling biofilm-related infections. In this study, we investigated the anti-biofilm activity of rutin-conjugated ZnO nanoparticles (ZnO-Rutin NPs) in pathogenic strains of P. aeruginosa. The synthesized ZnO-Rutin NPs had amorphous shapes with sizes ranging from 14 to 100 nm. The broth microdilution assay revealed that ZnO-Rutin NPs, with an MIC value of 2 mg/mL, exhibit greater antimicrobial activity than ZnO NPs and rutin alone. Based on crystal violet staining, the biofilm inhibition rate by ½ MIC of the conjugated nanoparticles was recorded at above 90 %. The significant reduction in exopolysaccharide (62.75-66.37 %) and alginate (38.3-57.61 %) levels, as well as the formation of thin biofilms in the ZnO-Rutin NP-treated group, confirmed the anti-biofilm potential of these nanoparticles. Additionally, a significant decrease in the metabolic activity and viable cells of mature biofilms was observed after exposure to the conjugated nanoparticles. Furthermore, ZnO-Rutin NPs considerably attenuated the expression of the Las-Rhl quorum-sensing transcriptional regulator genes (lasR and rhlR) in P. aeruginosa by 0.39-0.40 and 0.25-0.42 folds, respectively. This work demonstrated that ZnO-Rutin NPs are remarkably capable of inhibiting the initial stage of biofilm formation and eradicating mature biofilms, suggesting they could be a useful agent for treating P. aeruginosa biofilm-related infections.
Collapse
Affiliation(s)
- Mahya Taslimi Eshkalak
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Edris Mazloumi Jourkouyeh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Faezi Ghasemi
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | | | - Hossein Zahmatkesh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| |
Collapse
|
3
|
Mohamed HEA, Khalil AT, Hkiri K, Ayaz M, Usman A, Sadiq A, Ullah F, Khan MA, Ullah I, Maaza M. Potential nanomedicinal applications and physicochemical nature of Hyphaene thebaica-reduced nano-samaria. Microsc Res Tech 2024; 87:2829-2841. [PMID: 39007412 DOI: 10.1002/jemt.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/03/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Herein we described the biofabrication of samarium oxide nanoparticles (HT-Sm2O3 NPs) by applying the aqueous fruit extract of Hyphaene thebaica was utilized as an eco-friendly chelating agent. The prepared NPs were subjected to various physicochemical properties and potential in biomedical applications. X-ray Diffraction (XRD) pattern revealed sharp peaks that corroborated with the Joint Committee on Powder Diffraction Standards (JCPDS) card no. 00-042-1464. Crystallite size obtained from Debye-Scherrer approximation and Williamson-Hall (W-H) plot was 28.73 and 69.3 nm, respectively. Optical bandgap was calculated by employing Kubelka-Munk (K-M) function and was found to be ~4.58 eV. Raman shift was observed at 121, 351, 424-, and 561 cm-1. Photoluminescence (PL) spectra revealed two major peaks positioned at 360 and 540 nm. The high-resolution transmission electron microscopy (HR-TEM) analysis of HT-Sm2O3 nanoparticles (NPs) showed that they predominantly have spherical to cuboidal shapes. Additionally, the selected area electron diffraction (SAED) pattern presented spotty rings, indicating a high level of crystallinity in these NPs. The potential nanomedicine applications were studied using diverse bioassays using different treatments. The antioxidant activity demonstrated 45.71% ± 1.13% inhibition at 1000 μg/mL. Brine shrimp lethality assay revealed the highest cytotoxicity of 46.67% ± 3.33% at 1000 μg/mL and LC50 value of 1081 μg/mL. HT-Sm2O3 NPs exhibited inhibition of angiogenesis (20.41% ± 1.18%) at of 1000 μg/mL. MTT assay results indicated that HT-Sm2O3 NPs exhibit inhibitory effects on cell lines. Specifically, these NPs showed an IC50 value of 104.6 μg/mL against 3T3 cells. Against MCF-7 cells, the NPs demonstrated an IC50 value of 413.25 μg/mL. Additionally, in the inhibition of acetylcholinesterase (AChE), the newly synthesized NPs showed an IC50 value of 320 μg/mL. The antidiabetic assessment through α-glucosidase and α-amylase inhibition assays revealed, an IC50 value of 380 μg/mL for α-glucosidase and 952 μg/mL for α-amylase was calculated. Overall, our study suggested that the Sm2O3 NPs possess moderate anticancer, cholinesterase inhibition, and antidiabetic potential, however, needs further assessment. RESEARCH HIGHLIGHTS: In this work, nano-samaria is synthesized using an eco-friendly and green approach. The nanoparticles were characterized using techniques such as Raman, HR-TEM, FTIR, DRS, XRD, and so on, and the applications were studied using multiple in vitro bioassays for Diabetes, Alzheimer, and Cancer. The nano-samaria revealed good potential for potential biomedical applications.
Collapse
Affiliation(s)
- Hamza Elsayed Ahmad Mohamed
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Khaoula Hkiri
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Assad Usman
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Arif Khan
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Ikram Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| |
Collapse
|
4
|
Mayattu K, Rajwade J, Ghormade V. Development of erythromycin loaded PLGA nanoparticles for improved drug efficacy and sustained release against bacterial infections and biofilm formation. Microb Pathog 2024; 197:107083. [PMID: 39454804 DOI: 10.1016/j.micpath.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Bacterial infections are a common cause of sepsis, often leading to high patient mortality. Such infections are challenging to treat due to bacterial resistance to many existing drugs. Erythromycin (Ery) is a macrolide antibiotic used against bacterial infections with reported resistance. Recently, synthetic poly-lactide co-glycolic acid (PLGA) polymer nanoparticles (NPs) have displayed improved drug delivery characteristics and biocompatibility. In this study, PLGA-Ery NPs were synthesized by the o/w emulsion diffusion method, having a particle size of 159 ± 23 nm and displayed 71.89 % of encapsulation efficiency. The PLGA-Ery NPs showed 1.5, 2.1 and 1.5-fold improved MIC and antibacterial efficacy against E. coli, S. aureus, and P. aeruginosa, respectively than the pure drug. As illustrated by scanning electron microscopy, PLGA-Ery NPs caused damage to the bacterial cell walls. Furthermore, a surface coating with PLGA-Ery NPs on a glass surface showed efficient inhibition (>90 %) of the biofilm formation by P. aeruginosa, as determined by fluorescence microscopy and MTT assay. This study demonstrates that PLGA-Ery NPs can increase the efficiency of erythromycin and can suppress the growth and biofilm formation of P. aeruginosa. Such polymeric nanoparticles drug nanoformulations have potential as an antimicrobial and as a surface coating for medical devices.
Collapse
Affiliation(s)
- Kamal Mayattu
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411004, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411004, India.
| |
Collapse
|
5
|
Esnaashari F, Zahmatkesh H. Antivirulence activities of Rutin-loaded chitosan nanoparticles against pathogenic Staphylococcus aureus. BMC Microbiol 2024; 24:328. [PMID: 39244527 PMCID: PMC11380343 DOI: 10.1186/s12866-024-03446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is an infectious bacterium that is frequently found in healthcare settings and the community. This study aimed to prepare rutin-loaded chitosan nanoparticles (Rut-CS NPs) and assess their antibacterial activity against pathogenic strains of S. aureus. RESULTS The synthesized Rut-CS NPs exhibited an amorphous morphology with a size ranging from 160 to 240 nm and a zeta potential of 37.3 mV. Rut-CS NPs demonstrated significant antibacterial activity against S. aureus strains. Following exposure to Rut-CS NPs, the production of staphyloxanthin pigment decreased by 43.31-89.63%, leading to increased susceptibility of S. aureus to hydrogen peroxide. Additionally, visual inspection of cell morphology indicated changes in membrane integrity and permeability upon Rut-CS NPs exposure, leading to a substantial increase (107.07-191.08%) in cytoplasmic DNA leakage in the strains. Furthermore, ½ MIC of Rut-CS NPs effectively inhibited the biofilm formation (22.5-37.5%) and hemolytic activity (69-82.59%) in the S. aureus strains. CONCLUSIONS Our study showcases that Rut-CS NPs can serve as a novel treatment agent to combat S. aureus infections by altering cell morphology and inhibiting virulence factors of S. aureus.
Collapse
Affiliation(s)
- Fatemeh Esnaashari
- Department of Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Hossein Zahmatkesh
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| |
Collapse
|
6
|
Alidoust FA, Rasti B, Zamani H, Mirpour M, Mirzaie A. Rutin-coated zinc oxide nanoparticles: a promising antivirulence formulation against pathogenic bacteria. World J Microbiol Biotechnol 2024; 40:184. [PMID: 38683406 DOI: 10.1007/s11274-024-03984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.
Collapse
Affiliation(s)
- Fatemeh Azizi Alidoust
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran.
| | | | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
7
|
Alshahrani AA, Alqarni LS, Alghamdi MD, Alotaibi NF, Moustafa SM, Nassar AM. Phytosynthesis via wasted onion peel extract of samarium oxide/silver core/shell nanoparticles for excellent inhibition of microbes. Heliyon 2024; 10:e24815. [PMID: 38322933 PMCID: PMC10845252 DOI: 10.1016/j.heliyon.2024.e24815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The aqueous onion peel extract (OPE) was used to synthesize silver nanoparticles (Ag-onion), samarium oxide nanoparticles (Sm2O3-onion), and silver/samarium oxide core/shell nanoparticles (Ag@Sm2O3-onion). The produced nanoparticles were characterized by thermal gravimetric analysis (TGA), infrared spectra (FT-IR), absorption spectra (UV-Vis), energy band gap, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), zeta potential, and transmission electron microscopy (TEM). OPE and NPs were tested for the disinfection of some water microbes. XRD analysis exhibited an amorphous structure of samarium oxide in both Sm2O3-onion and Ag@ Sm2O3-onion. The isolated bacteria from the water sample were Bacillus subtilis (OQ073500) and Escherichia coli (MW534699), while the isolated fungi were Alternaria brassicae (MZ266540), Aspergillus flavus (MT550030), Aspergillus penicillioides (MW957971), Pythium ultimum (MW830915), Verticillium dahlia (MW830379), Fusarium acuminatum (MZ266538), Candida albicans (MW534712), and Candida parapsilosis (MW960416). High levels of antimicrobial activity were seen in both the nanoparticles and the aqueous onion peel extract. Based on experimental results, Ag@Sm2O3 demonstrated the highest activity as an effective disinfectant, indicating the effectiveness of the modification process.
Collapse
Affiliation(s)
- Aisha A. Alshahrani
- Department of Chemistry, Faculty of Science, Al‐Baha University, P.O. Box 1988, Al‐Baha, 65799, Saudi Arabia
| | - Laila S. Alqarni
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Maha D. Alghamdi
- Department of Chemistry, Faculty of Science, Al‐Baha University, P.O. Box 1988, Al‐Baha, 65799, Saudi Arabia
| | - Nasser F. Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Amr M. Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
8
|
Mirpour M, Zahmatkesh H. Ketoprofen attenuates Las/Rhl quorum-sensing (QS) systems of Pseudomonas aeruginosa: molecular and docking studies. Mol Biol Rep 2024; 51:133. [PMID: 38236445 DOI: 10.1007/s11033-023-09071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Quorum sensing (QS) is the leading cause of persistent infections and recalcitrance to antibiotic treatment of Pseudomonas aeruginosa. Hence, QS inhibitors are promising agents for the potential treatment of P. aeruginosa infections. METHODS AND RESULTS Herein, the reducing effect of ketoprofen on virulence factors production including protease, hemolysin, pyocyanin, hydrogen cyanide, biofilm, and motility of P. aeruginosa strains was investigated. Furthermore, the quorum quenching activity of ketoprofen at the molecular level was examined by real-time PCR assessment. Our results showed that ketoprofen significantly attenuates virulence factors and biofilm formation in P. aeruginosa strains. Moreover, ketoprofen down-regulated the expression of lasI, lasR, rhlI, and rhlR genes, by 35-47, 22-48, 34-67, and 43-56%, respectively. As well, molecular docking simulation showed a high binding affinity of ketoprofen with QS regulatory proteins. CONCLUSIONS Consequently, this study confirmed the quorum quenching activity of ketoprofen, which could be employed as a useful agent for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Mirsasan Mirpour
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| | - Hossein Zahmatkesh
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| |
Collapse
|
9
|
Scoffone VC, Barbieri G, Irudal S, Trespidi G, Buroni S. New Antimicrobial Strategies to Treat Multi-Drug Resistant Infections Caused by Gram-Negatives in Cystic Fibrosis. Antibiotics (Basel) 2024; 13:71. [PMID: 38247630 PMCID: PMC10812592 DOI: 10.3390/antibiotics13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
People with cystic fibrosis (CF) suffer from recurrent bacterial infections which induce inflammation, lung tissue damage and failure of the respiratory system. Prolonged exposure to combinatorial antibiotic therapies triggers the appearance of multi-drug resistant (MDR) bacteria. The development of alternative antimicrobial strategies may provide a way to mitigate antimicrobial resistance. Here we discuss different alternative approaches to the use of classic antibiotics: anti-virulence and anti-biofilm compounds which exert a low selective pressure; phage therapies that represent an alternative strategy with a high therapeutic potential; new methods helping antibiotics activity such as adjuvants; and antimicrobial peptides and nanoparticle formulations. Their mechanisms and in vitro and in vivo efficacy are described, in order to figure out a complete landscape of new alternative approaches to fight MDR Gram-negative CF pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.B.); (S.I.); (G.T.)
| |
Collapse
|
10
|
Peng B, Li Y, Yin J, Ding W, Fazuo W, Xiao Z, Yin H. A bibliometric analysis on discovering anti-quorum sensing agents against clinically relevant pathogens: current status, development, and future directions. Front Microbiol 2023; 14:1297843. [PMID: 38098670 PMCID: PMC10720721 DOI: 10.3389/fmicb.2023.1297843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Background Quorum sensing is bacteria's ability to communicate and regulate their behavior based on population density. Anti-quorum sensing agents (anti-QSA) is promising strategy to treat resistant infections, as well as reduce selective pressure that leads to antibiotic resistance of clinically relevant pathogens. This study analyzes the output, hotspots, and trends of research in the field of anti-QSA against clinically relevant pathogens. Methods The literature on anti-QSA from the Web of Science Core Collection database was retrieved and analyzed. Tools such as CiteSpace and Alluvial Generator were used to visualize and interpret the data. Results From 1998 to 2023, the number of publications related to anti-QAS research increased rapidly, with a total of 1,743 articles and reviews published in 558 journals. The United States was the largest contributor and the most influential country, with an H-index of 88, higher than other countries. Williams was the most productive author, and Hoiby N was the most cited author. Frontiers in Microbiology was the most prolific and the most cited journal. Burst detection indicated that the main frontier disciplines shifted from MICROBIOLOGY, CLINICAL, MOLECULAR BIOLOGY, and other biomedicine-related fields to FOOD, MATERIALS, NATURAL PRODUCTS, and MULTIDISCIPLINARY. In the whole research history, the strongest burst keyword was cystic-fibrosis patients, and the strongest burst reference was Lee and Zhang (2015). In the latest period (burst until 2023), the strongest burst keyword was silver nanoparticle, and the strongest burst reference was Whiteley et al. (2017). The co-citation network revealed that the most important interest and research direction was anti-biofilm/anti-virulence drug development, and timeline analysis suggested that this direction is also the most active. The key concepts alluvial flow visualization revealed seven terms with the longest time span and lasting until now, namely Escherichia coli, virulence, Pseudomonas aeruginosa, virulence factor, bacterial biofilm, gene expression, quorum sensing. Comprehensive analysis shows that nanomaterials, marine natural products, and artificial intelligence (AI) may become hotspots in the future. Conclusion This bibliometric study reveals the current status and trends of anti-QSA research and may assist researchers in identifying hot topics and exploring new research directions.
Collapse
Affiliation(s)
- Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiajia Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wang Fazuo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
11
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Esnaashari F, Rostamnejad D, Zahmatkesh H, Zamani H. In vitro and in silico assessment of anti-quorum sensing activity of Naproxen against Pseudomonas aeruginosa. World J Microbiol Biotechnol 2023; 39:244. [PMID: 37407806 DOI: 10.1007/s11274-023-03690-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Serious infections caused by Pseudomonas aeruginosa are usually related to quorum sensing (QS)-dependent virulence factors. Hence, QS inhibition is a promising approach to overcoming P. aeruginosa infections. This study aimed to investigate the effect of naproxen on biofilm formation and QS-related virulence traits of P. aeruginosa. Furthermore, the anti-QS potential of naproxen was evaluated using real-time PCR and molecular docking analysis. Our findings supported the anti-QS activity of naproxen, as evidenced by down-regulation of the lasI and rhlI genes expression as well as the attenuation of bacterial protease, hemolysin, pyocyanin, biofilm, and motility. Additionally, the high binding affinity of naproxen with QS regulatory proteins was determined in the molecular docking simulation. Altogether, these findings suggest that naproxen has a promising potential in inhibiting QS-associated traits of P. aeruginosa.
Collapse
Affiliation(s)
- Fatemeh Esnaashari
- Department of Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Dorna Rostamnejad
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Hossein Zahmatkesh
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | | |
Collapse
|
13
|
Wang Y, Zhang L, Yuan X, Wang D. Treatment with paeoniflorin increases lifespan of Pseudomonas aeruginosa infected Caenorhabditis elegans by inhibiting bacterial accumulation in intestinal lumen and biofilm formation. Front Pharmacol 2023; 14:1114219. [PMID: 37050896 PMCID: PMC10083309 DOI: 10.3389/fphar.2023.1114219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Paeoniflorin is one of the important components in Paeoniaceae plants. In this study, we used Caenorhabditis elegans as a model host and Pseudomonas aeruginosa as a bacterial pathogen to investigate the possible role of paeoniflorin treatment against P. aeruginosa infection in the host and the underlying mechanisms. Posttreatment with 1.25–10 mg/L paeoniflorin could significantly increase the lifespan of P. aeruginosa infected nematodes. After the infection, the P. aeruginosa colony-forming unit (CFU) and P. aeruginosa accumulation in intestinal lumen were also obviously reduced by 1.25–10 mg/L paeoniflorin treatment. The beneficial effects of paeoniflorin treatment in increasing lifespan in P. aeruginosa infected nematodes and in reducing P. aeruginosa accumulation in intestinal lumen could be inhibited by RNAi of pmk-1, egl-1, and bar-1. In addition, paeoniflorin treatment suppressed the inhibition in expressions of pmk-1, egl-1, and bar-1 caused by P. aeruginosa infection in nematodes, suggesting that paeoniflorin could increase lifespan of P. aeruginosa infected nematode by activating PMK-1, EGL-1, and BAR-1. Moreover, although treatment with 1.25–10 mg/L paeoniflorin did not show obvious anti-P. aeruginosa activity, the P. aeruginosa biofilm formation and expressions of related virulence genes (pelA, pelB, phzA, lasB, lasR, rhlA, and rhlC) were significantly inhibited by paeoniflorin treatment. Treatment with 1.25–10 mg/L paeoniflorin could further decrease the levels of related virulence factors of pyocyanin, elastase, and rhamnolipid. In addition, 2.5–10 mg/L paeoniflorin treatment could inhibit the swimming, swarming, and twitching motility of P. aeruginosa, and treatment with 2.5–10 mg/L paeoniflorin reduced the cyclic-di-GMP (c-di-GMP) level. Therefore, paeoniflorin treatment has the potential to extend lifespan of P. aeruginosa infected hosts by reducing bacterial accumulation in intestinal lumen and inhibiting bacterial biofilm formation.
Collapse
|
14
|
Cabello Mendez JA, Arguelles Rojas A, Pérez Bueno JDJ, Meas Vong Y. Study of the anticorrosive behavior of samarium as a corrosion inhibitor in multilayer systems for aluminum alloy. Sci Rep 2023; 13:3149. [PMID: 36823171 PMCID: PMC9950055 DOI: 10.1038/s41598-023-30193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
This study shows a multilayer system based on samarium compounds as a corrosion inhibitor and a continuous SiO2 layer by atmospheric pressure plasma jet (APPJ) as a protective barrier for aluminim alloy AA3003. One of the main advantages of this new coating is that it does not require vacuum chambers, which makes it easy to incorporate into production lines for automotive and aeronautical components, etc. The deposit of samarium corrosion inhibitor was carried out by two methods for comparison, the immersion method and a novel method to deposit corrosion inhibitor by APPJ. The multilayer system generated was homogeneous, continuous, adherent, and dense. The electrochemical behavior shows that the samarium compound was completely oxidized on coatings by the immersion method and favors corrosion. The APPJ deposition method shows a protective behavior against corrosion by both samarium compounds and silica depositions. XPS analyses show that the amount of Sm(OH)3 increases by the APPJ method compared with the immersion method since the spectrum of O1s is mainly controlled by OH. It was determined that the best processing times for the electrochemical study of the multilayer system were 40 min for the immersion method and 30 s for the APPJ method for the layer of corrosion inhibitor. In the case of the SiO2 barrier layer by APPJ, the best time was 60 s of exposure to the plasma jet and this coating could reduce the corrosion of AA3003 by 31.42%.
Collapse
Affiliation(s)
- José Antonio Cabello Mendez
- grid.466577.10000 0004 0369 8619Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, C.P. 76703 Querétaro, Mexico
| | - Ailed Arguelles Rojas
- grid.466577.10000 0004 0369 8619Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, C.P. 76703 Querétaro, Mexico ,Universidad Tecnológica del Centro de Veracruz, Av. Universidad 350, 94910 Cuitláhuac, Veracruz Mexico
| | - José de Jesús Pérez Bueno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, C.P. 76703, Querétaro, Mexico.
| | - Yunny Meas Vong
- grid.466577.10000 0004 0369 8619Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, C.P. 76703 Querétaro, Mexico
| |
Collapse
|
15
|
The two faces of pyocyanin - why and how to steer its production? World J Microbiol Biotechnol 2023; 39:103. [PMID: 36864230 PMCID: PMC9981528 DOI: 10.1007/s11274-023-03548-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
The ambiguous nature of pyocyanin was noted quite early after its discovery. This substance is a recognized Pseudomonas aeruginosa virulence factor that causes problems in cystic fibrosis, wound healing, and microbiologically induced corrosion. However, it can also be a potent chemical with potential use in a wide variety of technologies and applications, e.g. green energy production in microbial fuel cells, biocontrol in agriculture, therapy in medicine, or environmental protection. In this mini-review, we shortly describe the properties of pyocyanin, its role in the physiology of Pseudomonas and show the ever-growing interest in it. We also summarize the possible ways of modulating pyocyanin production. We underline different approaches of the researchers that aim either at lowering or increasing pyocyanin production by using different culturing methods, chemical additives, physical factors (e.g. electromagnetic field), or genetic engineering techniques. The review aims to present the ambiguous character of pyocyanin, underline its potential, and signalize the possible further research directions.
Collapse
|