1
|
Nguyen DT, Johir MAH, Mahlia TMI, Silitonga AS, Zhang X, Liu Q, Nghiem LD. Microalgae-derived biolubricants: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176759. [PMID: 39393688 DOI: 10.1016/j.scitotenv.2024.176759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Lubricants are indispensable in the modern economy for controlling friction and wear across many industries. Traditional lubricants are derived from petroleum crude and can cause significant ecological impact if released into the environment. Microalgae have emerged as a potential alternative to petroleum crude for producing renewable and environmentally friendly biolubricants. This review systematically assesses recent developments in microalgal-based biolubricant production, including tribological performance, microalgae selection, cultivation, harvesting, lipid and polysaccharide extraction and conversion to biolubricants, and market development. Compared to petroleum-based lubricants in terms of tribological properties, biolubricants are compatible with most emerging applications, such as electric vehicles and wind turbines. Nevertheless, they are less thermally and chemically stable, thus, may not be suitable for some traditional applications such as internal combustion engines. Literature data corroborated in this study reveals an urgent need for further research to scale up microalgae production and lower the cost of biomass harvesting. While technologies for converting microalgae-derived lipids to biolubricants appear to be well established, additional work is necessary to also utilize polysaccharides as another key ingredient for producing biolubricants, especially for low-temperature applications. Extraction methods are well established but further research is also needed to reduce the ecological impact, especially to utilize green solvents and reduce solvent consumption. Additionally, future research should delve into the use of nanoparticles as effective additives to obtain microalgae-based biolubricants with superior properties. Finally, it is essential to standardize the labeling system of biolubricants to establish a global market.
Collapse
Affiliation(s)
- Duong T Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Md Abu Hasan Johir
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - A S Silitonga
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Xiaolei Zhang
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
2
|
Cherni O, Carballares D, Siar EH, Abellanas-Perez P, de Andrades D, de Moraes Polizeli MDLT, Rocha-Martin J, Bahri S, Fernandez-Lafuente R. Tuning almond lipase features by the buffer used during immobilization: The apparent biocatalysts stability depends on the immobilization and inactivation buffers and the substrate utilized. J Biotechnol 2024; 391:72-80. [PMID: 38876311 DOI: 10.1016/j.jbiotec.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The lipase from Prunus dulcis almonds was inactivated under different conditions. At pH 5 and 9, enzyme stability remained similar under the different studied buffers. However, when the inactivation was performed at pH 7, there were some clear differences on enzyme stability depending on the buffer used. The enzyme was more stable in Gly than when Tris was employed for inactivation. Then, the enzyme was immobilized on methacrylate beads coated with octadecyl groups at pH 7 in the presence of Gly, Tris, phosphate and HEPES. Its activity was assayed versus triacetin and S-methyl mandelate. The biocatalyst prepared in phosphate was more active versus S-methyl mandelate, while the other ones were more active versus triacetin. The immobilized enzyme stability at pH 7 depends on the buffer used for enzyme immobilization. The buffer used in the inactivation and the substrate used determined the activity. For example, glycine was the buffer that promoted the lowest or the highest stabilities depending on the substrate used to quantify the activities.
Collapse
Affiliation(s)
- Oumaima Cherni
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain
| | - El Hocine Siar
- Agri-food Engineering Laboratory (GENIAAL), Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain
| | - Sellema Bahri
- LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia.
| | | |
Collapse
|
3
|
Miranda FC, Oliveira KSGC, Tardioli PW, Fernandez-Lafuente R, Guimarães JR. Insights on the role of blocking agent on the properties of the lipase from Thermomyces lanuginosus immobilized on heterofunctional support for hydroesterification reactions. Int J Biol Macromol 2024; 275:133555. [PMID: 38960240 DOI: 10.1016/j.ijbiomac.2024.133555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Here, we report a study of the effect of the blocking agent on the properties of the lipase from Thermomyces lanuginosus (TLL) immobilized on a heterofunctional support (Purolite C18-ethylnediamina (EDA)- vinyl sulfone (VS)-TLL-blocking agent) in different reactions. The performance of the biocatalysts was compared to those immobilized on standard hydrophobic support (Purolite C18-TLL) and the commercial one (TLL-IM). The nature of the blocking agent (Cys, Gly and Asp) altered the enzyme features. TLL-IM always gave a comparatively worse performance, with its specificity for the oil being very different to the Purolite biocatalysts. Under optimized conditions, Purolite C18-TLL yielded 97 % of hydrolysis conversion after 4 h using a water/waste cooking soybean oil (WCSO) mass ratio of 4.3, biocatalyst load of 6.5 wt% and a temperature of 44.2 °C (without buffer or emulsification agent). In esterification reactions of the purified free fatty acids (FFAs) obtained from WCSO, the best TLL biocatalysts depended on the utilized alcohol: linear amyl alcohol was preferred by Purolite C18-TLL and Purolite C18-EDA-VS-TLL-Gly, while higher activity was achieved utilizing isoamyl alcohol as nucleophile by Purolite C18-EDA-VS-TLL-Cys, Purolite C18-EDA-VS-TLL-Asp and IM-TLL as catalysts. All the results indicate the influence of the blocking step on the final biocatalyst features.
Collapse
Affiliation(s)
- Felipe Cardoso Miranda
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, Minas Gerais 37500-903, Brazil
| | | | - Paulo Waldir Tardioli
- Department of Chemical Engineering, Federal Institute of Education, Science and Technology of the South of Minas Gerais, Av. Maria da Conceição Santos, 900, 37560-260 Pouso Alegre, Minas Gerais, Brazil
| | - Roberto Fernandez-Lafuente
- Department of biocatalysis, Institute of Catalysis and Petrochemistry (ICP-CSIC), Campus UAM -CSIC, 28049 Madrid, Spain.
| | - José Renato Guimarães
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, Minas Gerais 37500-903, Brazil.
| |
Collapse
|
4
|
Monteiro RRC, de Melo Neta MMF, Rocha WS, Soares JB, de Luna FMT, Fernandez-Lafuente R, Vieira RS. Optimizing the enzymatic production of biolubricants by the Taguchi method: Esterification of the free fatty acids from castor oil with 2-ethyl-1-hexanol catalyzed by Eversa Transform 2.0. Enzyme Microb Technol 2024; 175:110409. [PMID: 38335559 DOI: 10.1016/j.enzmictec.2024.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The solvent-free esterification of the free fatty acids (FFAs) obtained by the hydrolysis of castor oil (a non-edible vegetable oil) with 2-ethyl-1-hexanol (a branched fatty alcohol) was catalyzed by different free lipases. Eversa Transform 2.0 (ETL) features surpassed most commercial lipases. Some process parameters were optimized by the Taguchi method (L16'). As a result, a conversion over 95% of the FFAs of castor oil into esters with lubricants properties was achieved under optimized reaction conditions (15 wt% of biocatalyst content, 1:4 molar ratio (FFAs/alcohol), 30 °C, 180 rpm, 96 h). The substrates molar ratio had the highest influence on the dependent variable (conversion at 24 h). FFAs/2-ethyl-1-hexanol esters were characterized regarding the physicochemical and tribological properties. Interestingly, the modification of the FFAs with 2-ethyl-1-hexanol by ETL increased the oxidative stability of the FFAs feedstock from 0.18 h to 16.83 h. The biolubricants presented a lower friction coefficient than the reference commercial mineral lubricant (0.052 ± 0.07 against 0.078 ± 0.04). Under these conditions, ETL catalyzed the oligomerization of ricinoleic acid (a hydroxyl fatty acid) into estolides, reaching a conversion of 25.15% of the initial FFAs (for the first time).
Collapse
Affiliation(s)
- Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Maria M F de Melo Neta
- Departamento de Engenharia Mecânica, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Wesley S Rocha
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Jorge B Soares
- Departamento de Engenharia de Transportes, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - F Murilo T de Luna
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil; Departamento de Engenharia Mecânica, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | | | - Rodrigo S Vieira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil.
| |
Collapse
|
5
|
Monteiro RRC, Berenguer-Murcia Á, Rocha-Martin J, Vieira RS, Fernandez-Lafuente R. Biocatalytic production of biolubricants: Strategies, problems and future trends. Biotechnol Adv 2023; 68:108215. [PMID: 37473819 DOI: 10.1016/j.biotechadv.2023.108215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The increasing worries by the inadequate use of energy and the preservation of nature are promoting an increasing interest in the production of biolubricants. After discussing the necessity of producing biolubricants, this review focuses on the production of these interesting molecules through the use of lipases, discussing the different possibilities (esterification of free fatty acids, hydroesterification or transesterification of oils and fats, transesterification of biodiesel with more adequate alcohols, estolides production, modification of fatty acids). The utilization of discarded substrates has special interest due to the double positive ecological impact (e.g., oil distillated, overused oils). Pros and cons of all these possibilities, together with general considerations to optimize the different processes will be outlined. Some possibilities to overcome some of the problems detected in the production of these interesting compounds will be also discussed.
Collapse
Affiliation(s)
- Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | - Javier Rocha-Martin
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Rodrigo S Vieira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil.
| | | |
Collapse
|
6
|
Design of a New Chemoenzymatic Process for Producing Epoxidized Monoalkyl Esters from Used Soybean Cooking Oil and Fusel Oil. Catalysts 2023. [DOI: 10.3390/catal13030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
The aim of this study was to produce epoxidized monoalkyl esters (EMAE), a valuable class of oleochemicals used in a wide range of products and industries, from used soybean cooking oil (USCO) and fusel oil via a three-step chemoenzymatic process. This process consists of a first enzymatic hydrolysis of USCO to produce free fatty acids (FFA). Here, five microbial lipases with different specificities were tested as biocatalysts. Full hydrolysis of USCO was obtained after a 180 min reaction time under vigorous stirring (1500 rpm) using a non-specific lipase from Candida rugosa (CRL). Then, monoalkyl esters (MAE) were produced via the esterification of FFA and fusel oil in a solvent-free system using the lipase Eversa® Transform 2.0 (ET2.0) immobilized via physical adsorption on poly(styrenene-divinylbenzene) (PSty-DVB) beads as a biocatalyst. Different water removal strategies (closed and open reactors in the presence or absence of molecular sieves at 5% m.m−1) on the reaction were evaluated. Maximum FFA conversions of 64.3 ± 2.3% (open reactor after a 30 min reaction time) and 73.5 ± 0.4% (closed reactor after a 45 min reaction time) were observed at 40 °C, using a stoichiometric FFA:fusel oil molar ratio (1:1), without molecular sieves, and 5 mg of immobilized protein per gram of reaction mixture. Under these conditions, maximum FFA conversion was only 30.2 ± 2.7% after a 210 min reaction time in a closed reactor using soluble lipase. Reusability tests showed better retention of the original activity of immobilized ET2.0 (around 82%) after eight successive batches of esterification reactions conducted in an open reactor. Finally, the produced MAE was epoxidized via the Prilezhaev reaction, a classical chemical epoxidation process, using hydrogen peroxide and formic acid as a homogeneous catalyst. The products were characterized by standard methods and identified using proton nuclear magnetic resonance (1H NMR). Maximum unsaturated bond conversions into epoxy groups were at approximately 33%, with the experimental epoxy oxygen content (OOCexp.) at 1.75–1.78%, and selectivity (S) at 0.81, using both MAEs produced (open or closed reactors). These results show that this new process is a promising approach for value-added oleochemical production from low-cost and renewable raw materials.
Collapse
|
7
|
Ali S, Khan SA, Hamayun M, Lee IJ. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms 2023; 11:microorganisms11020510. [PMID: 36838475 PMCID: PMC9959473 DOI: 10.3390/microorganisms11020510] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Lipases are versatile biocatalysts and are used in different bioconversion reactions. Microbial lipases are currently attracting a great amount of attention due to the rapid advancement of enzyme technology and its practical application in a variety of industrial processes. The current review provides updated information on the different sources of microbial lipases, such as fungi, bacteria, and yeast, their classical and modern purification techniques, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, aqueous two-phase system (ATPS), aqueous two-phase flotation (ATPF), and the use of microbial lipases in different industries, e.g., the food, textile, leather, cosmetics, paper, and detergent industries. Furthermore, the article provides a critical analysis of lipase-producing microbes, distinguished from the previously published reviews, and illustrates the use of lipases in biosensors, biodiesel production, and tea processing, and their role in bioremediation and racemization.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (M.H.); (I.-J.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (M.H.); (I.-J.L.)
| |
Collapse
|