1
|
Dales MO, Drummond RM, Kennedy C. How selective antagonists and genetic modification have helped characterise the expression and functions of vascular P2Y receptors. Purinergic Signal 2024:10.1007/s11302-024-10016-z. [PMID: 38740733 DOI: 10.1007/s11302-024-10016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Vascular P2Y receptors mediate many effects, but the role of individual subtypes is often unclear. Here we discuss how subtype-selective antagonists and receptor knockout/knockdown have helped identify these roles in numerous species and vessels. P2Y1 receptor-mediated vasoconstriction and endothelium-dependent vasodilation have been characterised using the selective antagonists, MRS2179 and MRS2216, whilst AR-C118925XX, a P2Y2 receptor antagonist, reduced endothelium-dependent relaxation, and signalling evoked by UTP or fluid shear stress. P2Y2 receptor knockdown reduced endothelial signalling and endothelial P2Y2 receptor knockout produced hypertensive mice and abolished vasodilation elicited by an increase in flow. UTP-evoked vasoconstriction was also blocked by AR-C118925XX, but the effects of P2Y2 receptor knockout were complex. No P2Y4 receptor antagonists are available and P2Y4 knockout did not affect the vascular actions of UTP and UDP. The P2Y6 receptor antagonist, MRS2578, identified endothelial P2Y6 receptors mediating vasodilation, but receptor knockout had complex effects. MRS2578 also inhibited, and P2Y6 knockout abolished, contractions evoked by UDP. P2Y6 receptors contribute to the myogenic tone induced by a stepped increase in vascular perfusion pressure and possibly to the development of atherosclerosis. The P2Y11 receptor antagonists, NF157 and NF340, inhibited ATP-evoked signalling in human endothelial cells. Vasoconstriction mediated by P2Y12/P2Y13 and P2Y14 receptors was characterised using the antagonists, cangrelor, ticagrelor, AR-C67085 and MRS2211 or PPTN respectively. This has yet to be backed up by receptor knockout experiments. Thus, subtype-selective antagonists and receptor knockout/knockdown have helped identify which P2Y subtypes are functionally expressed in vascular smooth muscle and endothelial cells and the effects that they mediate.
Collapse
Affiliation(s)
- Markie O Dales
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Robert M Drummond
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
2
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 2021; 116:22. [PMID: 33755785 PMCID: PMC7987637 DOI: 10.1007/s00395-021-00859-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.
Collapse
Affiliation(s)
- Ying Zhang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Xin Cao
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, USA
| | - Yong Tang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
4
|
Ralevic V. Purinergic signalling in the cardiovascular system-a tribute to Geoffrey Burnstock. Purinergic Signal 2020; 17:63-69. [PMID: 33151503 PMCID: PMC7954917 DOI: 10.1007/s11302-020-09734-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/02/2023] Open
Abstract
Geoffrey Burnstock made groundbreaking discoveries on the physiological roles of purinergic receptors and led on P2 purinergic receptor classification. His knowledge, vision and leadership inspired and influenced the international scientific community. I had the privilege of spending over 10 years (from 1985) with Geoff at the Department of Anatomy and Developmental Biology, initially as a PhD student and then as a postdoctoral research fellow. I regarded him with enormous admiration and affection. This review on purinergic signalling in the cardiovascular system is a tribute to Geoff. It includes some personal recollections of Geoff.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
5
|
Kavanagh DPJ, Lokman AB, Neag G, Colley A, Kalia N. Imaging the injured beating heart intravitally and the vasculoprotection afforded by haematopoietic stem cells. Cardiovasc Res 2020; 115:1918-1932. [PMID: 31062860 PMCID: PMC6803816 DOI: 10.1093/cvr/cvz118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/20/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
Aims Adequate microcirculatory perfusion, and not just opening of occluded arteries, is critical to salvage heart tissue following myocardial infarction. However, the degree of microvascular perfusion taking place is not known, limited primarily by an inability to directly image coronary microcirculation in a beating heart in vivo. Haematopoietic stem/progenitor cells (HSPCs) offer a potential therapy but little is known about their homing dynamics at a cellular level and whether they protect coronary microvessels. This study used intravital microscopy to image the anaesthetized mouse beating heart microcirculation following stabilization. Methods and results A 3D-printed stabilizer was attached to the ischaemia–reperfusion injured (IRI) beating heart. The kinetics of neutrophil, platelet and HSPC recruitment, as well as functional capillary density (FCD), was imaged post-reperfusion. Laser speckle contrast imaging (LSCI) was used for the first time to monitor ventricular blood flow in beating hearts. Sustained hyperaemic responses were measured throughout reperfusion, initially indicating adequate flow resumption. Intravital microscopy confirmed large vessel perfusion but demonstrated poor transmission of flow to downstream coronary microvessels. Significant neutrophil adhesion and microthrombus formation occurred within capillaries with the latter occluding them, resulting in patchy perfusion and reduced FCD. Interestingly, ‘patrolling’ neutrophils were also observed in capillaries. Haematopoietic stem/progenitor cells readily trafficked through the heart but local retention was poor. Despite this, remarkable anti-thromboinflammatory effects were observed, consequently improving microvascular perfusion. Conclusion We present a novel approach for imaging multiple microcirculatory perturbations in the beating heart with LSCI assessment of blood flow. Despite deceptive hyperaemic responses, increased microcirculatory flow heterogeneity was seen, with non-perfused areas interspersed with perfused areas. Microthrombi, rather than neutrophils, appeared to be the major causative factor. We further applied this technique to demonstrate local stem cell presence is not a pre-requisite to confer vasculoprotection. This is the first detailed in vivo characterization of coronary microcirculatory responses post-reperfusion injury.
Collapse
Affiliation(s)
- Dean P J Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Adam B Lokman
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Georgiana Neag
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Abigail Colley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Zarębska EA, Kusy K, Słomińska EM, Kruszyna Ł, Zieliński J. Alterations in Exercise-Induced Plasma Adenosine Triphosphate Concentration in Highly Trained Athletes in a One-Year Training Cycle. Metabolites 2019; 9:metabo9100230. [PMID: 31623086 PMCID: PMC6836270 DOI: 10.3390/metabo9100230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to assess the effect of training loads on plasma adenosine triphosphate responsiveness in highly trained athletes in a 1 y cycle. Highly trained futsal players (11 men, age range 20–31 y), endurance athletes (11 men, age range 18–31 y), sprinters (11 men, age range 21–30 y), and control group (11 men, age range 22–34 y) were examined across four characteristic training phases in response to an incremental treadmill test until exhaustion. A considerably higher exercise and post-exercise plasma adenosine triphosphate concentrations were observed in consecutive training phases in highly trained athletes, with the highest values reached after the competitive period. No differences in plasma adenosine triphosphate concentrations were found in the control group during the 1 y cycle. Sprinters showed a higher absolute and net increase in plasma adenosine triphosphate concentration by 60–114% during exercise in consecutive training phases than futsal players (63–101%) and endurance athletes (64–95%). In this study, we demonstrated that exercise-induced adenosine triphosphate concentration significantly changes in highly trained athletes over an annual training cycle. The obtained results showed that high-intensity but not low- to moderate-intensity training leads to an increased adenosine triphosphate response to exercise, suggesting an important role of ATP for vascular plasticity.
Collapse
Affiliation(s)
- Ewa Anna Zarębska
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland.
| | - Krzysztof Kusy
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland.
| | - Ewa Maria Słomińska
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1, 80-211 Gdansk, Poland.
| | - Łukasz Kruszyna
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Długa 1/2, 61-848 Poznan, Poland.
| | - Jacek Zieliński
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland.
| |
Collapse
|
7
|
Kylhammar D, Rådegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf) 2017; 219:728-756. [PMID: 27381367 DOI: 10.1111/apha.12749] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) serves to optimize ventilation-perfusion matching in focal hypoxia and thereby enhances pulmonary gas exchange. During global hypoxia, however, HPV induces general pulmonary vasoconstriction, which may lead to pulmonary hypertension (PH), impaired exercise capacity, right-heart failure and pulmonary oedema at high altitude. In chronic hypoxia, generalized HPV together with hypoxic pulmonary arterial remodelling, contribute to the development of PH. The present article reviews the principal pathways in the in vivo modulation of HPV, hypoxic pulmonary arterial remodelling and PH with primary focus on the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways. In summary, endothelin-1 and thromboxane A2 may enhance, whereas nitric oxide and prostacyclin may moderate, HPV as well as hypoxic pulmonary arterial remodelling and PH. The production of prostacyclin seems to be coupled primarily to cyclooxygenase-1 in acute hypoxia, but to cyclooxygenase-2 in chronic hypoxia. The potential role of adenine nucleotides in modulating HPV is unclear, but warrants further study. Additional modulators of the pulmonary vascular responses to hypoxia may include angiotensin II, histamine, serotonin/5-hydroxytryptamine, leukotrienes and epoxyeicosatrienoic acids. Drugs targeting these pathways may reduce acute and/or chronic hypoxic PH. Endothelin receptor antagonists and phosphodiesterase-5 inhibitors may additionally improve exercise capacity in hypoxia. Importantly, the modulation of the pulmonary vascular responses to hypoxia varies between species and individuals, with hypoxic duration and age. The review also define how drugs targeting the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways may improve pulmonary haemodynamics, but also impair pulmonary gas exchange by interference with HPV in chronic lung diseases.
Collapse
Affiliation(s)
- D. Kylhammar
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| | - G. Rådegran
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| |
Collapse
|
8
|
Ventricular Fibrillation Waveform Changes during Controlled Coronary Perfusion Using Extracorporeal Circulation in a Swine Model. PLoS One 2016; 11:e0161166. [PMID: 27536996 PMCID: PMC4990236 DOI: 10.1371/journal.pone.0161166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
Background Several characteristics of the ventricular fibrillation (VF) waveform have been found predictive of successful defibrillation and hypothesized to reflect the myocardial energy state. In an open-chest swine model of VF, we modeled “average CPR” using extracorporeal circulation (ECC) and assessed the time course of coronary blood flow, myocardial metabolism, and myocardial structure in relation to the amplitude spectral area (AMSA) of the VF waveform without artifacts related to chest compression. Methods VF was induced and left untreated for 8 minutes in 16 swine. ECC was then started adjusting its flow to maintain a coronary perfusion pressure of 10 mmHg for 10 minutes. AMSA was calculated in the frequency domain and analyzed continuously with a 2.1 s timeframe and a Tukey window that moved ahead every 0.5 s. Results AMSA progressively declined during untreated VF. With ECC, AMSA increased from 7.0 ± 1.9 mV·Hz (at minute 8) to 12.8 ± 3.3 mV·Hz (at minute 14) (p < 0.05) without subsequent increase and showing a modest correlation with coronary blood flow of borderline statistical significance (r = 0.489, p = 0.0547). Myocardial energy measurements showed marked reduction in phosphocreatine and moderate reduction in ATP with increases in ADP, AMP, and adenosine along with myocardial lactate, all indicative of ischemia. Yet, ischemia did not resolve during ECC despite a coronary blood flow of ~ 30% of baseline. Conclusion AMSA increased upon return of coronary blood flow during ECC. However, the maximal level was reached after ~ 6 minutes without further change. The significance of the findings for determining the optimal timing for delivering an electrical shock during resuscitation from VF remains to be further explored.
Collapse
|
9
|
Orbegozo Cortés D, Puflea F, De Backer D, Creteur J, Vincent JL. Near infrared spectroscopy (NIRS) to assess the effects of local ischemic preconditioning in the muscle of healthy volunteers and critically ill patients. Microvasc Res 2015; 102:25-32. [PMID: 26265192 DOI: 10.1016/j.mvr.2015.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/12/2015] [Accepted: 08/06/2015] [Indexed: 12/28/2022]
Abstract
Near-infrared spectroscopy (NIRS) permits non-invasive evaluation of tissue oxygen saturation (StO2). A vascular occlusion test (VOT) produces transient controlled ischemia similar to that used in ischemic preconditioning. We hypothesized that we could evaluate local responses to ischemic preconditioning by performing repeated VOTs and observing the changes in different NIRS VOT-derived variables. In healthy volunteers (n=20), four VOTs were performed at 30-min intervals on one day and, in a second group (n=21), two VOTs with time intervals of 5, 15 or 30min were performed on 3 separate days. Two cohorts of patients, one with circulatory shock (n=23) and a hemodynamically stable group (n=20), were also studied, repeating the VOT twice with a 5-min interval. In the 1-day volunteers, there was a median decrease of 15 (6-21)% in the Desc slope (StO2 decrease during VOT) after the second VOT, but no significant change in the Asc slope (StO2 increase after VOT). In the 3-day volunteers, the Desc slope also decreased, regardless of the time interval between VOTs. There was no overall decrease in the Desc slope in either patient cohort with repeated VOTs but there was marked individual patient variability. Patients in whom the Desc slope decreased had less organ dysfunction at admission, required less norepinephrine (0.00 vs 0.08mcg/kg/min, p=0.02), less frequently had sepsis (12 vs 50%, p=0.02) and had a lower mortality (6 vs 39%, p=0.03) compared to those in whom it did not decrease. Repeated NIRS VOT can non-invasively assess the local effects of ischemic preconditioning in the muscle.
Collapse
Affiliation(s)
- Diego Orbegozo Cortés
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Florin Puflea
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel De Backer
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
10
|
Alefishat E, Alexander SPH, Ralevic V. Antagonism of P2Y1-induced vasorelaxation by acyl CoA: a critical role for palmitate and 3'-phosphate. Br J Pharmacol 2015; 168:1911-22. [PMID: 23215951 DOI: 10.1111/bph.12086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Acyl derivatives of CoA have been shown to act as antagonists at human platelet and recombinant P2Y1 receptors, but little is known about their effects in the cardiovascular system. This study evaluated the effect of these endogenous nucleotide derivatives at P2Y1 receptors natively expressed in rat and porcine blood vessels. EXPERIMENTAL APPROACH Isometric tension recordings were used to evaluate the effects of CoA, acetyl CoA, palmitoyl CoA (PaCoA) and 3'-dephospho-palmitoyl-CoA on concentration relaxation-response curves to ADP and uridine triphosphate (UTP). A FlexStation monitored ADP- and UTP-evoked calcium responses in HEK293 cells. KEY RESULTS Acetyl CoA and PaCoA, but not CoA, inhibited endothelium-dependent relaxations to ADP with apparent selectivity for P2Y1 receptors (over P2Y(2/4) receptors) in rat thoracic aorta; PaCoA was more potent than acetyl CoA (331-fold vs. fivefold shift of ADP response curve evoked by 10 μM PaCoA and acetyl CoA, respectively); the apparent pA2 value for PaCoA was 6.44. 3'-dephospho-palmitoyl-CoA (10 μM) was significantly less potent than PaCoA (20-fold shift). In porcine mesenteric arteries, PaCoA and the P2Y1 receptor antagonist MRS2500 blocked ADP-mediated endothelium-dependent relaxations; in contrast, they were ineffective against ADP-mediated endothelium-independent relaxation in porcine coronary arteries (which does not involve P2Y1 receptors). Calcium responses evoked by ADP activation of endogenous P2Y1 receptors in HEK293 cells were inhibited in the presence of PaCoA, which failed to alter responses to UTP (acting at endogenous P2Y(2/4) receptors). CONCLUSIONS AND IMPLICATIONS Acyl derivatives of CoA can act as endogenous selective antagonists of P2Y1 receptors in blood vessels, and this inhibitory effect critically depends on the palmitate and 3'-ribose phosphate substituents on CoA.
Collapse
Affiliation(s)
- E Alefishat
- Cardiovascular Research Group and Lipid Signalling, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
11
|
Burnstock G, Pelleg A. Cardiac purinergic signalling in health and disease. Purinergic Signal 2015; 11:1-46. [PMID: 25527177 PMCID: PMC4336308 DOI: 10.1007/s11302-014-9436-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/09/2023] Open
Abstract
This review is a historical account about purinergic signalling in the heart, for readers to see how ideas and understanding have changed as new experimental results were published. Initially, the focus is on the nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory nerves, as well as in intracardiac neurons. Control of the heart by centers in the brain and vagal cardiovascular reflexes involving purines are also discussed. The actions of adenine nucleotides and nucleosides on cardiomyocytes, atrioventricular and sinoatrial nodes, cardiac fibroblasts, and coronary blood vessels are described. Cardiac release and degradation of ATP are also described. Finally, the involvement of purinergic signalling and its therapeutic potential in cardiac pathophysiology is reviewed, including acute and chronic heart failure, ischemia, infarction, arrhythmias, cardiomyopathy, syncope, hypertrophy, coronary artery disease, angina, diabetic cardiomyopathy, as well as heart transplantation and coronary bypass grafts.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
12
|
Alefishat E, Alexander SPH, Ralevic V. Effects of NAD at purine receptors in isolated blood vessels. Purinergic Signal 2014; 11:47-57. [PMID: 25315718 DOI: 10.1007/s11302-014-9428-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) belongs to the family of naturally occurring adenine dinucleotides, best known for their various intracellular roles. However, there is evidence that they can also be released from cells to act as novel extracellular signalling molecules. Relatively little is known about the extracellular actions of NAD, especially in the cardiovascular system. The present study investigated the actions of NAD in the rat thoracic aorta, porcine coronary artery and porcine mesenteric arteries, mounted in organ baths for isometric tension recording. In the rat thoracic aorta and porcine coronary artery, NAD caused endothelium-independent concentration-dependent vasorelaxations which were unaffected by palmitoylCoA, a P2Y1 receptor antagonist, but which were blocked by CGS15943, a non-selective adenosine receptor antagonist. In the porcine coronary artery, NAD-evoked relaxations were abolished by SCH58261, a selective A2A receptor antagonist. In the rat thoracic aorta, NAD-evoked relaxations were attenuated by A2A receptor antagonism with SCH58261 but were unaffected by an A2B receptor antagonist, MRS1754. In contrast, in the porcine mesenteric artery, NAD-evoked endothelium-independent contractions, which were unaffected by a P2 receptor antagonist, suramin, or by NF449, a P2X1 receptor antagonist, but were attenuated following P2X receptor desensitisation with αβ-meATP. In conclusion, the present results show that NAD can alter vascular tone through actions at purine receptors in three different arteries from two species; its molecular targets differ according to the type of blood vessel.
Collapse
Affiliation(s)
- E Alefishat
- Department of Biopharmaceutics and Clinical Pharmacy Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | | | | |
Collapse
|
13
|
Kylhammar D, Bune LT, Rådegran G. P2Y₁ and P2Y₁₂ receptors in hypoxia- and adenosine diphosphate-induced pulmonary vasoconstriction in vivo in the pig. Eur J Appl Physiol 2014; 114:1995-2006. [PMID: 24929904 DOI: 10.1007/s00421-014-2921-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate the role of P2Y₁ and P2Y₁₂ receptors in hypoxia- and adenosine diphosphate (ADP)-induced pulmonary vasoconstriction. METHODS 19 anaesthetized, mechanically ventilated pigs (31.3 ± 0.7 kg) were evaluated in normoxia and hypoxia, without (n = 6) or with P2Y₁ receptor antagonist MRS2500 (n = 7) or P2Y₁₂ receptor antagonist cangrelor (n = 6) treatment. 12 pigs (29.3 ± 0.4 kg) were evaluated before and during ADP infusion, without and with MRS2500 (n = 6) or cangrelor (n = 6) pre-treatment. RESULTS Hypoxia increased (p < 0.05) mean pulmonary artery pressure (MPAP) by 14.2 ± 1.1 mmHg and pulmonary vascular resistance (PVR) by 2.7 ± 0.4 WU. Without treatment MPAP and PVR remained unaltered (p = ns) for 90 min hypoxia. During hypoxia MRS2500 decreased (p < 0.013) MPAP by 4.3 ± 1.2 mmHg within 15 min. Cangrelor decreased (p < 0.036) MPAP to be 3.3 ± 0.4 and 3.6 ± 0.6 mmHg lower than hypoxia baseline after 10 and 30 min. PVR was, however, unaltered (p = ns) by MRS2500 or cangrelor during hypoxia. ADP increased (p < 0.001) MPAP and PVR to stabilize 11.1 ± 1.3 mmHg and 2.7 ± 0.3 WU higher than baseline. MRS2500 or cangrelor pre-treatment totally abolished the sustained MPAP- and PVR-increases to ADP. CONCLUSIONS ADP elicits pulmonary vasoconstriction through P2Y₁ and P2Y₁₂ receptor activation. ADP is not a mandatory modulator, but may still contribute to pulmonary vascular tone during acute hypoxia. Further investigations into the mechanisms behind ADP-induced pulmonary vasoconstriction and the role of ADP as a modulator of pulmonary vascular tone during hypoxia are warranted.
Collapse
Affiliation(s)
- David Kylhammar
- The Öresund Cardiovascular Research Collaboration, The Section for Heart Failure and Valvular Disease, The Clinic for Heart- and Lung Disease, Skåne University Hospital, 221 85, Lund, Sweden,
| | | | | |
Collapse
|
14
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
15
|
Bune LT, Larsen JR, Thaning P, Bune NET, Rasmussen P, Rosenmeier JB. Adenosine diphosphate reduces infarct size and improves porcine heart function after myocardial infarct. Physiol Rep 2013; 1:e00003. [PMID: 24303097 PMCID: PMC3831933 DOI: 10.1002/phy2.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 12/21/2022] Open
Abstract
Acute myocardial infarction continues to be a major cause of morbidity and mortality. Timely reperfusion can substantially improve outcomes and the administration of cardioprotective substances during reperfusion is therefore highly attractive. Adenosine diphosphate (ADP) and uridine-5-triphoshate (UTP) are both released during myocardial ischemia, influencing hemodynamics. Both mediate the release of tissue plasminogen activator (t-PA), which can reduce infarct size (IS). The objective of this study was to investigate whether exogenous ADP and UTP administration during reperfusion could reduce myocardial IS and whether this correlated to t-PA release or improvements in hemodynamic responses. Hemodynamic variables and t-PA were measured in 22 pigs before, during, and after 45 min of left anterior coronary artery occlusion. During reperfusion, the pigs were randomized to 240 min of intracoronary infusion of ADP, UTP, or control (no intervention). Ischemic area compared to the area at risk [IS/AAR] was measured. [IS/AAR] was 52 ± 11% in the control animals. ADP decreased [IS/AAR] by 19% (P < 0.05), while UTP increased [IS/AAR] by 15% (P < 0.05). Cardiac output (CO) increased from 3.4 to 3.5 L/min (P < 0.05) and mean arterial pressure (MAP) decreased from 87 to 73 mmHg in the ADP group (P < 0.05). t-PA concentration increased in the ADP and UTP group from 2.0 ng/mL to 2.5 and 2.4 ng/mL, respectively (P < 0.05) but remained unchanged in the control group. In conclusion, intracoronary ADP infusion during reperfusion reduces IS by ∼20% independently from systemic release of t-PA. ADP-induced reduction in both preload and afterload could account for the beneficial myocardial effect.
Collapse
Affiliation(s)
- Laurids T Bune
- The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
16
|
Bender SB, Berwick ZC, Laughlin MH, Tune JD. Functional contribution of P2Y1 receptors to the control of coronary blood flow. J Appl Physiol (1985) 2011; 111:1744-50. [PMID: 21940850 DOI: 10.1152/japplphysiol.00946.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of ADP-sensitive P2Y(1) receptors has been proposed as an integral step in the putative "nucleotide axis" regulating coronary blood flow. However, the specific mechanism(s) and overall contribution of P2Y(1) receptors to the control of coronary blood flow have not been clearly defined. Using vertically integrative studies in isolated coronary arterioles and open-chest anesthetized dogs, we examined the hypothesis that P2Y(1) receptors induce coronary vasodilation via an endothelium-dependent mechanism and contribute to coronary pressure-flow autoregulation and/or ischemic coronary vasodilation. Immunohistochemistry revealed P2Y(1) receptor expression in coronary arteriolar endothelial and vascular smooth muscle cells. The ADP analog 2-methylthio-ADP induced arteriolar dilation in vitro and in vivo that was abolished by the selective P2Y(1) antagonist MRS-2179 and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. MRS-2179 did not alter baseline coronary flow in vivo but significantly attenuated coronary vasodilation to ATP in vitro and in vivo and the nonhydrolyzable ATP analog ATPγS in vitro. Coronary blood flow responses to alterations in coronary perfusion pressure (40-100 mmHg) or to a brief 15-s coronary artery occlusion were unaffected by MRS-2179. Our data reveal that P2Y(1) receptors are functionally expressed in the coronary circulation and that activation produces coronary vasodilation via an endothelium/nitric oxide-dependent mechanism. Although these receptors represent a critical component of purinergic coronary vasodilation, our findings indicate that P2Y(1) receptor activation is not required for coronary pressure-flow autoregulation or reactive hyperemia.
Collapse
Affiliation(s)
- Shawn B Bender
- Dept. of Biomedical Sciences, Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
17
|
Geddawy A, Shimosato T, Tawa M, Imamura T, Okamura T. Mechanism underlying endothelium-dependent relaxation by 2-methylthio-ADP in monkey cerebral artery. J Pharmacol Sci 2010; 114:180-8. [PMID: 20838025 DOI: 10.1254/jphs.10144fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We recently reported endothelium-dependent relaxation caused by nucleotides in the non-human primate cerebral artery. Here, we investigated the endothelium-dependent, nitric oxide- and prostanoid-independent relaxation induced by 2-methylthio-ADP (2MeSADP) in monkey cerebral artery. Mechanical responses of isolated monkey cerebral arteries to the agents were isometrically recorded. In endothelium-intact arterial strips treated with indomethacin plus N(G)-nitro-L-arginine and partially contracted with prostaglandin F(2α), 2MeSADP (1 nM - 10 µM) induced concentration-dependent relaxation that was abolished by removal of endothelium but was not influenced by either carboxy PTIO or 18α-glycyrrhetinic acid. The 2MeSADP-induced relaxation was inhibited by MRS2179 and U73122. The relaxation was markedly suppressed by exposure of the strips to high K(+) media, but was not affected by glibenclamide. Combination of charybdotoxin plus apamin markedly suppressed the relaxation, whereas iberiotoxin partially attenuated it. Relaxation induced by 2MeSADP was inhibited by arachidonyl trifluoromethyl ketone, ketoconazole, and 14,15-epoxyeicosa-5(Z)-enoic acid. The inhibitors that affected the 2MeSADP-induced relaxation did not influence relaxation caused by sodium nitroprusside or forskolin. These findings indicate that 2MeSADP elicits 'endothelium-derived hyperpolarizing factor (EDHF)-type' relaxation via stimulation of endothelial P2Y(1) receptors in monkey cerebral artery. Furthermore, phospholipase A(2), cytochrome P450-derived epoxyeicosatrienoic acids and Ca(2+)-activated K(+) channels appear to be involved in the relaxation.
Collapse
Affiliation(s)
- Ayman Geddawy
- Department of Pharmacology, Shiga University of Medical Sciences, Japan
| | | | | | | | | |
Collapse
|
18
|
Erlinge D, Burnstock G. P2 receptors in cardiovascular regulation and disease. Purinergic Signal 2007; 4:1-20. [PMID: 18368530 PMCID: PMC2245998 DOI: 10.1007/s11302-007-9078-7] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/22/2007] [Indexed: 12/11/2022] Open
Abstract
The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development.
Collapse
Affiliation(s)
- David Erlinge
- Department of Cardiology, Lund University Hospital, 22185, Lund, Sweden,
| | | |
Collapse
|
19
|
Mild hypothermia reduces cardiac post-ischemic reactive hyperemia. BMC Cardiovasc Disord 2007; 7:5. [PMID: 17324251 PMCID: PMC1808476 DOI: 10.1186/1471-2261-7-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/26/2007] [Indexed: 12/04/2022] Open
Abstract
Background In experimentally induced myocardial infarction, mild hypothermia (33–35°C) is beneficial if applied prior to ischemia or reperfusion. Hypothermia, when applied after reperfusion seems to confer little or no benefit. The mechanism by which hypothermia exerts its cell-protective effect during cardiac ischemia remains unclear. It has been hypothesized that hypothermia reduces the reperfusion damage; the additional damage incurred upon the myocardium during reperfusion. Reperfusion results in a massive increase in blood flow, reactive hyperemia, which may contribute to reperfusion damage. We postulated that hypothermia could attenuate the post-ischemic reactive hyperemia. Methods Sixteen 25–30 kg pigs, in a closed chest model, were anesthetized and temperature was established in all pigs at 37°C using an intravascular cooling catheter. The 16 pigs were then randomized to hypothermia (34°C) or control (37°C). The left main coronary artery was then catheterized with a PCI guiding catheter. A Doppler flow wire was placed in the mid part of the LAD and a PCI balloon was then positioned proximal to the Doppler wire but distal to the first diagonal branch. The LAD was then occluded for ten minutes in all pigs. Coronary blood flow was measured before, during and after ischemia/reperfusion. Results The peak flow seen during post-ischemic reactive hyperemia (during the first minutes of reperfusion) was significantly reduced by 43 % (p < 0.01) in hypothermic pigs compared to controls. Conclusion Mild hypothermia significantly reduces post-ischemic hyperemia in a closed chest pig model. The reduction of reactive hyperemia during reperfusion may have an impact on cardiac reperfusion injury.
Collapse
|
20
|
Olivecrona GK, Götberg M, Harnek J, Jacobson KA, Jern S, Erlinge D. The ADP receptor P2Y(1) mediates t-PA release in pigs during cardiac ischemia. J Thromb Thrombolysis 2007; 24:115-22. [PMID: 17294140 PMCID: PMC4609030 DOI: 10.1007/s11239-007-0010-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/12/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The endothelial ADP receptor P2Y(1) is responsible for a large part of the reactive hyperemia following cardiac ischemia. Tissue plasminogen activator (t-PA) increases during reactive hyperemia. We postulated that the release of t-PA during reactive hyperemia could be mitigated through blocking the coronary endothelial P2Y(1) receptor. METHODS t-PA was measured in peripheral arterial blood and locally in the venous blood from the coronary sinus in a porcine model. The stable ADP analogue 2-MeSADP (10(-5) M), alone or as co-infusion with a selective P2Y(1) receptor blocker, MRS2179 (10(-3) M) was locally delivered in the left anterior descending artery through the tip of a coronary angioplasty balloon. In separate pigs the coronary artery was occluded with the balloon for 10 min. During the first and tenth minute of coronary ischemia, 2.5 ml of MRS2179 (10(-3) M) was delivered distal to the occlusion in 8 pigs, 10 pigs were used as controls. RESULTS 2-MeSADP increased levels of t-PA in the coronary sinus, which could be significantly inhibited by co-infusion with MRS2179. During cardiac ischemia and reperfusion, t-PA increased significantly, an effect that could be significantly inhibited by MRS2179. CONCLUSIONS Intra coronary administered MRS2179, a selective P2Y(1) receptor blocker, significantly reduces the increased levels of t-PA caused by both 2-MeSADP and cardiac ischemia in coronary arteries. Thus, ADP acting on the endothelial P2Y(1) receptor may mediate release of t-PA during ischemia and post-ischemic hyperemia, an effect that may counteract some of the platelet activating effects of ADP. Abbreviated Abstract We postulated that the release of t-PA during post ischemic reactive hyperemia could be mitigated through blocking the coronary endothelial P2Y(1) receptor in a porcine model. The ADP analogue 2-MeSADP (10(-5) M), alone or as co-infusion with a the P2Y(1) receptor blocker, MRS2179 (10(-3) M) was locally delivered in the left anterior descending artery. In separate pigs the coronary artery was occluded for ten min. During the first and tenth min of coronary ischemia, 2.5 ml of MRS2179 (10(-3) M) was delivered distal to the occlusion. t-PA was measured in peripheral arterial blood and also from the Coronary Sinus. We found that levels of t-PA in the blood from the coronary Sinus increased during infusion with 2-MeSADP as well as during ischemia and reperfusion. In pigs treated with MRS2179 levels of t-PA in the Coronary Sinus were significantly reduced during both coinfusion with 2-MeSADP and during ischemia/reperfusion. Thus, ADP acting on the endothelial P2Y(1) M receptor may mediate release of t-PA during ischemia and post-ischemic hyperemia, an effect that may counteract some of the platelet activating effects of ADP.
Collapse
Affiliation(s)
- Goran K Olivecrona
- Department of Cardiology, Lund University Hospital, Lund University, Lund 22185, Sweden
| | | | | | | | | | | |
Collapse
|