1
|
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2021; 19:1536012120927609. [PMID: 32539522 PMCID: PMC7297484 DOI: 10.1177/1536012120927609] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.
Collapse
Affiliation(s)
- Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Dsouza C, Komarova SV. Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis. Int J Mol Sci 2021; 22:ijms22073468. [PMID: 33801677 PMCID: PMC8036966 DOI: 10.3390/ijms22073468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/13/2023] Open
Abstract
P2Y13 is an ADP-stimulated G-protein coupled receptor implicated in many physiological processes, including neurotransmission, metabolism, pain, and bone homeostasis. Quantitative understanding of P2Y13 activation dynamics is important for translational studies. We systematically identified PubMed annotated studies that characterized concentration-dependence of P2Y13 responses to natural and synthetic agonists. Since the comparison of the efficacy (maximum response) is difficult for studies performed in different systems, we normalized the data and conducted a meta-analysis of EC50 (concentration at half-maximum response) and Hill coefficient (slope) of P2Y13-mediated responses to different agonists. For signaling events induced by heterologously expressed P2Y13, EC50 of ADP-like agonists was 17.2 nM (95% CI: 7.7–38.5), with Hills coefficient of 4.4 (95% CI: 3.3–5.4), while ATP-like agonists had EC50 of 0.45 μM (95% CI: 0.06–3.15). For functional responses of endogenously expressed P2Y13, EC50 of ADP-like agonists was 1.76 μM (95% CI: 0.3–10.06). The EC50 of ADP-like agonists was lower for the brain P2Y13 than the blood P2Y13. ADP-like agonists were also more potent for human P2Y13 compared to rodent P2Y13. Thus, P2Y13 appears to be the most ADP-sensitive receptor characterized to date. The detailed understanding of tissue- and species-related differences in the P2Y13 response to ADP will improve the selectivity and specificity of future pharmacological compounds.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
| | - Svetlana V Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
3
|
P2X7 receptors in the central nervous system. Biochem Pharmacol 2021; 187:114472. [PMID: 33587917 DOI: 10.1016/j.bcp.2021.114472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
For the past three decades, our laboratory has conducted pioneering research to elucidate the complexity of purinergic signaling in the CNS, alone and in collaboration with other groups, inspired by the ground-breaking efforts of Geoffrey Burnstock. This review summarizes our contribution to understand the nucleotide receptor signaling in the CNS with a special focus on the P2X7 receptor.
Collapse
|
4
|
Gil-Redondo JC, Iturri J, Ortega F, Pérez-Sen R, Weber A, Miras-Portugal MT, Toca-Herrera JL, Delicado EG. Nucleotides-Induced Changes in the Mechanical Properties of Living Endothelial Cells and Astrocytes, Analyzed by Atomic Force Microscopy. Int J Mol Sci 2021; 22:ijms22020624. [PMID: 33435130 PMCID: PMC7827192 DOI: 10.3390/ijms22020624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young’s modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young’s modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Jagoba Iturri
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - Andreas Weber
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - José Luis Toca-Herrera
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Esmerilda G. Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| |
Collapse
|
5
|
Burnstock G. Introduction to Purinergic Signalling in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:1-12. [PMID: 32034706 DOI: 10.1007/978-3-030-30651-9_1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP is a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the brain. There is a widespread presence of both adenosine (P1) and P2 nucleotide receptors in the brain on both neurons and glial cells. Adenosine receptors play a major role in presynaptic neuromodulation, while P2X ionotropic receptors are involved in fast synaptic transmission and synaptic plasticity. P2Y G protein-coupled receptors are largely involved in presynaptic activities, as well as mediating long-term (trophic) signalling in cell proliferation, differentiation and death during development and regeneration. Both P1 and P2 receptors participate in neuron-glial interactions. Purinergic signalling is involved in control of cerebral vascular tone and remodelling and has been implicated in learning and memory, locomotor and feeding behaviour and sleep. There is increasing interest in the involvement of purinergic signalling in the pathophysiology of the CNS, including trauma, ischaemia, epilepsy, neurodegenerative diseases, neuropsychiatric and mood disorders, and cancer, including gliomas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, UK.
| |
Collapse
|
6
|
Wypych D, Barańska J. Cross-Talk in Nucleotide Signaling in Glioma C6 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:35-65. [PMID: 32034708 DOI: 10.1007/978-3-030-30651-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chapter is focused on the mechanism of action of metabotropic P2Y nucleotide receptors: P2Y1, P2Y2, P2Y12, P2Y14 and the ionotropic P2X7 receptor in glioma C6 cells. P2Y1 and P2Y12 both respond to ADP, but while P2Y1 links to PLC and elevates cytosolic Ca2+ concentration, P2Y12 negatively couples to adenylate cyclase, maintaining cAMP at low level. In glioma C6, these two P2Y receptors modulate activities of ERK1/2 and PI3K/Akt signaling and the effects depend on physiological conditions of the cells. During prolonged serum deprivation, cell growth is arrested, the expression of the P2Y1 receptor strongly decreases and P2Y12 becomes a major player responsible for ADP-evoked signal transduction. The P2Y12 receptor activates ERK1/2 kinase phosphorylation (a known cell proliferation regulator) and stimulates Akt activity, contributing to glioma invasiveness. In contrast, P2Y1 has an inhibitory effect on Akt pathway signaling. Furthermore, the P2X7 receptor, often responsible for apoptotic fate, is not involved in Ca2+elevation in C6 cells. The shift in nucleotide receptor expression from P2Y1 to P2Y12 during serum withdrawal, the cross talk between both receptors and the lack of P2X7 activity shows the precise self-regulating mechanism, enhancing survival and preserving the neoplastic features of C6 cells.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jolanta Barańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
7
|
Miras-Portugal MT, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Gualix J, Delicado EG, Pérez-Sen R. P2 receptor interaction and signalling cascades in neuroprotection. Brain Res Bull 2018; 151:74-83. [PMID: 30593879 DOI: 10.1016/j.brainresbull.2018.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Nucleotides can contribute to the survival of different glial and neuronal models at the nervous system via activation of purinergic P2X and P2Y receptors. Their activation counteracts different proapoptotic events, such as excitotoxicity, mitochondrial impairment, oxidative stress and DNA damage, which concur to elicit cell loss in different processes of neurodegeneration and brain injury. Thus, it is frequent to find that different neuroprotective mediators converge in the activation of the same intracellular survival pathways to protect cells from death. The present review focuses on the role of P2Y1 and P2Y13 metabotropic receptors, and P2X7 ionotropic receptors to regulate the balance between survival and apoptosis. In particular, we analyze the intracellular pathways involved in the signaling of these nucleotide receptors to elicit survival, including calcium/PLC, PI3K/Akt/GSK3, MAPK cascades, and the expression of antioxidant and antiapoptotic genes. This review emphasizes the novel contribution of nucleotide receptors to maintain cell homeostasis through the regulation of MAP kinases and phosphatases. Unraveling the different roles found for nucleotide receptors in different models and cellular contexts may be crucial to delineate future therapeutic applications based on targeting nucleotide receptors for neuroprotection.
Collapse
Affiliation(s)
- Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Mª José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Quintas C, Vale N, Gonçalves J, Queiroz G. Microglia P2Y 13 Receptors Prevent Astrocyte Proliferation Mediated by P2Y 1 Receptors. Front Pharmacol 2018; 9:418. [PMID: 29773988 PMCID: PMC5943495 DOI: 10.3389/fphar.2018.00418] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/10/2018] [Indexed: 11/20/2022] Open
Abstract
Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPβS, a stable ADP analog. In astrocyte cultures, ADPβS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia). The possibility that the loss of the ADPβS-mediated effect could have been caused by a microglia-induced degradation of ADPβS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPβS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPβS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPβS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 μM) and of the selective P2Y12 antagonist AR-C66096 (0.1 μM), suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in microglia with P2Y13 receptors to prevent proliferation. IL-1β also attenuated the proliferative effect of ADPβS in astrocyte cultures. However, in co-cultures, the anti-IL-1β antibody was unable to recover the ADPβS-proliferative effect, an effect that was achieved by the anti-IL-1α and anti-TNF-α antibodies. It is concluded that microglia control the P2Y1,12 receptor-mediated astroglial proliferation through a P2Y12,13 receptor-mediated mechanism alternative to the IL-1β suppressive pathway that may involve the contribution of the cytokines IL-1α and TNF-α.
Collapse
Affiliation(s)
- Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,REQUIMTE/UCIBIO, University of Porto, Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,MedInUP, University of Porto, Porto, Portugal
| | - Glória Queiroz
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,MedInUP, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Paniagua-Herranz L, Gil-Redondo JC, Queipo MJ, González-Ramos S, Boscá L, Pérez-Sen R, Miras-Portugal MT, Delicado EG. Prostaglandin E 2 Impairs P2Y 2/P2Y 4 Receptor Signaling in Cerebellar Astrocytes via EP3 Receptors. Front Pharmacol 2017; 8:937. [PMID: 29311938 PMCID: PMC5743739 DOI: 10.3389/fphar.2017.00937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/11/2017] [Indexed: 02/05/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an important bioactive lipid that accumulates after tissue damage or inflammation due to the rapid expression of cyclooxygenase 2. PGE2 activates specific G-protein coupled EP receptors and it mediates pro- or anti-inflammatory actions depending on the cell-context. Nucleotides can also be released in these situations and they even contribute to PGE2 production. We previously described the selective impairment of P2Y nucleotide signaling by PGE2 in macrophages and fibroblasts, an effect independent of prostaglandin receptors but that involved protein kinase C (PKC) and protein kinase D (PKD) activation. Considering that macrophages and fibroblasts influence inflammatory responses and tissue remodeling, a similar mechanism involving P2Y signaling could occur in astrocytes in response to neuroinflammation and brain repair. We analyzed here the modulation of cellular responses involving P2Y2/P2Y4 receptors by PGE2 in rat cerebellar astrocytes. We demonstrate that PGE2 inhibits intracellular calcium responses elicited by UTP in individual cells and that inhibiting this P2Y signaling impairs the astrocyte migration elicited by this nucleotide. Activation of EP3 receptors by PGE2 not only impairs the calcium responses but also, the extracellular regulated kinases (ERK) and Akt phosphorylation induced by UTP. However, PGE2 requires epidermal growth factor receptor (EGFR) transactivation in order to dampen P2Y signaling. In addition, these effects of PGE2 also occur in a pro-inflammatory context, as evident in astrocytes stimulated with bacterial lipopolysaccharide (LPS). While we continue to investigate the intracellular mechanisms responsible for the inhibition of UTP responses, the involvement of novel PKC and PKD in cerebellar astrocytes cannot be excluded, kinases that could promote the internalization of P2Y receptors in fibroblasts.
Collapse
|
10
|
Pérez-Sen R, Gómez-Villafuertes R, Ortega F, Gualix J, Delicado EG, Miras-Portugal MT. An Update on P2Y 13 Receptor Signalling and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:139-168. [PMID: 28815513 DOI: 10.1007/5584_2017_91] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distribution of nucleotide P2Y receptors across different tissues suggests that they fulfil key roles in a number of physiological and pathological conditions. P2Y13 is one of the latest P2Y receptors identified, a novel member of the Gi-coupled P2Y receptor subfamily that responds to ADP, together with P2Y12 and P2Y14. Pharmacological studies drew attention to this new ADP receptor, with a pharmacology that overlaps that of P2Y12 receptors but with unique features and roles. The P2RY12-14 genes all reside on human chromosome 3 at 3q25.1 and their strong sequence homology supports their evolutionary origin through gene duplication. Polymorphisms of P2Y13 receptors have been reported in different human populations, yet their consequences remain unknown. The P2Y13 receptor is versatile in its signalling, extending beyond the canonical signalling of a Gi-coupled receptor. Not only can it couple to different G proteins (Gs/Gq) but the P2Y13 receptor can also trigger several intracellular pathways related to the activation of MAPKs (mitogen-activated protein kinases) and the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 axis. Moreover, the availability of P2Y13 receptor knockout mice has highlighted the specific functions in which it is involved, mainly in the regulation of cholesterol and glucose metabolism, bone homeostasis and aspects of central nervous system function like pain transmission and neuroprotection. This review summarizes our current understanding of this elusive receptor, not only at the pharmacological and molecular level but also, in terms of its signalling properties and specific functions, helping to clarify the involvement of P2Y13 receptors in pathological situations.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Barańska J, Czajkowski R, Pomorski P. P2Y 1 Receptors - Properties and Functional Activities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639247 DOI: 10.1007/5584_2017_57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter we try to show a comprehensive image of current knowledge of structure, activity and physiological role of the P2Y1 purinergic receptor. The structure, distribution and changes in the expression of this receptor are summarized, as well as the mechanism of its signaling activity by the intracellular calcium mobilization. We try to show the connection between the components of its G protein activation and cellular or physiological effects, starting from changes in protein phosphorylation patterns and ending with such remote effects as receptor-mediated apoptosis. The special emphasis is put on the role of the P2Y1 receptor in cancer cells and neuronal plasticity. We concentrate on the P2Y1 receptor, it is though impossible to completely abstract from other aspects of nucleotide signaling and cross-talk with other nucleotide receptors is here discussed. Especially, the balance between P2Y1 and P2Y12 receptors, sharing the same ligand but signaling through different pathways, is presented.
Collapse
Affiliation(s)
- Jolanta Barańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Department of Cell Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland.
| |
Collapse
|
12
|
Shchors K, Massaras A, Hanahan D. Dual Targeting of the Autophagic Regulatory Circuitry in Gliomas with Repurposed Drugs Elicits Cell-Lethal Autophagy and Therapeutic Benefit. Cancer Cell 2015; 28:456-471. [PMID: 26412325 DOI: 10.1016/j.ccell.2015.08.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/13/2015] [Accepted: 08/31/2015] [Indexed: 12/17/2022]
Abstract
The associations of tricyclic antidepressants (TCAs) with reduced incidence of gliomas and elevated autophagy in glioma cells motivated investigation in mouse models of gliomagenesis. First, we established that imipramine, a TCA, increased autophagy and conveyed modest therapeutic benefit in tumor-bearing animals. Then we screened clinically approved agents suggested to affect autophagy for their ability to enhance imipramine-induced autophagy-associated cell death. The anticoagulant ticlopidine, which inhibits the purinergic receptor P2Y12, potentiated imipramine, elevating cAMP, a modulator of autophagy, reducing cell viability in culture, and increasing survival in glioma-bearing mice. Efficacy of the combination was obviated by knockdown of the autophagic regulatory gene ATG7, implicating cell-lethal autophagy. This seemingly innocuous combination of TCAs and P2Y12 inhibitors may have applicability for treating glioma.
Collapse
Affiliation(s)
- Ksenya Shchors
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland
| | - Aristea Massaras
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland.
| |
Collapse
|
13
|
Kawaguchi A, Sato M, Kimura M, Ichinohe T, Tazaki M, Shibukawa Y. Expression and function of purinergic P2Y12 receptors in rat trigeminal ganglion neurons. Neurosci Res 2015; 98:17-27. [PMID: 25987295 DOI: 10.1016/j.neures.2015.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
Abstract
Purinergic receptors play key signaling roles in neuropathic pain in the orofacial region, which is innervated by trigeminal ganglion (TG) neurons. The neuropathology of purinergic P2Y12 receptors is well characterized in glia; however, their physiological role in TG neurons remains to be fully elucidated. The present study investigated the expression and function of P2Y12 receptors in rat TG neurons. P2Y12 receptor immunoreactivity was intense in the soma, dendrites, and axons, and colocalized with a pan-neuronal marker, neurofilament H, isolectin B4, and substance P. In the presence of extracellular Ca(2+), 2-methylthio-ADP (an agonist of P2Y1, 12, 13 receptors) transiently increased intracellular free Ca(2+) concentrations ([Ca(2+)]i), an effect that was abolished by P2Y12 receptor antagonists. In the absence of extracellular Ca(2+), ryanodine receptor/channel inhibitors diminished the 2-methylthio-ADP-induced increases in [Ca(2+)]i. A sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor gradually increased [Ca(2+)]i, and after a plateau, application of 2-MeS-ADP induced a rapid and transient, but additive increase in [Ca(2+)]i. An adenylate cyclase inhibitor transiently increased [Ca(2+)]i, while a phosphodiesterase inhibitor prevented the 2-methylthio-ADP-induced increase in [Ca(2+)]i. Our study shows that P2Y12 receptors are expressed in TG neurons, and act via a cAMP-dependent pathway to release intracellular Ca(2+) from ryanodine-sensitive Ca(2+) stores.
Collapse
Affiliation(s)
- Aya Kawaguchi
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masaki Sato
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | | |
Collapse
|
14
|
Pérez-Sen R, Queipo MJ, Morente V, Ortega F, Delicado EG, Miras-Portugal MT. Neuroprotection Mediated by P2Y13 Nucleotide Receptors in Neurons. Comput Struct Biotechnol J 2015; 13:160-8. [PMID: 25750704 PMCID: PMC4348571 DOI: 10.1016/j.csbj.2015.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/28/2022] Open
Abstract
ADP-specific P2Y13 receptor constitutes one of the most recently identified nucleotide receptor and the understanding of their physiological role is currently under investigation. Cerebellar astrocytes and granule neurons provide excellent models to study P2Y13 expression and function since the first identification of ADP-evoked calcium responses not attributable to the related P2Y1 receptor was performed in these cell populations. In this regard, all responses induced by ADP analogues in astrocytes resulted to be Gi-coupled activities mediated by P2Y13 instead of P2Y1 receptors. Similarly, both glycogen synthase kinase-3 (GSK3) and ERK1/2 signaling triggered by 2MeSADP in cerebellar granule neurons were also dependent on Gi-coupled receptors, and mediated by PI3K activity. In granule neurons, P2Y13 receptor was specifically coupled to the main neuronal survival PI3K/Akt-cascade targeting GSK3 phosphorylation. GSK3 inhibition led to nuclear translocation of transcriptional targets, including β-catenin and Nrf2. The activation of the Nrf2/heme oxygenase-1 (HO-1) axis was responsible for the prosurvival effect against oxidative stress. In addition, P2Y13-mediated ERK1/2 signaling in granule neurons also triggered activation of transcription factors, such as CREB, which underlined the antiapoptotic action against glutamate-induced excitotoxicity. Finally, a novel signaling mechanism has been recently described for a P2Y13 receptor in granule neurons that involved the expression of a dual protein phosphatase, DUSP2. This activity contributed to regulate MAPK activation after genotoxic stress. In conclusion, P2Y13 receptors harbored in cerebellar astrocytes and granule neurons exhibit specific signaling properties that link them to specialized functions at the level of neuroprotection and trophic activity in both cerebellar cell populations.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - M José Queipo
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - Verónica Morente
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - Felipe Ortega
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - Esmerilda G Delicado
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - M Teresa Miras-Portugal
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| |
Collapse
|
15
|
Alvares TS, Revill AL, Huxtable AG, Lorenz CD, Funk GD. P2Y1 receptor-mediated potentiation of inspiratory motor output in neonatal rat in vitro. J Physiol 2014; 592:3089-111. [PMID: 24879869 DOI: 10.1113/jphysiol.2013.268136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PreBötzinger complex inspiratory rhythm-generating networks are excited by metabotropic purinergic receptor subtype 1 (P2Y1R) activation. Despite this, and the fact that inspiratory MNs express P2Y1Rs, the role of P2Y1Rs in modulating motor output is not known for any MN pool. We used rhythmically active brainstem-spinal cord and medullary slice preparations from neonatal rats to investigate the effects of P2Y1R signalling on inspiratory output of phrenic and XII MNs that innervate diaphragm and airway muscles, respectively. MRS2365 (P2Y1R agonist, 0.1 mm) potentiated XII inspiratory burst amplitude by 60 ± 9%; 10-fold higher concentrations potentiated C4 burst amplitude by 25 ± 7%. In whole-cell voltage-clamped XII MNs, MRS2365 evoked small inward currents and potentiated spontaneous EPSCs and inspiratory synaptic currents, but these effects were absent in TTX at resting membrane potential. Voltage ramps revealed a persistent inward current (PIC) that was attenuated by: flufenamic acid (FFA), a blocker of the Ca(2+)-dependent non-selective cation current ICAN; high intracellular concentrations of BAPTA, which buffers Ca(2+) increases necessary for activation of ICAN; and 9-phenanthrol, a selective blocker of TRPM4 channels (candidate for ICAN). Real-time PCR analysis of mRNA extracted from XII punches and laser-microdissected XII MNs revealed the transcript for TRPM4. MRS2365 potentiated the PIC and this potentiation was blocked by FFA, which also blocked the MRS2365 potentiation of glutamate currents. These data suggest that XII MNs are more sensitive to P2Y1R modulation than phrenic MNs and that the P2Y1R potentiation of inspiratory output occurs in part via potentiation of TRPM4-mediated ICAN, which amplifies inspiratory inputs.
Collapse
Affiliation(s)
- T S Alvares
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A L Revill
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A G Huxtable
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - C D Lorenz
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - G D Funk
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Salas E, Carrasquero LMG, Olivos-Oré LA, Bustillo D, Artalejo AR, Miras-Portugal MT, Delicado EG. Purinergic P2X7 receptors mediate cell death in mouse cerebellar astrocytes in culture. J Pharmacol Exp Ther 2013; 347:802-15. [PMID: 24101734 DOI: 10.1124/jpet.113.209452] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The brain distribution and functional role of glial P2X7 receptors are broader and more complex than initially anticipated. We characterized P2X7 receptors from cerebellar astrocytes at the molecular, immunocytochemical, biophysical, and cell physiologic levels. Mouse cerebellar astrocytes in culture express mRNA coding for P2X7 receptors, which is translated into P2X7 receptor protein as proven by Western blot analysis and immunocytochemistry. Fura-2 imaging showed cytosolic calcium responses to ATP and the synthetic analog 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) exhibited two components, namely an initial transient and metabotropic component followed by a sustained one that depended on extracellular calcium. This latter component, which was absent in astrocytes from P2X7 receptor knockout mice (P2X7 KO), was modulated by extracellular Mg(2+), and was sensitive to Brilliant Blue G (BBG) and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079) antagonism. BzATP also elicited inwardly directed nondesensitizing whole-cell ionic currents that were reduced by extracellular Mg(2+) and P2X7 antagonists (BBG and calmidazolium). In contrast to that previously reported in rat cerebellar astrocytes, sustained BzATP application induced a gradual increase in membrane permeability to large cations, such as N-methyl-d-glucamine and 4-[3-methyl-2(3H)-benzoxazolylidene)-methyl]-1-[3-(triethylammonio)propyl]diiodide, which ultimately led to the death of mouse astrocytes. Cerebellar astrocyte cell death was prevented by BBG but not by calmidazolium, removal of extracellular calcium, or treatment with the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, thus suggesting a necrotic-type mechanism of cell death. Since this cellular response was not observed in astrocytes from P2X7 KO mice, this study suggests that stimulation of P2X7 receptor may convey a cell death signal to cerebellar astrocytes in a species-specific manner.
Collapse
Affiliation(s)
- Elvira Salas
- Department of Biochemistry, Faculty of Medicine, University of Costa Rica, San José, Costa Rica (E.S.); Departments of Biochemistry (L.M.G.C., M.T.M.-P., E.G.D.) and Toxicology and Pharmacology (L.A.O., D.B., A.R.A.), Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain; and Neurochemistry Research Institute, Complutense University of Madrid, Madrid, Spain (L.A.O., D.B., A.R.A., M.T.M.P., E.G.D.)
| | | | | | | | | | | | | |
Collapse
|
17
|
Weisman GA, Woods LT, Erb L, Seye CI. P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 11:722-38. [PMID: 22963441 DOI: 10.2174/187152712803581047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022]
Abstract
P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, 540E Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO 65211-7310, USA.
| | | | | | | |
Collapse
|
18
|
Través PG, Pimentel-Santillana M, Carrasquero LMG, Pérez-Sen R, Delicado EG, Luque A, Izquierdo M, Martín-Sanz P, Miras-Portugal MT, Boscá L. Selective impairment of P2Y signaling by prostaglandin E2 in macrophages: implications for Ca2+-dependent responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:4226-35. [PMID: 23479225 DOI: 10.4049/jimmunol.1203029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular nucleotides have been recognized as important modulators of inflammation via their action on specific pyrimidine receptors (P2). This regulation coexists with the temporal framework of proinflammatory and proresolution mediators released by the cells involved in the inflammatory response, including macrophages. Under proinflammatory conditions, the expression of cyclooxygenase-2 leads to the release of large amounts of PGs, such as PGE2, that exert their effects through EP receptors and other intracellular targets. The effect of these PGs on P2 receptors expressed in murine and human macrophages was investigated. In thioglycollate-elicited and alternatively activated macrophages, PGE2 selectively impairs P2Y but not P2X7 Ca(2+) mobilization. This effect is absent in LPS-activated cells and is specific for PGE2 because it cannot be reproduced by other PGs with cyclopentenone structure. The inhibition of P2Y responses by PGE2 involves the activation of nPKCs (PKCε) and PKD that can be abrogated by selective inhibitors or by expression of dominant-negative forms of PKD. The inhibition of P2Y signaling by PGE2 has an impact on the cell migration elicited by P2Y agonists in thioglycollate-elicited and alternatively activated macrophages, which provide new clues to understand the resolution phase of inflammation, when accumulation of PGE2, anti-inflammatory and proresolving mediators occurs.
Collapse
Affiliation(s)
- Paqui G Través
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wypych D, Barańska J. Cross-talk in nucleotide signaling in glioma C6 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:31-59. [PMID: 22879063 DOI: 10.1007/978-94-007-4719-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chapter is focused on the mechanism of action of metabotropic P2Y nucleotide receptors: P2Y(1), P2Y(2), P2Y(12), P2Y(14) and the ionotropic P2X(7) receptor in glioma C6 cells. P2Y(1) and P2Y(12) both respond to ADP, but while P2Y(1) links to PLC and elevates cytosolic Ca(2+) concentration, P2Y(12) negatively couples to adenylate cyclase, maintaining cAMP at low level. In glioma C6, these two P2Y receptors modulate activities of ERK1/2 and PI3K/Akt signaling and the effects depend on physiological conditions of the cells. During prolonged serum deprivation, cell growth is arrested, the expression of the P2Y(1) receptor strongly decreases and P2Y(12) becomes a major player responsible for ADP-evoked signal transduction. The P2Y(12) receptor activates ERK1/2 kinase phosphorylation (a known cell proliferation regulator) and stimulates Akt activity, contributing to glioma invasiveness. In contrast, P2Y(1) has an inhibitory effect on Akt pathway signaling. Furthermore, the P2X(7) receptor, often responsible for apoptotic fate, is not involved in Ca(2+)elevation in C6 cells. The shift in nucleotide receptor expression from P2Y(1) to P2Y(12) during serum withdrawal, the cross talk between both receptors and the lack of P2X(7) activity shows the precise self-regulating mechanism, enhancing survival and preserving the neoplastic features of C6 cells.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, PL 02-093, Warsaw, Poland.
| | | |
Collapse
|
20
|
Introduction to Purinergic Signalling in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:1-12. [DOI: 10.1007/978-94-007-4719-7_1] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Weisman GA, Camden JM, Peterson TS, Ajit D, Woods LT, Erb L. P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y₂ receptor interactions in neuroinflammation. Mol Neurobiol 2012; 46:96-113. [PMID: 22467178 DOI: 10.1007/s12035-012-8263-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
Abstract
Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y(2) receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
23
|
Carrasquero LMG, Delicado EG, Sánchez-Ruiloba L, Iglesias T, Miras-Portugal MT. Mechanisms of protein kinase D activation in response to P2Y(2) and P2X7 receptors in primary astrocytes. Glia 2010; 58:984-95. [PMID: 20222145 DOI: 10.1002/glia.20980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein kinase D (PKD) is a family of serine/threonine kinases that can be activated by many stimuli via protein kinase C in a variety of cells. This is the first report where PKD activation and localization is studied in glial cells. Herein, we demonstrate that P2Y(2) and P2X7 receptor stimulation of primary rat cerebellar astrocytes rapidly increases PKD1/2 phosphorylation and activity. P2Y(2) receptor response evokes a PKD1/2 activation that is dependent on a pertussis toxin-insensitive G protein, phospholipase C (PLC)-mediated generation of diacylglycerol, and protein kinase C. This mechanism is similar to the one described for other G-protein coupled receptors. In contrast, the way the ionotropic P2X7 receptor activates PKD1/2 is significantly different. Importantly, this response is not dependent on calcium entry, but depends on the activity of several phospholipases, including phosphoinositide-phospholipase C (PI-PLC), phosphatidylcholine-phospholipase C (PC-PLC) and also phospholipase D (PLD). Immunoblot and confocal microscopy analysis show that PKD1/2 activation by nucleotides is transient. The active kinase first moves to and concentrates in certain plasma membrane domains. Then, phosphorylated-PKD1/2 translocates to intracellular vesicles, where it remains active. All together, our results open the perspective of PKD1/2 being involved in many physiological functions where nucleotides play important roles not only in astrocytes but in other cell types bearing these receptors.
Collapse
Affiliation(s)
- Luz María G Carrasquero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
24
|
Supłat-Wypych D, Dygas A, Barańska J. 2', 3'-O-(4-benzoylbenzoyl)-ATP-mediated calcium signaling in rat glioma C6 cells: role of the P2Y(2) nucleotide receptor. Purinergic Signal 2010; 6:317-25. [PMID: 21103215 DOI: 10.1007/s11302-010-9194-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 06/15/2010] [Indexed: 11/26/2022] Open
Abstract
In this study, we examined the response of glioma C6 cells to 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) and showed that the BzATP-induced calcium signaling does not involve the P2X(7) receptor activity. We show here that in the absence of extracellular Ca(2+), BzATP-generated increase in [Ca(2+)](i)via Ca(2+) release from intracellular stores. In the presence of calcium ions, BzATP established a biphasic Ca(2+) response, in a manner typical for P2Y receptors. Brilliant Blue G, a selective antagonist of the rat P2X(7) receptor, did not reduce any of the two components of the Ca(2+) response elicited by BzATP. Periodate-oxidized ATP blocked not only BzATP- but also UTP-induced Ca(2+) elevation. Moreover, BzATP did not open large transmembrane pores. What is more, a cross-desensitization between UTP and BzATP occurred, which clearly shows that in glioma C6 cells BzATP activates most likely the P2Y(2) but not the P2X(7) receptors.
Collapse
Affiliation(s)
- Dorota Supłat-Wypych
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | | | | |
Collapse
|
25
|
Carrasquero LMG, Delicado EG, Bustillo D, Gutiérrez-Martín Y, Artalejo AR, Miras-Portugal MT. P2X7 and P2Y13 purinergic receptors mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes. J Neurochem 2009; 110:879-89. [PMID: 19457067 DOI: 10.1111/j.1471-4159.2009.06179.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous work has established the presence of functional P2X(7) subunits in rat cerebellar astrocytes, which after stimulation with 3'-O-(4-benzoyl)benzoyl ATP (BzATP) evoked morphological changes that were not reproduced by any other nucleotide. To further characterize the receptor(s) and signaling mechanisms involved in the action of BzATP, we have employed fura-2 microfluorometry and the patch-clamp technique. BzATP elicited intracellular calcium responses that typically exhibited two components: the first one was transient and metabotropic in nature--sensitive to phospholipase C inhibition and pertussis toxin treatment, whereas the second one was sustained and depended on the presence of extracellular calcium. The ionotropic nature of this latter component was corroborated by measurements of Mn(2+) entry and macroscopic non-selective cation currents evoked by either BzATP (100 muM) or ATP (1 mM). The two components of the calcium response to BzATP differed in their pharmacological sensitivity. The metabotropic component was partially sensitive to pyridoxalphosphate-5'-phosphate-6-azo-(-2-chloro-5-nitrophenyl)-2,4-disulfonate, a selective antagonist of P2Y(13) receptors, while the ionotropic component was modulated by external magnesium and markedly reduced by brilliant blue G and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079), thus implying the involvement of P2X(7) purinergic receptors. It is concluded that P2Y(13) and P2X(7) purinergic receptors are functionally expressed in rat cerebellar astrocytes and mediate the increase in intracellular calcium elicited by BzATP in these cells.
Collapse
Affiliation(s)
- Luz María G Carrasquero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Fischer W, Appelt K, Grohmann M, Franke H, Nörenberg W, Illes P. Increase of intracellular Ca2+ by P2X and P2Y receptor-subtypes in cultured cortical astroglia of the rat. Neuroscience 2009; 160:767-83. [PMID: 19289154 DOI: 10.1016/j.neuroscience.2009.02.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 11/27/2022]
Abstract
Astrocytes express purinergic receptors that are involved in glial-neuronal cell communication. Experiments were conducted to characterize the expression of functional P2X/P2Y nucleotide receptors in glial cells of mixed cortical cell cultures of the rat. The vast majority of these cells was immunopositive for glial fibrillary acidic protein (GFAP) and was considered therefore astrocyte-like; for the sake of simplicity they were termed "astroglia" throughout. Astroglia expressed predominantly P2X(4,6,7) as well as P2Y(1,2) receptor-subtypes. Less intensive immunostaining was also found for P2X(5) and P2Y(4,6,13,14) receptors. Pressure application of ATP and a range of agonists selective for certain P2X or P2Y receptor-subtypes caused a concentration-dependent increase of intracellular Ca(2+) ([Ca(2+)](i)). Of the agonists tested, only the P2X(1,3) receptor-selective alpha,beta-methylene ATP was ineffective. Experiments with Ca(2+)-free solution and cyclopiazonic acid, an inhibitor of the endoplasmic Ca(2+)-ATPase, indicated that the [Ca(2+)](i) response to most nucleotides, except for ATP and 2',3'-O-(benzoyl-4-benzoyl)-ATP, was due primarily to the release of Ca(2+) from intracellular stores. A Gprotein-mediated release of Ca(2+) is the typical signaling mechanism of various P2Y receptor-subtypes, whose presence was confirmed also by cross-desensitization experiments and by using selective antagonists. Thus, our results provide direct evidence that astroglia in mixed cortical cell cultures express functional P2Y (P2Y(1,2,6,14) and probably also P2Y(4)) receptors. Several unidentified P2X receptors, including P2X(7), may also be present, although they appear to only moderately participate in the regulation of [Ca(2+)](i). The rise of [Ca(2+)](i) is due in this case to the transmembrane flux of Ca(2+) via the P2X receptor-channel. In conclusion, P2Y rather than P2X receptor-subtypes are involved in modulating [Ca(2+)](i) of cultured astroglia and thereby may play an important role in cell-to-cell signaling.
Collapse
Affiliation(s)
- W Fischer
- Rudolf-Boehm-Institute of Pharmacology und Toxicology, University of Leipzig, Haertelstrasse 16-18, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Ortega F, Pérez-Sen R, Miras-Portugal MT. Gi-coupled P2Y-ADP receptor mediates GSK-3 phosphorylation and beta-catenin nuclear translocation in granule neurons. J Neurochem 2007; 104:62-73. [PMID: 17986231 DOI: 10.1111/j.1471-4159.2007.05021.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a multifaceted enzyme involved in development, neurogenesis, and survival at the CNS. We investigated nucleotides signaling to GSK-3 in cerebellar granule neurons and found that the metabotropic agonist 2-methyl-thio-ADP (2MeSADP) was able to induce GSK-3 phosphorylation and inhibition of its catalytic activity. 2MeSADP could be acting through several P2Y-ADP receptors expressed in granule neurons, as RT-PCR expression was found for P2Y(1), P2Y(12), and P2Y(13) receptors, but the pharmacological data fitted well with a Gi-coupled P2Y(13) receptor: the effect was sensitive to pertussis toxin, was unaffected by specific antagonists of P2Y(1) and P2Y(12) receptors, such as 2'-deoxy-N(6)-methyl-adenosine 3',5'-diphosphate and 2-methyl-thio-AMP, respectively, and the EC(50) values for 2MeSADP and ADP were in the same low nanomolar range. 2MeSADP was able to phosphorylate and activate extracellular signal-regulated kinase (ERK)-1,2 and Akt proteins, but its effect on GSK-3 phosphorylation was primarily dependent on the phosphatidyl inositol-3 kinase (PI3-K)/Akt pathway, as it was abolished by the PI3-K inhibitor wortmannin. GSK-3 inactivation by 2MeSADP in granule neurons resulted in nuclear translocation of its substrate beta-catenin, which functions as a transcriptional regulator, this effect being lost with wortmaninn. The present study first describes the coupling of a Gi-coupled P2Y(13)-like receptor to GSK-3 and beta-catenin through PI3-K/Akt signaling.
Collapse
Affiliation(s)
- Felipe Ortega
- Department of Biochemistry, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | | | | |
Collapse
|
28
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
29
|
Delicado EG, Miras-Portugal MT, Carrasquero LMG, León D, Pérez-Sen R, Gualix J. Dinucleoside polyphosphates and their interaction with other nucleotide signaling pathways. Pflugers Arch 2006; 452:563-72. [PMID: 16688466 DOI: 10.1007/s00424-006-0066-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 11/25/2022]
Abstract
Dinucleoside polyphosphates or Ap(n)A are a family of dinucleotides formed by two adenosines joined by a variable number of phosphates. Ap(4)A, Ap(5)A, and Ap(6)A are stored together with other neurotransmitters into secretory vesicles and are co-released to the extracellular medium upon stimulation. These compounds can interact extracellularly with some ATP receptors, both metabotropic (P2Y) and ionotropic (P2X). However, specific receptors for these substances, other than ATP receptors, have been described in presynaptic terminals form rat midbrain. These specific dinucleotide receptors are of ionotropic nature and their activation induces calcium entry into the terminals and the subsequent neurotransmitter release. Calcium signals that cannot be attributable to the interaction of Ap(n)A with ATP receptors have also been described in cerebellar synaptosomes and granule cell neurons in culture, where Ap(5)A induces CaMKII activation. In addition, cerebellar astrocytes express a specific Ap(5)A receptor coupled to ERK activation. Ap(5)A engaged to MAPK cascade by a mechanism that was insensitive to pertussis toxin and required the involvement of src and ras proteins. Diadenosine polyphosphates, acting on their specific receptors and/or ATP receptors, can also interact with other neurotransmitter systems. This broad range of actions and interactions open a promising perspective for some relevant physiological roles for the dinucleotides. However, the physiological significance of these compounds in the CNS is still to be determined.
Collapse
Affiliation(s)
- Esmerilda G Delicado
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|