1
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
2
|
Huang L, Zhang W, Han Y, Tang Y, Zhou W, Liu G, Shi W. Anti-Depressant Fluoxetine Hampers Olfaction of Goldfish by Interfering with the Initiation, Transmission, and Processing of Olfactory Signals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15848-15859. [PMID: 36260920 DOI: 10.1021/acs.est.2c02987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of fluoxetine (FLX) in aquatic environments poses great threat to fish species. However, little is known about its deleterious impacts on fish olfaction. In this study, the olfactory toxicity of FLX at environmentally realistic levels was assessed by monitoring the behavioral and electroolfactogram (EOG) responses to olfactory stimuli with goldfish (Carassius auratus), and the toxification mechanisms underlying the observed olfaction dysfunction were also investigated. Our results showed that the behavioral and EOG responses of goldfish to olfactory stimuli were significantly weakened by FLX, indicating an evident toxicity of FLX to olfaction. Moreover, FLX exposure led to significant alterations in olfactory initiation-related genes, suppression of ion pumps (Ca2+-ATPase and Na+/K+-ATPase), tissue lesions, and fewer olfactory sensory neurons in olfactory epithelium. In addition to altering the expression of olfactory transmission-related genes, comparative metabolomic analysis found that olfaction-related neurotransmitters (i.e., l-glutamate and acetylcholine) and the olfactory transduction pathway were significantly affected by FLX. Furthermore, evident tissue lesions, aggravated lipid peroxidation and apoptosis, and less neuropeptide Y were observed in the olfactory bulbs of FLX-exposed goldfish. Our findings indicate that FLX may hamper goldfish olfaction by interfering with the initiation, transmission, and processing of olfactory signals.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Ali AAH, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C. P2Y 2 deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 2021; 35:e21546. [PMID: 33817825 DOI: 10.1096/fj.202002419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs particularly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. This continuous addition of neurons to pre-existing neuronal networks is essential for intact cognitive and olfactory functions, respectively. Purinergic signaling modulates adult neurogenesis, however, the role of individual purinergic receptor subtypes in this dynamic process and related cognitive performance is poorly understood. In this study, we analyzed the role of P2Y2 receptor in the neurogenic niches and in related forebrain functions such as spatial working memory and olfaction using mice with a targeted deletion of the P2Y2 receptor (P2Y2-/- ). Proliferation, migration, differentiation, and survival of neuronal precursor cells (NPCs) were analyzed by BrdU assay and immunohistochemistry; signal transduction pathway components were analyzed by immunoblot. In P2Y2-/- mice, proliferation of NPCs in the SGZ and the SVZ was reduced. However, migration, neuronal fate decision, and survival were not affected. Moreover, p-Akt expression was decreased in P2Y2-/- mice. P2Y2-/- mice showed an impaired performance in the Y-maze and a higher latency in the hidden food test. These data indicate that the P2Y2 receptor plays an important role in NPC proliferation as well as in hippocampus-dependent working memory and olfactory function.
Collapse
Affiliation(s)
- Amira A H Ali
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Soha A Hassan
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
4
|
Wang T, Ulrich H, Semyanov A, Illes P, Tang Y. Optical control of purinergic signaling. Purinergic Signal 2021; 17:385-392. [PMID: 34156578 PMCID: PMC8410941 DOI: 10.1007/s11302-021-09799-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
Purinergic signaling plays a pivotal role in physiological processes and pathological conditions. Over the past decades, conventional pharmacological, biochemical, and molecular biology techniques have been utilized to investigate purinergic signaling cascades. However, none of them is capable of spatially and temporally manipulating purinergic signaling cascades. Currently, optical approaches, including optopharmacology and optogenetic, enable controlling purinergic signaling with low invasiveness and high spatiotemporal precision. In this mini-review, we discuss optical approaches for controlling purinergic signaling and their applications in basic and translational science.
Collapse
Affiliation(s)
- Tao Wang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Henning Ulrich
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter Illes
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| | - Yong Tang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
5
|
BAC transgenic mice to study the expression of P2X2 and P2Y 1 receptors. Purinergic Signal 2021; 17:449-465. [PMID: 34050505 PMCID: PMC8410928 DOI: 10.1007/s11302-021-09792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Extracellular purines are important signaling molecules involved in numerous physiological and pathological processes via the activation of P2 receptors. Information about the spatial and temporal P2 receptor (P2R) expression and its regulation remains crucial for the understanding of the role of P2Rs in health and disease. To identify cells carrying P2X2Rs in situ, we have generated BAC transgenic mice that express the P2X2R subunits as fluorescent fusion protein (P2X2-TagRFP). In addition, we generated a BAC P2Y1R TagRFP reporter mouse expressing a TagRFP reporter for the P2RY1 gene expression. We demonstrate expression of the P2X2R in a subset of DRG neurons, the brain stem, the hippocampus, as well as on Purkinje neurons of the cerebellum. However, the weak fluorescence intensity in our P2X2R-TagRFP mouse precluded tracking of living cells. Our P2Y1R reporter mice confirmed the widespread expression of the P2RY1 gene in the CNS and indicate for the first time P2RY1 gene expression in mouse Purkinje cells, which so far has only been described in rats and humans. Our P2R transgenic models have advanced the understanding of purinergic transmission, but BAC transgenic models appeared not always to be straightforward and permanent reliable. We noticed a loss of fluorescence intensity, which depended on the number of progeny generations. These problems are discussed and may help to provide more successful animal models, even if in future more versatile and adaptable nuclease-mediated genome-editing techniques will be the methods of choice.
Collapse
|
6
|
Fischer T, Prey J, Eschholz L, Rotermund N, Lohr C. Norepinephrine-Induced Calcium Signaling and Store-Operated Calcium Entry in Olfactory Bulb Astrocytes. Front Cell Neurosci 2021; 15:639754. [PMID: 33833669 PMCID: PMC8021869 DOI: 10.3389/fncel.2021.639754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
It is well-established that astrocytes respond to norepinephrine with cytosolic calcium rises in various brain areas, such as hippocampus or neocortex. However, less is known about the effect of norepinephrine on olfactory bulb astrocytes. In the present study, we used confocal calcium imaging and immunohistochemistry in mouse brain slices of the olfactory bulb, a brain region with a dense innervation of noradrenergic fibers, to investigate the calcium signaling evoked by norepinephrine in astrocytes. Our results show that application of norepinephrine leads to a cytosolic calcium rise in astrocytes which is independent of neuronal activity and mainly mediated by PLC/IP3-dependent internal calcium release. In addition, store-operated calcium entry (SOCE) contributes to the late phase of the response. Antagonists of both α1- and α2-adrenergic receptors, but not β-receptors, largely reduce the adrenergic calcium response, indicating that both α-receptor subtypes mediate norepinephrine-induced calcium transients in olfactory bulb astrocytes, whereas β-receptors do not contribute to the calcium transients.
Collapse
Affiliation(s)
- Timo Fischer
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Jessica Prey
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Lena Eschholz
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Natalie Rotermund
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Jeschik N, Schneider T, Meier C. Photocaged and Mixed Photocaged Bioreversible‐Protected ATP Derivatives as Tools for the Controlled Release of ATP. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nils Jeschik
- Organic Chemistry Department of Chemistry University of Hamburg Martin‐Luther‐Platz 6 20146 Hamburg Germany
| | - Tobias Schneider
- Organic Chemistry Department of Chemistry University of Hamburg Martin‐Luther‐Platz 6 20146 Hamburg Germany
| | - Chris Meier
- Organic Chemistry Department of Chemistry University of Hamburg Martin‐Luther‐Platz 6 20146 Hamburg Germany
| |
Collapse
|
8
|
Dopamine-induced calcium signaling in olfactory bulb astrocytes. Sci Rep 2020; 10:631. [PMID: 31959788 PMCID: PMC6971274 DOI: 10.1038/s41598-020-57462-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/30/2019] [Indexed: 11/08/2022] Open
Abstract
It is well established that astrocytes respond to the major neurotransmitters glutamate and GABA with cytosolic calcium rises, whereas less is known about the effect of dopamine on astroglial cells. In the present study, we used confocal calcium imaging in mouse brain slices of the olfactory bulb, a brain region with a large population of dopaminergic neurons, to investigate calcium signaling evoked by dopamine in astrocytes. Our results show that application of dopamine leads to a dose-dependent cytosolic calcium rise in astrocytes (EC50 = 76 µM) which is independent of neuronal activity and mainly mediated by PLC/IP3-dependent internal calcium release. Antagonists of both D1- and D2-class dopamine receptors partly reduce the dopaminergic calcium response, indicating that both receptor classes contribute to dopamine-induced calcium transients in olfactory bulb astrocytes.
Collapse
|
9
|
Li W, Lin J, Wang T, Huang P. Photo-triggered Drug Delivery Systems for Neuron-related Applications. Curr Med Chem 2019; 26:1406-1422. [PMID: 29932026 DOI: 10.2174/0929867325666180622121801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
The development of materials, chemistry and genetics has created a great number of systems for delivering antibiotics, neuropeptides or other drugs to neurons in neuroscience research, and has also provided important and powerful tools in neuron-related applications. Although these drug delivery systems can facilitate the advancement of neuroscience studies, they still have limited applications due to various drawbacks, such as difficulty in controlling delivery molecules or drugs to the target region, and trouble of releasing them in predictable manners. The combination of optics and drug delivery systems has great potentials to address these issues and deliver molecules or drugs to the nervous system with extraordinary spatiotemporal selectivity triggered by light. In this review, we will introduce the development of photo-triggered drug delivery systems in neuroscience research and their neuron-related applications including regulating neural activities, treating neural diseases and inducing nerve regenerations.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 30332, United States
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Rotermund N, Schulz K, Hirnet D, Lohr C. Purinergic Signaling in the Vertebrate Olfactory System. Front Cell Neurosci 2019; 13:112. [PMID: 31057369 PMCID: PMC6477478 DOI: 10.3389/fncel.2019.00112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adenosine 5'-triphosphate (ATP) is an ubiquitous co-transmitter in the vertebrate brain. ATP itself, as well as its breakdown products ADP and adenosine are involved in synaptic transmission and plasticity, neuron-glia communication and neural development. Although purinoceptors have been demonstrated in the vertebrate olfactory system by means of histological techniques for many years, detailed insights into physiological properties and functional significance of purinergic signaling in olfaction have been published only recently. We review the current literature on purinergic neuromodulation, neuron-glia interactions and neurogenesis in the vertebrate olfactory system.
Collapse
Affiliation(s)
- Natalie Rotermund
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Beiersdorfer A, Scheller A, Kirchhoff F, Lohr C. Panglial gap junctions between astrocytes and olfactory ensheathing cells mediate transmission of Ca 2+ transients and neurovascular coupling. Glia 2019; 67:1385-1400. [PMID: 30883940 DOI: 10.1002/glia.23613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
Abstract
Astrocytes are arranged in highly organized gap junction-coupled networks, communicating via the propagation of Ca2+ waves. Astrocytes are gap junction-coupled not only to neighboring astrocytes, but also to oligodendrocytes, forming so-called panglial syncytia. It is not known, however, whether glial cells in panglial syncytia transmit information using Ca2+ signaling. We used confocal Ca2+ imaging to study intercellular communication between astrocytes and olfactory ensheathing glial cells (OECs) in in-toto preparations of the mouse olfactory bulb. Our results demonstrate that Ca2+ transients in juxtaglomerular astrocytes, evoked by local photolysis of "caged" ATP and "caged" tACPD, led to subsequent Ca2+ responses in OECs. This transmission of Ca2+ responses from astrocytes to OECs persisted in the presence of neuronal inhibition, but was absent when gap junctional coupling was suppressed with carbenoxolone. When Ca2+ transients were directly evoked in OECs by puff application of DHPG, they resulted in delayed Ca2+ responses in juxtaglomerular astrocytes, indicating that panglial transmission of Ca2+ signals occurred in a bidirectional manner. In addition, panglial transmission of Ca2+ signals from astrocytes to OECs resulted in vasoconstriction of OEC-associated blood vessels in the olfactory nerve layer. Our results demonstrate functional transmission of Ca2+ signals between different classes of glial cells within gap junction-coupled panglial networks and the resulting regulation of blood vessel diameter in the olfactory bulb.
Collapse
Affiliation(s)
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Rotermund N, Winandy S, Fischer T, Schulz K, Fregin T, Alstedt N, Buchta M, Bartels J, Carlström M, Lohr C, Hirnet D. Adenosine A 1 receptor activates background potassium channels and modulates information processing in olfactory bulb mitral cells. J Physiol 2018; 596:717-733. [PMID: 29274133 DOI: 10.1113/jp275503] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Adenosine is a widespread neuromodulator in the mammalian brain, but whether it affects information processing in sensory system(s) remains largely unknown. Here we show that adenosine A1 receptors hyperpolarize mitral cells, one class of principal neurons that propagate odour information from the olfactory bulb to higher brain areas, by activation of background K+ channels. The adenosine-modulated background K+ channels belong to the family of two-pore domain K+ channels. Adenosine reduces spontaneous activity of mitral cells, whereas action potential firing evoked by synaptic input upon stimulation of sensory neurons is not affected, resulting in a higher ratio of evoked firing (signal) over spontaneous firing (noise) and hence an improved signal-to-noise ratio. The study shows for the first time that adenosine influences fine-tuning of the input-output relationship in sensory systems. ABSTRACT Neuromodulation by adenosine is of critical importance in many brain regions, but the role of adenosine in olfactory information processing has not been studied so far. We investigated the effects of adenosine on mitral cells, which are projection neurons of the olfactory bulb. Significant expression of A1 and A2A receptors was found in mitral cells, as demonstrated by in situ hybridization. Application of adenosine in acute olfactory bulb slices hyperpolarized mitral cells in wild-type but not in adenosine A1 receptor knockout mice. Adenosine-induced hyperpolarization was mediated by background K+ currents that were reduced by halothane and bupivacaine, which are known to inhibit two-pore domain K+ (K2P) channels. In mitral cells, electrical stimulation of axons of olfactory sensory neurons evoked synaptic currents, which can be considered as input signals, while spontaneous firing independent of sensory input can be considered as noise. Synaptic currents were not affected by adenosine, while adenosine reduced spontaneous firing, leading to an increase in the signal-to-noise ratio of mitral cell firing. Our findings demonstrate that A1 adenosine receptors activate two-pore domain K+ channels, which increases the signal-to-noise ratio of the input-output relationship in mitral cells and thereby modulates information processing in the olfactory bulb.
Collapse
Affiliation(s)
- Natalie Rotermund
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Svenja Winandy
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Timo Fischer
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Kristina Schulz
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Torsten Fregin
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Nadine Alstedt
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Melanie Buchta
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Janick Bartels
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz Väg 2, Stockholm, 17177, Sweden
| | - Christian Lohr
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| |
Collapse
|
13
|
Schulz K, Rotermund N, Grzelka K, Benz J, Lohr C, Hirnet D. Adenosine A 1 Receptor-Mediated Attenuation of Reciprocal Dendro-Dendritic Inhibition in the Mouse Olfactory Bulb. Front Cell Neurosci 2018; 11:435. [PMID: 29379418 PMCID: PMC5775233 DOI: 10.3389/fncel.2017.00435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022] Open
Abstract
It is well described that A1 adenosine receptors inhibit synaptic transmission at excitatory synapses in the brain, but the effect of adenosine on reciprocal synapses has not been studied so far. In the olfactory bulb, the majority of synapses are reciprocal dendro-dendritic synapses mediating recurrent inhibition. We studied the effect of A1 receptor activation on recurrent dendro-dendritic inhibition in mitral cells using whole-cell patch-clamp recordings. Adenosine reduced dendro-dendritic inhibition in wild-type, but not in A1 receptor knock-out mice. Both NMDA receptor-mediated and AMPA receptor-mediated dendro-dendritic inhibition were attenuated by adenosine, indicating that reciprocal synapses between mitral cells and granule cells as well as parvalbumin interneurons were targeted by A1 receptors. Adenosine reduced glutamatergic self-excitation and inhibited N-type and P/Q-type calcium currents, but not L-type calcium currents in mitral cells. Attenuated glutamate release, due to A1 receptor-mediated calcium channel inhibition, resulted in impaired dendro-dendritic inhibition. In behavioral tests we tested the ability of wild-type and A1 receptor knock-out mice to find a hidden piece of food. Knock-out mice were significantly faster in locating the food. Our results indicate that A1 adenosine receptors attenuates dendro-dendritic reciprocal inhibition and suggest that they affect odor information processing.
Collapse
Affiliation(s)
- Kristina Schulz
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Natalie Rotermund
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Katarzyna Grzelka
- Department of Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Jan Benz
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
14
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
15
|
Burnstock G, Dale N. Purinergic signalling during development and ageing. Purinergic Signal 2015; 11:277-305. [PMID: 25989750 PMCID: PMC4529855 DOI: 10.1007/s11302-015-9452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023] Open
Abstract
Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
16
|
Purinergic neuron-glia interactions in sensory systems. Pflugers Arch 2014; 466:1859-72. [DOI: 10.1007/s00424-014-1510-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023]
|
17
|
Thyssen A, Stavermann M, Buddrus K, Doengi M, Ekberg JA, St John JA, Deitmer JW, Lohr C. Spatial and developmental heterogeneity of calcium signaling in olfactory ensheathing cells. Glia 2012; 61:327-37. [PMID: 23109369 DOI: 10.1002/glia.22434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 09/11/2012] [Indexed: 12/24/2022]
Abstract
Olfactory ensheathing cells (OECs) are specialized glial cells in the mammalian olfactory system supporting growth of axons from the olfactory epithelium into the olfactory bulb. OECs in the olfactory bulb can be subdivided into OECs of the outer nerve layer and the inner nerve layer according to the expression of marker proteins and their location in the nerve layer. In the present study, we have used confocal calcium imaging of OECs in acute mouse brain slices and olfactory bulbs in toto to investigate physiological differences between OEC subpopulations. OECs in the outer nerve layer, but not the inner nerve layer, responded to glutamate, ATP, serotonin, dopamine, carbachol, and phenylephrine with increases in the cytosolic calcium concentration. The calcium responses consisted of a transient and a tonic component, the latter being mediated by store-operated calcium entry. Calcium measurements in OECs during the first three postnatal weeks revealed a downregulation of mGluR(1) and P2Y(1) receptor-mediated calcium signaling within the first 2 weeks, suggesting that the expression of these receptors is developmentally controlled. In addition, electrical stimulation of sensory axons evoked calcium signaling via mGluR(1) and P2Y(1) only in outer nerve layer OECs. Downregulation of the receptor-mediated calcium responses in postnatal animals is reflected by a decrease in amplitude of stimulation-evoked calcium transients in OECs from postnatal days 3 to 21. In summary, the results presented reveal striking differences in receptor responses during development and in axon-OEC communication between the two subpopulations of OECs in the olfactory bulb.
Collapse
Affiliation(s)
- Anne Thyssen
- Abteilung für Allgemeine Zoologie, TU Kaiserslautern, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Patterns of heterogeneous expression of pannexin 1 and pannexin 2 transcripts in the olfactory epithelium and olfactory bulb. J Mol Histol 2012; 43:651-60. [PMID: 22945868 DOI: 10.1007/s10735-012-9443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Pannexins form membrane channels that release biological signals to communicate with neighboring cells. Here, we report expression patterns of pannexin 1 (Panx1) and pannexin 2 (Panx2) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNAs for Panx1 and Panx2 were both expressed in the olfactory epithelium and olfactory bulb. Expression of Panx1 and Panx2 was mainly found in cell bodies below the sustentacular cell layer in the olfactory epithelium, indicating that Panx1 and Panx2 are expressed in mature and immature olfactory neurons, and basal cells. Expression of Panx2 was observed in sustentacular cells in a few locations of the olfactory epithelium. In the olfactory bulb, Panx1 and Panx2 were expressed in spatial patterns. Many mitral cells, tufted cells, periglomerular cells and granule cells were Panx1 and Panx2 positive. Mitral cells located at the dorsal and lateral portions of the olfactory bulb showed weak Panx1 expression compared with those in the medial side. However, the opposite was true for the distribution of Panx2 positive mitral cells. There were more Panx2 mRNA positive mitral cells and granule cells compared to those expressing Panx1. Our findings on pannexin expression in the olfactory system of adult mice raise the novel possibility that pannexins play a role in information processing in the olfactory system. Demonstration of expression patterns of pannexins in the olfactory system provides an anatomical basis for future functional studies.
Collapse
|