1
|
Alçada-Morais S, Gonçalves N, Moreno-Juan V, Andres B, Ferreira S, Marques JM, Magalhães J, Rocha JMM, Xu X, Partidário M, Cunha RA, López-Bendito G, Rodrigues RJ. Adenosine A2A Receptors Contribute to the Radial Migration of Cortical Projection Neurons through the Regulation of Neuronal Polarization and Axon Formation. Cereb Cortex 2021; 31:5652-5663. [PMID: 34184030 DOI: 10.1093/cercor/bhab188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/02/2023] Open
Abstract
Cortical interneurons born in the subpallium reach the cortex through tangential migration, whereas pyramidal cells reach their final position by radial migration. Purinergic signaling via P2Y1 receptors controls the migration of intermediate precursor cells from the ventricular zone to the subventricular zone. It was also reported that the blockade of A2A receptors (A2AR) controls the tangential migration of somatostatin+ interneurons. Here we found that A2AR control radial migration of cortical projection neurons. In A2AR-knockout (KO) mouse embryos or naïve mouse embryos exposed to an A2AR antagonist, we observed an accumulation of early-born migrating neurons in the lower intermediate zone at late embryogenesis. In utero knockdown of A2AR also caused an accumulation of neurons at the lower intermediate zone before birth. This entails the presently identified ability of A2AR to promote multipolar-bipolar transition and axon formation, critical for the transition of migrating neurons from the intermediate zone to the cortical plate. This effect seems to require extracellular ATP-derived adenosine since a similar accumulation of neurons at the lower intermediate zone was observed in mice lacking ecto-5'-nucleotidase (CD73-KO). These findings frame adenosine as a fine-tune regulator of the wiring of cortical inhibitory and excitatory networks.
Collapse
Affiliation(s)
- Sofia Alçada-Morais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | | | - Belén Andres
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante 03550, Spain
| | - Sofia Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Joana M Marques
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Joana Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - João M M Rocha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Xinli Xu
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Matilde Partidário
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal
| | | | - Ricardo J Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| |
Collapse
|
2
|
Salient brain entities labelled in P2rx7-EGFP reporter mouse embryos include the septum, roof plate glial specializations and circumventricular ependymal organs. Brain Struct Funct 2021; 226:715-741. [PMID: 33427974 PMCID: PMC7981336 DOI: 10.1007/s00429-020-02204-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
The purinergic system is one of the oldest cell-to-cell communication mechanisms and exhibits relevant functions in the regulation of the central nervous system (CNS) development. Amongst the components of the purinergic system, the ionotropic P2X7 receptor (P2X7R) stands out as a potential regulator of brain pathology and physiology. Thus, P2X7R is known to regulate crucial aspects of neuronal cell biology, including axonal elongation, path-finding, synapse formation and neuroprotection. Moreover, P2X7R modulates neuroinflammation and is posed as a therapeutic target in inflammatory, oncogenic and degenerative disorders. However, the lack of reliable technical and pharmacological approaches to detect this receptor represents a major hurdle in its study. Here, we took advantage of the P2rx7-EGFP reporter mouse, which expresses enhanced green fluorescence protein (EGFP) immediately downstream of the P2rx7 proximal promoter, to conduct a detailed study of its distribution. We performed a comprehensive analysis of the pattern of P2X7R expression in the brain of E18.5 mouse embryos revealing interesting areas within the CNS. Particularly, strong labelling was found in the septum, as well as along the entire neural roof plate zone of the brain, except chorioidal roof areas, but including specialized circumventricular roof formations, such as the subfornical and subcommissural organs (SFO; SCO). Moreover, our results reveal what seems a novel circumventricular organ, named by us postarcuate organ (PArcO). Furthermore, this study sheds light on the ongoing debate regarding the specific presence of P2X7R in neurons and may be of interest for the elucidation of additional roles of P2X7R in the idiosyncratic histologic development of the CNS and related systemic functions.
Collapse
|
3
|
Paniagua-Herranz L, Menéndez-Méndez A, Gómez-Villafuertes R, Olivos-Oré LA, Biscaia M, Gualix J, Pérez-Sen R, Delicado EG, Artalejo AR, Miras-Portugal MT, Ortega F. Live Imaging Reveals Cerebellar Neural Stem Cell Dynamics and the Role of VNUT in Lineage Progression. Stem Cell Reports 2020; 15:1080-1094. [PMID: 33065045 PMCID: PMC7663791 DOI: 10.1016/j.stemcr.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/04/2022] Open
Abstract
Little is known about the intrinsic specification of postnatal cerebellar neural stem cells (NSCs) and to what extent they depend on information from their local niche. Here, we have used an adapted cell preparation of isolated postnatal NSCs and live imaging to demonstrate that cerebellar progenitors maintain their neurogenic nature by displaying hallmarks of NSCs. Furthermore, by using this preparation, all the cell types produced postnatally in the cerebellum, in similar relative proportions to those observed in vivo, can be monitored. The fact that neurogenesis occurs in such organized manner in the absence of signals from the local environment, suggests that cerebellar lineage progression is to an important extent governed by cell-intrinsic or pre-programmed events. Finally, we took advantage of the absence of the niche to assay the influence of the vesicular nucleotide transporter inhibition, which dramatically reduced the number of NSCs in vitro by promoting their progression toward neurogenesis. We present a preparation that allows monitoring the behavior of cerebellar NSCs Isolated NSCs maintain their neurogenic nature in absence of niche factors The model enables monitoring the three postnatal cerebellar niches simultaneously VNUT influences the balance between quiescence and activation of cerebellar NSCs
Collapse
Affiliation(s)
- Lucía Paniagua-Herranz
- Departament of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Aida Menéndez-Méndez
- Departament of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departament of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Luis A Olivos-Oré
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Pharmacology and Toxicology, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Biscaia
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Javier Gualix
- Departament of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Raquel Pérez-Sen
- Departament of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G Delicado
- Departament of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Antonio R Artalejo
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Pharmacology and Toxicology, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - María Teresa Miras-Portugal
- Departament of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Departament of Biochemistry and Molecular Biology, Faculty of Veterinary, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
4
|
Cymer M, Brzezniakiewicz-Janus K, Bujko K, Thapa A, Ratajczak J, Anusz K, Tracz M, Jackowska-Tracz A, Ratajczak MZ, Adamiak M. Pannexin-1 channel "fuels" by releasing ATP from bone marrow cells a state of sterile inflammation required for optimal mobilization and homing of hematopoietic stem cells. Purinergic Signal 2020; 16:313-325. [PMID: 32533388 PMCID: PMC7524928 DOI: 10.1007/s11302-020-09706-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
An efficient harvest of hematopoietic stem/progenitor cells (HSPCs) after pharmacological mobilization from the bone marrow (BM) into peripheral blood (PB) and subsequent proper homing and engraftment of these cells are crucial for clinical outcomes from hematopoietic transplants. Since extracellular adenosine triphosphate (eATP) plays an important role in both processes as an activator of sterile inflammation in the bone marrow microenvironment, we focused on the role of Pannexin-1 channel in the secretion of ATP to trigger both egress of HSPCs out of BM into PB as well as in reverse process that is their homing to BM niches after transplantation into myeloablated recipient. We employed a specific blocking peptide against Pannexin-1 channel and noticed decreased mobilization efficiency of HSPCs as well as other types of BM-residing stem cells including mesenchymal stroma cells (MSCs), endothelial progenitors (EPCs), and very small embryonic-like stem cells (VSELs). To explain better a role of Pannexin-1, we report that eATP activated Nlrp3 inflammasome in Gr-1+ and CD11b+ cells enriched for granulocytes and monocytes. This led to release of danger-associated molecular pattern molecules (DAMPs) and mitochondrial DNA (miDNA) that activate complement cascade (ComC) required for optimal egress of HSPCs from BM. On the other hand, Pannexin-1 channel blockage in transplant recipient mice leads to a defect in homing and engraftment of HSPCs. Based on this, Pannexin-1 channel as a source of eATP plays an important role in HSPCs trafficking.
Collapse
Affiliation(s)
- Monika Cymer
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, ul. Żwirki i Wigury 61, 02-091, Warsaw, Poland
| | | | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Arjun Thapa
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Krzysztof Anusz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Michał Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Agnieszka Jackowska-Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Mariusz Z Ratajczak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, ul. Żwirki i Wigury 61, 02-091, Warsaw, Poland
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mateusz Adamiak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, ul. Żwirki i Wigury 61, 02-091, Warsaw, Poland.
| |
Collapse
|
5
|
Inoue A, Nakao-Kuroishi K, Kometani-Gunjigake K, Mizuhara M, Shirakawa T, Ito-Sago M, Yasuda K, Nakatomi M, Matsubara T, Tada-Shigeyama Y, Morikawa K, Kokabu S, Kawamoto T. VNUT/SLC17A9, a vesicular nucleotide transporter, regulates osteoblast differentiation. FEBS Open Bio 2020; 10:1612-1623. [PMID: 32592329 PMCID: PMC7396442 DOI: 10.1002/2211-5463.12918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoblasts release adenosine triphosphate (ATP) out of the cell following mechanical stress. Although it is well established that extracellular ATP affects bone metabolism via P2 receptors [such as purinergic receptor P2X7 (P2X7R) and purinergic receptor P2Y2 (P2Y2R)], the mechanism of ATP release from osteoblasts remains unknown. Recently, a vesicular nucleotide transporter [VNUT, solute carrier family 17 member 9 (SLC17A9)] that preserves ATP in vesicles has been identified. The purpose of this study was to elucidate the role of VNUT in osteoblast bone metabolism. mRNA and protein expression of VNUT were confirmed in mouse bone and in osteoblasts by quantitative real-time PCR (qPCR) and immunohistochemistry. Next, when compressive force was applied to MC3T3-E1 cells by centrifugation, the expression of Slc17a9, P2x7r, and P2y2r was increased concomitant with an increase in extracellular ATP levels. Furthermore, compressive force decreased the osteoblast differentiation capacity of MC3T3-E1 cells. shRNA knockdown of Slc17a9 in MC3T3-E1 cells reduced levels of extracellular ATP and also led to increased osteoblast differentiation after the application of compressive force as assessed by qPCR analysis of osteoblast markers such as Runx2, Osterix, and alkaline phosphatase (ALP) as well as ALP activity. Consistent with these observations, knockdown of P2x7r or P2y2r by siRNA partially rescued the downregulation of osteoblast differentiation markers, caused by mechanical loading. In conclusion, our results demonstrate that VNUT is expressed in osteoblasts and that VNUT inhibits osteoblast differentiation in response to compressive force by mechanisms related to ATP release and P2X7R and/or P2Y2R activity.
Collapse
Affiliation(s)
- Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kayoko Nakao-Kuroishi
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kaori Kometani-Gunjigake
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Masahiro Mizuhara
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Misa Ito-Sago
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kazuma Yasuda
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Yukiyo Tada-Shigeyama
- Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kazumasa Morikawa
- Division of Pediatric and Special Care Dentistry, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| |
Collapse
|
6
|
Mateus JM, Ribeiro FF, Alonso-Gomes M, Rodrigues RS, Marques JM, Sebastião AM, Rodrigues RJ, Xapelli S. Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joana M. Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Alonso-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M. Marques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo J. Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Rodrigues RJ, Marques JM, Cunha RA. Purinergic signalling and brain development. Semin Cell Dev Biol 2019; 95:34-41. [DOI: 10.1016/j.semcdb.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 11/27/2022]
|
8
|
Zhang Q, Zhao J, Shen J, Zhang X, Ren R, Ma Z, He Y, Kang Q, Wang Y, Dong X, Sun J, Liu Z, Yi X. The ATP-P2X7 Signaling Pathway Participates in the Regulation of Slit1 Expression in Satellite Glial Cells. Front Cell Neurosci 2019; 13:420. [PMID: 31607866 PMCID: PMC6761959 DOI: 10.3389/fncel.2019.00420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022] Open
Abstract
Slit1 is one of the known signaling factors of the slit family and can promote neurite growth by binding to its receptor, Robo2. Upregulation of Slit1 expression in dorsal root ganglia (DRG) after peripheral nerve injury plays an important role in nerve regeneration. Each sensory neuronal soma in the DRG is encapsulated by several surrounding satellite glial cells (SGCs) to form a neural structural unit. However, the temporal and spatial patterns of Slit1 upregulation in SGCs in DRG and its molecular mechanisms are not well understood. This study examined the spatial and temporal patterns of Slit1 expression in DRG after sciatic nerve crush by immunohistochemistry and western blotting. The effect of neuronal damage signaling on the expression of Slit1 in SGCs was studied in vivo by fluorescent gold retrograde tracing and double immunofluorescence staining. The relationship between the expression of Slit1 in SGCs and neuronal somas was also observed by culturing DRG cells and double immunofluorescence labeling. The molecular mechanism of Slit1 was further explored by immunohistochemistry and western blotting after intraperitoneal injection of Bright Blue G (BBG, P2X7R inhibitor). The results showed that after peripheral nerve injury, the expression of Slit1 in the neurons and SGCs of DRG increased. The expression of Slit1 was presented with a time lag in SGCs than in neurons. The expression of Slit1 in SGCs was induced by contact with surrounding neuronal somas. Through injured cell localization, it was found that the expression of Slit1 was stronger in SGCs surrounding injured neurons than in SGCs surrounding non-injured neurons. The expression of vesicular nucleotide transporter (VNUT) in DRG neurons was increased by injury signaling. After the inhibition of P2X7R, the expression of Slit1 in SGCs was downregulated, and the expression of VNUT in DRG neurons was upregulated. These results indicate that the ATP-P2X7R pathway is involved in signal transduction from peripheral nerve injury to SGCs, leading to the upregulation of Slit1 expression.
Collapse
Affiliation(s)
- Quanpeng Zhang
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Jiuhong Zhao
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Jing Shen
- Department of Ophthalmology, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianfang Zhang
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Rui Ren
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Zhijian Ma
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Yuebin He
- Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| | - Qian Kang
- Infection Control Department, People's Hospital of Xing'an County, Guilin, China
| | - Yanshan Wang
- Quality Inspection Department, Minghui Industry (Shenzhen) Co., Ltd., Shenzhen, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, China
| | - Jin Sun
- Department of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Zhuozhou Liu
- Department of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Xinan Yi
- Department of Anatomy, Hainan Medical University, Haikou, China.,Joint Laboratory for Neuroscience, Hainan Medical University, Fourth Military Medical University, Haikou, China
| |
Collapse
|
9
|
Miras-Portugal MT, Menéndez-Méndez A, Gómez-Villafuertes R, Ortega F, Delicado EG, Pérez-Sen R, Gualix J. Physiopathological Role of the Vesicular Nucleotide Transporter (VNUT) in the Central Nervous System: Relevance of the Vesicular Nucleotide Release as a Potential Therapeutic Target. Front Cell Neurosci 2019; 13:224. [PMID: 31156398 PMCID: PMC6533569 DOI: 10.3389/fncel.2019.00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
Vesicular storage of neurotransmitters, which allows their subsequent exocytotic release, is essential for chemical transmission in the central nervous system. Neurotransmitter uptake into secretory vesicles is carried out by vesicular transporters, which use the electrochemical proton gradient generated by a vacuolar H+-ATPase to drive neurotransmitter vesicular accumulation. ATP and other nucleotides are relevant extracellular signaling molecules that participate in a variety of biological processes. Although the active transport of nucleotides into secretory vesicles has been characterized from the pharmacological and biochemical point of view, the protein responsible for such vesicular accumulation remained unidentified for some time. In 2008, the human SLC17A9 gene, the last identified member of the SLC17 transporters, was found to encode the vesicular nucleotide transporter (VNUT). VNUT is expressed in various ATP-secreting cells and is able to transport a wide variety of nucleotides in a vesicular membrane potential-dependent manner. VNUT knockout mice lack vesicular storage and release of ATP, resulting in blockage of the purinergic transmission. This review summarizes the current studies on VNUT and analyzes the physiological relevance of the vesicular nucleotide transport in the central nervous system. The possible role of VNUT in the development of some pathological processes, such as chronic neuropathic pain or glaucoma is also discussed. The putative involvement of VNUT in these pathologies raises the possibility of the use of VNUT inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- María T Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Aida Menéndez-Méndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
10
|
Abstract
To evaluate changes in DNA methylation profiles in patients with fibromyalgia (FM) compared to matched healthy controls (HCs). All individuals underwent full clinical and neurophysiological assessment by cortical excitability (CE) parameters measured by transcranial magnetic stimulation. DNA from the peripheral blood of patients with FM (n = 24) and HC (n = 24) were assessed using the Illumina-HumanMethylation450 BeadChips. We identified 1610 differentially methylated positions (DMPs) in patients with FM displaying a nonrandom distribution in regions of the genome. Sixty-nine percent of DMP in FM were hypomethylated compared to HC. Differentially methylated positions were enriched in 5 genomic regions (1p34; 6p21; 10q26; 17q25; 19q13). The functional characterization of 960 genes related to DMPs revealed an enrichment for MAPK signaling pathway (n = 18 genes), regulation of actin cytoskeleton (n = 15 genes), and focal adhesion (n = 13 genes). A gene-gene interaction network enrichment analysis revealed the participation of DNA repair pathways, mitochondria-related processes, and synaptic signaling. Even though DNA was extracted from peripheral blood, this set of genes was enriched for disorders such as schizophrenia, mood disorders, bulimia, hyperphagia, and obesity. Remarkably, the hierarchical clusterization based on the methylation levels of the 1610 DMPs showed an association with neurophysiological measurements of CE in FM and HC. Fibromyalgia has a hypomethylation DNA pattern, which is enriched in genes implicated in stress response and DNA repair/free radical clearance. These changes occurred parallel to changes in CE parameters. New epigenetic insights into the pathophysiology of FM may provide the basis for the development of biomarkers of this disorder.
Collapse
|
11
|
Menéndez-Méndez A, Díaz-Hernández JI, Ortega F, Gualix J, Gómez-Villafuertes R, Miras-Portugal MT. Specific Temporal Distribution and Subcellular Localization of a Functional Vesicular Nucleotide Transporter (VNUT) in Cerebellar Granule Neurons. Front Pharmacol 2017; 8:951. [PMID: 29311945 PMCID: PMC5744399 DOI: 10.3389/fphar.2017.00951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022] Open
Abstract
Adenosine triphosphate (ATP) is an important extracellular neurotransmitter that participates in several critical processes like cell differentiation, neuroprotection or axon guidance. Prior to its exocytosis, ATP must be stored in secretory vesicles, a process that is mediated by the Vesicular Nucleotide Transporter (VNUT). This transporter has been identified as the product of the SLC17A9 gene and it is prominently expressed in discrete brain areas, including the cerebellum. The main population of cerebellar neurons, the glutamatergic granule neurons, depends on purinergic signaling to trigger neuroprotective responses. However, while nucleotide receptors like P2X7 and P2Y13 are known to be involved in neuroprotection, the mechanisms that regulate ATP release in relation to such events are less clearly understood. In this work, we demonstrate that cerebellar granule cells express a functional VNUT that is involved in the regulation of ATP exocytosis. Numerous vesicles loaded with this nucleotide can be detected in these granule cells and are staining by the fluorescent ATP-marker, quinacrine. High potassium stimulation reduces quinacrine fluorescence in granule cells, indicating they release ATP via calcium dependent exocytosis. Specific subcellular markers were used to assess the localization of VNUT in granule cells, and the transporter was detected in both the axonal and somatodendritic compartments, most predominantly in the latter. However, co-localization with the specific lysosomal marker LAMP-1 indicated that VNUT can also be found in non-synaptic vesicles, such as lysosomes. Interestingly, the weak co-localization between VNUT and VGLUT1 suggests that the ATP and glutamate vesicle pools are segregated, as also observed in the cerebellar cortex. During post-natal cerebellar development, VNUT is found in granule cell precursors, co-localizing with markers of immature cells like doublecortin, suggesting that this transporter may be implicated in the initial stages of granule cell development.
Collapse
Affiliation(s)
- Aida Menéndez-Méndez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan I Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - María T Miras-Portugal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
12
|
Farsi Z, Jahn R, Woehler A. Proton electrochemical gradient: Driving and regulating neurotransmitter uptake. Bioessays 2017; 39. [PMID: 28383767 DOI: 10.1002/bies.201600240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accumulation of neurotransmitters in the lumen of synaptic vesicles (SVs) relies on the activity of the vacuolar-type H+ -ATPase. This pump drives protons into the lumen, generating a proton electrochemical gradient (ΔμH+ ) across the membrane. Recent work has demonstrated that the balance between the chemical (ΔpH) and electrical (ΔΨ) components of ΔμH+ is regulated differently by some distinct vesicle types. As different neurotransmitter transporters use ΔpH and ΔΨ with different relative efficiencies, regulation of this gradient balance has the potential to influence neurotransmitter uptake. Nevertheless, the underlying mechanisms responsible for this regulation remain poorly understood. In this review, we provide an overview of current neurotransmitter uptake models, with a particular emphasis on the distinct roles of the electrical and chemical gradients and current hypotheses for regulatory mechanisms.
Collapse
Affiliation(s)
- Zohreh Farsi
- Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrew Woehler
- Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| |
Collapse
|
13
|
Estévez-Herrera J, Domínguez N, Pardo MR, González-Santana A, Westhead EW, Borges R, Machado JD. ATP: The crucial component of secretory vesicles. Proc Natl Acad Sci U S A 2016; 113:E4098-106. [PMID: 27342860 PMCID: PMC4948319 DOI: 10.1073/pnas.1600690113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.
Collapse
Affiliation(s)
- Judith Estévez-Herrera
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife 38320, Spain
| | - Natalia Domínguez
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife 38320, Spain
| | - Marta R Pardo
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife 38320, Spain; Instituto Universitario de Bio-Orgánica 'Antonio González', Universidad de la Laguna, Tenerife 38320, Spain
| | - Ayoze González-Santana
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife 38320, Spain
| | - Edward W Westhead
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife 38320, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife 38320, Spain; Instituto Universitario de Bio-Orgánica 'Antonio González', Universidad de la Laguna, Tenerife 38320, Spain
| | - José David Machado
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife 38320, Spain
| |
Collapse
|
14
|
Bryant S, Shrestha N, Carnig P, Kosydar S, Belzeski P, Hanna C, Fologea D. Purinergic control of lysenin's transport and voltage-gating properties. Purinergic Signal 2016; 12:549-59. [PMID: 27318938 DOI: 10.1007/s11302-016-9520-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Lysenin, a pore-forming protein extracted from the coelomic fluid of the earthworm Eisenia foetida, manifests cytolytic activity by inserting large conductance pores in host membranes containing sphingomyelin. In the present study, we found that adenosine phosphates control the biological activity of lysenin channels inserted into planar lipid membranes with respect to their macroscopic conductance and voltage-induced gating. Addition of ATP, ADP, or AMP decreased the macroscopic conductance of lysenin channels in a concentration-dependent manner, with ATP being the most potent inhibitor and AMP the least. ATP removal from the bulk solutions by buffer exchange quickly reinstated the macroscopic conductance and demonstrated reversibility. Single-channel experiments pointed to an inhibition mechanism that most probably relies on electrostatic binding and partial occlusion of the channel-conducting pathway, rather than ligand gating induced by the highly charged phosphates. The Hill analysis of the changes in macroscopic conduction as a function of the inhibitor concentration suggested cooperative binding as descriptive of the inhibition process. Ionic screening significantly reduced the ATP inhibitory efficacy, in support of the electrostatic binding hypothesis. In addition to conductance modulation, purinergic control over the biological activity of lysenin channels has also been observed to manifest as changes of the voltage-induced gating profile. Our analysis strongly suggests that not only the inhibitor's charge but also its ability to adopt a folded conformation may explain the differences in the observed influence of ATP, ADP, and AMP on lysenin's biological activity.
Collapse
Affiliation(s)
- Sheenah Bryant
- Department of Physics, Boise State University, Boise, ID, 83725, USA.,Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 83725, USA
| | - Nisha Shrestha
- Department of Physics, Boise State University, Boise, ID, 83725, USA.,Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 83725, USA
| | - Paul Carnig
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Samuel Kosydar
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Philip Belzeski
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Charles Hanna
- Department of Physics, Boise State University, Boise, ID, 83725, USA.,Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID, 83725, USA. .,Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|