1
|
Bao J, Zhang X, Ye M, Yang Y, Xu L, He L, Guo J, Yao D, Wang S, Zhang J, Tian X. Exploration of Novel Metabolic Mechanisms Underlying Primary Biliary Cholangitis Using Hepatic Metabolomics, Lipidomics, and Proteomics Analysis. J Proteome Res 2025. [PMID: 39792460 DOI: 10.1021/acs.jproteome.4c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Metabolic reprogramming is important in primary biliary cholangitis (PBC) development. However, studies investigating the metabolic signature within the liver of PBC patients are limited. In this study, liver biopsies from 31 PBC patients and 15 healthy controls were collected, and comprehensive metabolomics, lipidomics, and proteomics analysis were conducted to characterize the metabolic landscape in PBC. We observed distinct lipidome remodeling in PBC with increased polyunsaturated fatty acid levels and augmented fatty acid β-oxidation (FAO), evidenced by the increased acylcarnitine levels and upregulated expression of proteins involved in FAO. Notably, PBC patients exhibited an increase in glucose-6-phosphate (G6P) and purines, alongside a reduction in pyruvate, suggesting impaired glycolysis and increased purines biosynthesis in PBC. Additionally, the accumulation of bile acids as well as a decrease in branched chain amino acids and aromatic amino acids were observed in PBC liver. We also observed an aberrant upregulation of proteins associated with ductular reaction, apoptosis, and autophagy. In conclusion, our study highlighted substantial metabolic reprogramming in glycolysis, fatty acid metabolism, and purine biosynthesis, coupled with aberrant upregulation of proteins associated with apoptosis and autophagy in PBC patients. Targeting the specific metabolic reprogramming may offer potential targets for the therapeutic intervention of PBC.
Collapse
Affiliation(s)
- Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Mao Ye
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yiqin Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Leiming Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Lulu He
- Department of Biobank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jixin Guo
- School of Stomatology, Wuhan University, Wuhan 430072, China
| | - Daoke Yao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
2
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2024:S2090-1232(24)00123-1. [PMID: 38565403 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Erukainure OL, Chukwuma CI. Coconut ( Cocos nucifera (L.)) Water Improves Glucose Uptake with Concomitant Modulation of Antioxidant and Purinergic Activities in Isolated Rat Psoas Muscles. PLANTS (BASEL, SWITZERLAND) 2024; 13:665. [PMID: 38475510 DOI: 10.3390/plants13050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The present study investigated the effect of coconut water on glucose uptake and utilization, and metabolic activities linked to hyperglycemia in isolated rat psoas muscles. Coconut water was subjected to in vitro antioxidant and antidiabetic assays, which cover 2,2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), and inhibition of α-glucosidase and α-amylase activities. Psoas muscles were isolated from male Sprague Dawley rats and incubated with coconut water in the presence of glucose. Control consisted of muscles incubated with glucose only, while normal control consisted of muscles not incubated in coconut water and/or glucose. The standard antidiabetic drug was metformin. Incubation with coconut water led to a significant increase in muscle glucose uptake, with concomitant exacerbation of glutathione level, and SOD and catalase activities, while suppressing malondialdehyde level, and ATPase and E-NTDase activities. Coconut water showed significant scavenging activity against DPPH, and significantly inhibited α-glucosidase and α-amylase activities. LC-MS analysis of coconut water revealed the presence of ellagic acid, butin, quercetin, protocatechuic acid, baicalin, and silibinin. Molecular docking analysis revealed potent molecular interactions between the LC-MS-identified compounds, and AKT-2 serine and PI-3 kinase. These results indicate the potential of coconut water to enhance glucose uptake, while concomitantly improving antioxidative and purinergic activities. They also indicate the potential of coconut water to suppress postprandial hyperglycemia. These activities may be attributed to the synergistic effects of the LC-MS-identified compounds.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Chika I Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| |
Collapse
|
5
|
Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1. Pflugers Arch 2023; 475:361-379. [PMID: 36534232 PMCID: PMC9908661 DOI: 10.1007/s00424-022-02782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Mechanisms of synergistic agonist stimulation and modulation of the electrochemical driving force for anion secretion are still not fully explored in human pancreatic duct epithelial cells. The first objective of this study was therefore to test whether combined agonist stimulation augments anion transport responses in the Capan-1 monolayer model of human pancreatic duct epithelium. The second objective was to test the influence of H+,K+-ATPase inhibition on anion transport in Capan-1 monolayers. The third objective was to analyze the expression and function of K+ channels in Capan-1, which could support anion secretion and cooperate with H+,K+-ATPases in pH and potassium homeostasis. The human pancreatic adenocarcinoma cell line Capan-1 was cultured conventionally or as polarized monolayers that were analyzed by Ussing chamber electrophysiological recordings. Single-cell intracellular calcium was assayed with Fura-2. mRNA isolated from Capan-1 was analyzed by use of the nCounter assay or RT-PCR. Protein expression was assessed by immunofluorescence and western blot analyses. Combined stimulation with different physiological agonists enhanced anion transport responses compared to single agonist stimulation. The responsiveness of Capan-1 cells to histamine was also revealed in these experiments. The H+,K+-ATPase inhibitor omeprazole reduced carbachol- and riluzole-induced anion transport responses. Transcript analyses revealed abundant TASK-2, TWIK-1, TWIK-2, TASK-5, KCa3.1, and KCNQ1 mRNA expression. KCNE1 mRNA and TREK-1, TREK-2, TASK-2, and KCNQ1 protein expression were also shown. This study shows that the Capan-1 model recapitulates key physiological aspects of a bicarbonate-secreting epithelium and constitutes a valuable model for functional studies on human pancreatic duct epithelium.
Collapse
|
6
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis. Front Cell Infect Microbiol 2022; 12:927193. [PMID: 36034701 PMCID: PMC9411527 DOI: 10.3389/fcimb.2022.927193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Previous researches have emphasized a trypsin-centered theory of acute pancreatitis (AP) for more than a century. With additional studies into the pathogenesis of AP, new mechanisms have been explored. Among them, the role of immune response bears great importance. Pro-inflammatory substances, especially damage-associated molecular patterns (DAMPs), play an essential role in activating, signaling, and steering inflammation. Meanwhile, activated neutrophils attach great importance to the immune defense by forming neutrophil extracellular traps (NETs), which cause ductal obstruction, premature trypsinogen activation, and modulate inflammation. In this review, we discuss the latest advances in understanding the pathological role of DAMPs and NETs in AP and shed light on the flexible crosstalk between these vital inflammatory mediators. We, then highlight the potentially promising treatment for AP targeting DAMPs and NETs, with a focus on novel insights into the mechanism, diagnosis, and management of AP.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| |
Collapse
|
7
|
Chen Z, Wei X, Dong S, Han F, He R, Zhou W. Challenges and Opportunities Associated With Platelets in Pancreatic Cancer. Front Oncol 2022; 12:850485. [PMID: 35494001 PMCID: PMC9039220 DOI: 10.3389/fonc.2022.850485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer is one of the most common malignant tumors in the digestive system with a poor prognosis. Accordingly, better understanding of the molecular mechanisms and innovative therapies are warranted to improve the prognosis of this patient population. In addition to playing a crucial role in coagulation, platelets reportedly contribute to the growth, invasion and metastasis of various tumors, including pancreatic cancer. This narrative review brings together currently available evidence on the impact of platelets on pancreatic cancer, including the platelet-related molecular mechanisms of cancer promotion, pancreatic cancer fibrosis, immune evasion, drug resistance mechanisms, thrombosis, targeted platelet therapy, combined radiotherapy and chemotherapy treatment, platelet combined with nanotechnology treatment and potential applications of pancreatic cancer organoids. A refined understanding of the role of platelets in pancreatic cancer provides the foothold for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Wei
- Emergency Department, Gansu Provincial Hospital, Lanzhou, China
| | - Shi Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ru He
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Jindal S, Chockalingam S, Ghosh SS, Packirisamy G. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res 2021; 235:144-167. [PMID: 33582245 DOI: 10.1016/j.trsl.2021.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC. Inadequacies in strategies that target specific connexin protein in the affected tissue, with minimal or no collateral damage, are the primary reason for the lack of development of efficient therapeutic models. Herein, nanotechnology has a role to play, giving plenty of scope to circumvent these problems and develop more efficient connexin based therapeutics. AsODN, antisense oligodeoxynucleotides; BMPs, bone morphogenetic proteins; BMSCs, bone marrow stem cells; BG, bioglass; Cx, Connexin; CxRE, connexin-responsive elements; CoCr NPs, cobalt-chromium nanoparticles; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinase 1/2; EMT, epithelial-mesenchymal transition; EPA, eicosapentaenoic acids; FGFR1, fibroblast growth factor receptor 1; FRAP, fluorescence recovery after photobleaching; 5-FU, 5-fluorouracil; GJ, gap junction; GJIC, gap junctional intercellular communication; HGPRTase, hypoxanthine phosphoribosyltransferase; HSV-TK, herpes virus thymidine kinase; HSA, human serum albumin; HA, hyaluronic acid; HDAC, histone deacetylase; IRI, ischemia reperfusion injury; IL-6, interleukin-6; IL-8, interleukin-8; IONPs, iron-oxide nanoparticles; JNK, c-Jun N-terminal kinase; LAMP, local activation of molecular fluorescent probe; MSCs, mesenchymal stem cells; MMP, matrix metalloproteinase; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; NO, nitric oxide; PKC, protein kinase C; QDs, quantum dots; ROI, region of interest; RGO, reduced graphene oxide; siRNA, small interfering RNA; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; UCN, upconversion nanoparticles; VEGF, vascular endothelial growth factor. In this review, we discuss briefly the role of connexins and gap junctions in various physiological and pathological processes, with special emphasis on cancer. We further discuss the application of nanotechnology and tissue engineering in developing treatments for various connexin based disorders.
Collapse
Affiliation(s)
- Shlok Jindal
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - S Chockalingam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
9
|
Magni L, Bouazzi R, Heredero Olmedilla H, Petersen PSS, Tozzi M, Novak I. The P2X7 Receptor Stimulates IL-6 Release from Pancreatic Stellate Cells and Tocilizumab Prevents Activation of STAT3 in Pancreatic Cancer Cells. Cells 2021; 10:cells10081928. [PMID: 34440697 PMCID: PMC8391419 DOI: 10.3390/cells10081928] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are important pancreatic fibrogenic cells that interact with pancreatic cancer cells to promote the progression of pancreatic ductal adenocarcinoma (PDAC). In the tumor microenvironment (TME), several factors such as cytokines and nucleotides contribute to this interplay. Our aim was to investigate whether there is an interaction between IL-6 and nucleotide signaling, in particular, that mediated by the ATP-sensing P2X7 receptor (P2X7R). Using human cell lines of PSCs and cancer cells, as well as primary PSCs from mice, we show that ATP is released from both PSCs and cancer cells in response to mechanical and metabolic cues that may occur in the TME, and thus activate the P2X7R. Functional studies using P2X7R agonists and inhibitors show that the receptor is involved in PSC proliferation, collagen secretion and IL-6 secretion and it promotes cancer cell migration in a human PSC-cancer cell co-culture. Moreover, conditioned media from P2X7R-stimulated PSCs activated the JAK/STAT3 signaling pathway in cancer cells. The monoclonal antibody inhibiting the IL-6 receptor, Tocilizumab, inhibited this signaling. In conclusion, we show an important mechanism between PSC-cancer cell interaction involving ATP and IL-6, activating P2X7 and IL-6 receptors, respectively, both potential therapeutic targets in PDAC.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/physiopathology
- Cell Communication
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Humans
- Interleukin-6/metabolism
- Male
- Mice
- Pancreatic Stellate Cells/metabolism
- Pancreatic Stellate Cells/physiology
- Receptors, Purinergic P2X7/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Tumor Microenvironment
Collapse
|
10
|
Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020; 21:E8781. [PMID: 33233631 PMCID: PMC7699721 DOI: 10.3390/ijms21228781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The purinergic signaling has an important role in regulating pancreatic exocrine secretion. The exocrine pancreas is also a site of one of the most serious cancer forms, the pancreatic ductal adenocarcinoma (PDAC). Here, we explore how the network of purinergic and adenosine receptors, as well as ecto-nucleotidases regulate normal pancreatic cells and various cells within the pancreatic tumor microenvironment. In particular, we focus on the P2X7 receptor, P2Y2 and P2Y12 receptors, as well as A2 receptors and ecto-nucleotidases CD39 and CD73. Recent studies indicate that targeting one or more of these candidates could present new therapeutic approaches to treat pancreatic cancer. In pancreatic cancer, as much as possible of normal pancreatic function should be preserved, and therefore physiology of purinergic signaling in pancreas needs to be considered.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Apyrase/genetics
- Apyrase/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Clinical Trials as Topic
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/pathology
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/immunology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2Y12/genetics
- Receptors, Purinergic P2Y12/immunology
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (H.Y.); (L.M.); (G.D.)
| | | | | | | |
Collapse
|
11
|
Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 2020; 187:114322. [PMID: 33161020 DOI: 10.1016/j.bcp.2020.114322] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Ectonucleotidases are key for purinergic signaling. They control the duration of activity of purinergic receptor agonists. At the same time, they produce hydrolysis products as additional ligands of purinergic receptors. Due to the considerable diversity of enzymes, purinergic receptor ligands and purinergic receptors, deciphering the impact of extracellular purinergic receptor control has become a challenge. The first group of enzymes described were the alkaline phosphatases - at the time not as nucleotide-metabolizing but as nonspecific phosphatases. Enzymes now referred to as nucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase were the first and only nucleotide-specific ectonucleotidases identified. And they were the first group of enzymes related to purinergic signaling. Additional research brought to light a surprising number of ectoenzymes with broad substrate specificity, which can also hydrolyze nucleotides. This short overview traces the development of the field and briefly highlights important results and benefits for therapies of human diseases achieved within nearly a century of investigations.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Gu XW, Chen ZC, Yang ZS, Yang Y, Yan YP, Liu YF, Pan JM, Su RW, Yang ZM. Blastocyst-induced ATP release from luminal epithelial cells initiates decidualization through the P2Y2 receptor in mice. Sci Signal 2020; 13:13/646/eaba3396. [PMID: 32843542 DOI: 10.1126/scisignal.aba3396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Embryo implantation involves a sterile inflammatory reaction that is required for the invasion of the blastocyst into the decidua. Adenosine triphosphate (ATP) released from stressed or injured cells acts as an important signaling molecule to regulate many key physiological events, including sterile inflammation. We found that the amount of ATP in the uterine luminal fluid of mice increased during the peri-implantation period, and this depended on the presence of an embryo. We further showed that the release of ATP from receptive epithelial cells was likely stimulated by lactate released from the blastocyst through connexin hemichannels. The ATP receptor P2y2 was present on uterine epithelial cells during the preimplantation period and increased in the stromal cells during the time at which decidualization began. Pharmacological inhibition of P2y2 compromised decidualization and implantation. ATP-P2y2 signaling stimulated the phosphorylation of Stat3 in uterine luminal epithelial cells and the expression of early growth response 1 (Egr1) and prostaglandin-endoperoxide synthase 2 (Ptgs2, also known as Cox-2), all of which are required for decidualization and/or implantation, in stromal cells. Short exposure to high concentrations of ATP promoted decidualization of primary stromal cells, but longer exposures or lower ATP concentrations did not. The expression of genes encoding ATP-degrading ectonucleotidases increased in the decidua during the peri-implantation period, suggesting that they may limit the duration of the ATP signal. Together, our results indicate that the blastocyst-induced release of ATP from uterine epithelial cells during the peri-implantation period may be important for the initiation of stromal cell decidualization.
Collapse
Affiliation(s)
- Xiao-Wei Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Cong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Ping Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yue-Fang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ji-Min Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Role of UDP-Sugar Receptor P2Y 14 in Murine Osteoblasts. Int J Mol Sci 2020; 21:ijms21082747. [PMID: 32326617 PMCID: PMC7216066 DOI: 10.3390/ijms21082747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The purinergic (P2) receptor P2Y14 is the only P2 receptor that is stimulated by uridine diphosphate (UDP)-sugars and its role in bone formation is unknown. We confirmed P2Y14 expression in primary murine osteoblasts (CB-Ob) and the C2C12-BMP2 osteoblastic cell line (C2-Ob). UDP-glucose (UDPG) had undiscernible effects on cAMP levels, however, induced dose-dependent elevations in the cytosolic free calcium concentration ([Ca2+]i) in CB-Ob, but not C2-Ob cells. To antagonize the P2Y14 function, we used the P2Y14 inhibitor PPTN or generated CRISPR-Cas9-mediated P2Y14 knockout C2-Ob clones (Y14KO). P2Y14 inhibition facilitated calcium signalling and altered basal cAMP levels in both models of osteoblasts. Importantly, P2Y14 inhibition augmented Ca2+ signalling in response to ATP, ADP and mechanical stimulation. P2Y14 knockout or inhibition reduced osteoblast proliferation and decreased ERK1/2 phosphorylation and increased AMPKα phosphorylation. During in vitro osteogenic differentiation, P2Y14 inhibition modulated the timing of osteogenic gene expression, collagen deposition, and mineralization, but did not significantly affect differentiation status by day 28. Of interest, while P2ry14-/- mice from the International Mouse Phenotyping Consortium were similar to wild-type controls in bone mineral density, their tibia length was significantly increased. We conclude that P2Y14 in osteoblasts reduces cell responsiveness to mechanical stimulation and mechanotransductive signalling and modulates osteoblast differentiation.
Collapse
|
14
|
Wang D, Wang H, Gao H, Zhang H, Zhang H, Wang Q, Sun Z. P2X7 receptor mediates NLRP3 inflammasome activation in depression and diabetes. Cell Biosci 2020; 10:28. [PMID: 32166013 PMCID: PMC7059335 DOI: 10.1186/s13578-020-00388-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of depression and diabetes mellitus has become a major public health problem worldwide. Studies have shown that people with diabetes are at a high risk of being diagnosed with depression, and diabetes complicates depression treatment by promoting the deterioration of glycemic control, reducing self-care ability and quality of life, and causing severe functional disability and early mortality. Moreover, health deterioration dramatically increases the financial cost of social and health care system. Thus, how to treat depression, diabetes, and diabetes complicated by depression has become one of the world’s urgent concerns. The activation of nod-like receptor family pyrin domain containing 3 (NLRP3) is closely related to mental illness. This finding provides a new perspective for studying depression. NLRP3 plays an important role in the development of diabetes. In this review, we elaborate the definition and epidemiology of depression, diabetes, and diabetic depression and introduce the functional characteristics of an NLRP3 inflammasome and upstream P2X7 receptor. Moreover, related research on NLRP3 inflammasomes and P2X7 receptors is summarized and used as a reference for confirming that the excessive activation of P2X7- NLRP3 leads to the increased release of inflammatory cytokines, such as IL-1β, in depression and diabetes. We provide insights into the P2X7–NLRP3–IL-1β pathway as an important pathological mechanism and novel therapeutic target in diabetes and depression. Given that the P2X7–NLRP3–IL-1β pathway may play an important role in diabetes confounded by comorbid depression, the possibility of intervention with baicalin is proposed.
Collapse
Affiliation(s)
- Danwen Wang
- 1School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, 210023 Jiangsu China
| | - Hui Wang
- Neonatal Intensive Care Unit, Peixian People's Hospital, Hanyuan Avenue, Xuzhou, 221600 Jiangsu China
| | - Haixia Gao
- 1School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, 210023 Jiangsu China
| | - Heng Zhang
- 1School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, 210023 Jiangsu China
| | - Hua Zhang
- 1School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, 210023 Jiangsu China
| | - Qiuling Wang
- 1School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, 210023 Jiangsu China
| | - Zhiling Sun
- 1School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, 210023 Jiangsu China
| |
Collapse
|
15
|
Wu G, Xiong Q, Wei X, Wang Y, Hu X, He G, Liu L, Lai Q, Dai Z, Anushesh D, Xu Y. Mitochondrial unfolded protein response gene CLPP changes mitochondrial dynamics and affects mitochondrial function. PeerJ 2019; 7:e7209. [PMID: 31304066 PMCID: PMC6611452 DOI: 10.7717/peerj.7209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dynamics is associated with mitochondrial function, which is associated with diabetes. Although an important indicator of the mitochondrial unfolded protein response, to the best of our knowledge, CLPP and its effects on mitochondrial dynamics in islet cells have not been studied to date. We analyzed the effects of CLPP on mitochondrial dynamics and mitochondrial function in the mice islet β-cell line Min6 under high glucose and high fat conditions. Min6 cells were assigned to: Normal, HG, HG+NC, HG+siCLPP, HF, HF+NC and HF+ siCLPP groups. High glucose and high fat can promote the mRNA and protein expression of CLPP in mitochondria. The increase of mitochondrial fission, the decrese of mitochondrial fusion, and the damage of mintocondrial ultrastructure were significant in the siCLPP cell groups as compared to no-siCLPP treated groups. Meanwhile, mitochondrial functions of MIN6 cells treated with siCLPP were impaired, such as ATP decreased, ROS increased, mitochondrial membrane potential decreased. In addition, cell insulin secretion decreased and cell apoptosis rate increased in siCLPP groups. These results revealed that mitochondrial unfolded protein response geneCLPP alleviated high glucose and high fat-induced mitochondrial dynamics imbalance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- GuiJun Wu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Xiong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - XiaoJun Wei
- Emergency Centre, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ye Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - XueMei Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - GuangZhen He
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - LinJie Liu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - QianHui Lai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dhakal Anushesh
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Vijayamahantesh, Vijayalaxmi. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites. Cytokine 2019; 119:129-143. [PMID: 30909149 DOI: 10.1016/j.cyto.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Nucleotides are one of the most primitive extracellular signalling molecules across all phyla and regulate a multitude of responses. The biological effects of extracellular nucleotides/sides are mediated via the specific purinergic receptors present on the cell surface. In mammalian system, adenine nucleotides are the predominant nucleotides found in the extracellular milieu and mediate a constellation of physiological functions. In the context of host-pathogen interaction, extracellular ATP is recognized as a danger signal and potentiates the release of pro-inflammatory mediators from activated immune cells, on the other hand, its breakdown product adenosine exerts potential anti-inflammatory and immunosuppressive actions. Therefore, it is increasingly apparent that the interplay between extracellular ATP/adenosine ratios has a significant role in coordinating the regulation of the immune system in health and diseases. Several pathogens express ectonucleotidases on their surface and exploit the purinergic signalling as one of the mechanisms to modulate the host immune response. Leishmania pathogens are one of the most successful intracellular pathogens which survive within host macrophages and manipulate protective Th1 response into disease promoting Th2 response. In this review, we discuss the regulation of extracellular ATP and adenosine levels, the role of ATP/adenosine counter signalling in regulating the inflammation and immune responses during infection and how Leishmania parasites exploit the purinergic signalling to manipulate host response. We also discuss the challenges and opportunities in targeting purinergic signalling and the future prospects.
Collapse
Affiliation(s)
- Vijayamahantesh
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Vijayalaxmi
- Department of Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
17
|
Amores-Iniesta J, Barberà-Cremades M, Martínez CM, Pons JA, Revilla-Nuin B, Martínez-Alarcón L, Di Virgilio F, Parrilla P, Baroja-Mazo A, Pelegrín P. Extracellular ATP Activates the NLRP3 Inflammasome and Is an Early Danger Signal of Skin Allograft Rejection. Cell Rep 2018; 21:3414-3426. [PMID: 29262323 PMCID: PMC5746605 DOI: 10.1016/j.celrep.2017.11.079] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
Immune cells are equipped with a number of receptors that recognize sterile injury and pathogens. We find that host immune cells release ATP as an inflammatory signal in response to allogeneic transplantation. ATP then acts via a feedback mechanism on the P2X7 channel to activate the NLRP3 inflammasome and subsequently process and release interleukin (IL)-18. This process is a necessary stage in the deleterious Th1 response against allotransplantation via interferon-γ production. Lack of IL-18 resulted in a decrease in graft-infiltrating CD8 cells but an increase in regulatory T cells. In human liver transplant patients undergoing progressive immunosuppressive drug withdrawal, we found that patients experiencing acute rejection had higher levels of the P2X7 receptor in circulating inflammatory monocytes compared to tolerant patients. These data suggest that the pharmacological inhibition of the P2X7 receptor or the NLRP3 inflammasome will aid in inducing transplant tolerance without complete immunoparalysis.
Collapse
Affiliation(s)
- Joaquín Amores-Iniesta
- Experimental Surgery Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Maria Barberà-Cremades
- Experimental Surgery Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Carlos M Martínez
- Experimental Pathology Unit, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - José A Pons
- Experimental Surgery Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Beatriz Revilla-Nuin
- Genomic Unit, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Laura Martínez-Alarcón
- Experimental Surgery Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Pascual Parrilla
- Experimental Surgery Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Alberto Baroja-Mazo
- Experimental Surgery Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Pablo Pelegrín
- Experimental Surgery Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain.
| |
Collapse
|
18
|
Tozzi M, Larsen AT, Lange SC, Giannuzzo A, Andersen MN, Novak I. The P2X7 receptor and pannexin-1 are involved in glucose-induced autocrine regulation in β-cells. Sci Rep 2018; 8:8926. [PMID: 29895988 PMCID: PMC5997690 DOI: 10.1038/s41598-018-27281-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/31/2018] [Indexed: 01/02/2023] Open
Abstract
Extracellular ATP is an important short-range signaling molecule that promotes various physiological responses virtually in all cell types, including pancreatic β-cells. It is well documented that pancreatic β-cells release ATP through exocytosis of insulin granules upon glucose stimulation. We hypothesized that glucose might stimulate ATP release through other non-vesicular mechanisms. Several purinergic receptors are found in β-cells and there is increasing evidence that purinergic signaling regulates β-cell functions and survival. One of the receptors that may be relevant is the P2X7 receptor, but its detailed role in β-cell physiology is unclear. In this study we investigated roles of the P2X7 receptor and pannexin-1 in ATP release, intracellular ATP, Ca2+ signals, insulin release and cell proliferation/survival in β-cells. Results show that glucose induces rapid release of ATP and significant fraction of release involves the P2X7 receptor and pannexin-1, both expressed in INS-1E cells, rat and mouse β-cells. Furthermore, we provide pharmacological evidence that extracellular ATP, via P2X7 receptor, stimulates Ca2+ transients and cell proliferation in INS-1E cells and insulin secretion in INS-1E cells and rat islets. These data indicate that the P2X7 receptor and pannexin-1 have important functions in β-cell physiology, and should be considered in understanding and treatment of diabetes.
Collapse
Affiliation(s)
- Marco Tozzi
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anna T Larsen
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie C Lange
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Giannuzzo
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin N Andersen
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Novak I, Solini A. P2X receptor-ion channels in the inflammatory response in adipose tissue and pancreas — potential triggers in onset of type 2 diabetes? Curr Opin Immunol 2018. [DOI: 10.1016/j.coi.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Wang J, Jackson DG, Dahl G. Cationic control of Panx1 channel function. Am J Physiol Cell Physiol 2018; 315:C279-C289. [PMID: 29719168 DOI: 10.1152/ajpcell.00303.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sequence and predicted membrane topology of pannexin1 (Panx1) places it in the family of gap junction proteins. However, rather than forming gap junction channels, Panx1 forms channels in the nonjunctional membrane. Panx1 operates in two distinct open states, depending on the mode of stimulation. The exclusively voltage-gated channel has a small conductance (<100 pS) and is highly selective for the flux of chloride ions. The Panx1 channel activated by various physiological stimuli or by increased concentrations of extracellular potassium ions has a large conductance (~500 pS, however, with multiple, long-lasting subconductance states) and is nonselectively permeable to small molecules, including ATP. To test whether the two open conformations also differ pharmacologically, the effects of di-and trivalent cations on the two Panx1 channel conformations were investigated. The rationale for this venture was that, under certain experimental conditions, ATP release from cells can be inhibited by multivalent cations, yet the literature indicates that the ATP release channel Panx1 is not affected by these ions. Consistent with previous reports, the Panx1 channel was not activated by removal of extracellular Ca2+ and the currents through the voltage-activated channel were not altered by Ca2+, Zn2+, Ba2+, or Gd3+. In contrast, the Panx1 channel activated to the large channel conformation by extracellular K+, osmotic stress, or low oxygen was inhibited by the multivalent cations in a dose-dependent way. Thus, monovalent cations activated the Panx1 channel from the closed state to the "large" conformation, while di- and trivalent cations exclusively inhibited this large channel conformation.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| | - David George Jackson
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| |
Collapse
|
21
|
Fois G, Winkelmann VE, Bareis L, Staudenmaier L, Hecht E, Ziller C, Ehinger K, Schymeinsky J, Kranz C, Frick M. ATP is stored in lamellar bodies to activate vesicular P2X 4 in an autocrine fashion upon exocytosis. J Gen Physiol 2017; 150:277-291. [PMID: 29282210 PMCID: PMC5806682 DOI: 10.1085/jgp.201711870] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
P2X4 receptor activation facilitates secretion of pulmonary surfactant from secretory vesicles called lamellar bodies in alveolar epithelial cells. Fois et al. reveal that P2X4 receptors on the lamellar body membranes are activated by ATP stored within the vesicles themselves upon vesicle exocytosis. Vesicular P2X4 receptors are known to facilitate secretion and activation of pulmonary surfactant in the alveoli of the lungs. P2X4 receptors are expressed in the membrane of lamellar bodies (LBs), large secretory lysosomes that store lung surfactant in alveolar type II epithelial cells, and become inserted into the plasma membrane after exocytosis. Subsequent activation of P2X4 receptors by adenosine triphosphate (ATP) results in local fusion-activated cation entry (FACE), facilitating fusion pore dilation, surfactant secretion, and surfactant activation. Despite the importance of ATP in the alveoli, and hence lung function, the origin of ATP in the alveoli is still elusive. In this study, we demonstrate that ATP is stored within LBs themselves at a concentration of ∼1.9 mM. ATP is loaded into LBs by the vesicular nucleotide transporter but does not activate P2X4 receptors because of the low intraluminal pH (5.5). However, the rise in intravesicular pH after opening of the exocytic fusion pore results in immediate activation of vesicular P2X4 by vesicular ATP. Our data suggest a new model in which agonist (ATP) and receptor (P2X4) are located in the same intracellular compartment (LB), protected from premature degradation (ATP) and activation (P2X4), and ideally placed to ensure coordinated and timely receptor activation as soon as fusion occurs to facilitate surfactant secretion.
Collapse
Affiliation(s)
- Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Lara Bareis
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Elena Hecht
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Charlotte Ziller
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | | | - Jürgen Schymeinsky
- Immunology and Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
22
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
23
|
Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling. Purinergic Signal 2017; 13:387-404. [PMID: 28616712 DOI: 10.1007/s11302-017-9568-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022] Open
Abstract
Vesicular storage of ATP is one of the processes initiating purinergic chemical transmission. Although an active transport mechanism was postulated to be involved in the processes, a transporter(s) responsible for the vesicular storage of ATP remained unidentified for some time. In 2008, SLC17A9, the last identified member of the solute carrier 17 type I inorganic phosphate transporter family, was found to encode the vesicular nucleotide transporter (VNUT) that is responsible for the vesicular storage of ATP. VNUT transports various nucleotides in a membrane potential-dependent fashion and is expressed in the various ATP-secreting cells. Mice with knockout of the VNUT gene lose vesicular storage and release of ATP from neurons and neuroendocrine cells, resulting in blockage of the initiation of purinergic chemical transmission. Thus, VNUT plays an essential role in the vesicular storage and release of ATP. The VNUT knockout mice exhibit resistance for neuropathic pain and a therapeutic effect against diabetes by way of increased insulin sensitivity. Thus, VNUT inhibitors and suppression of VNUT gene expression may be used for therapeutic purposes through suppression of purinergic chemical transmission. This review summarizes the studies to date on VNUT and discusses what we have learned about the relevance of vesicular ATP release as a potential drug target.
Collapse
|
24
|
Cell culture: complications due to mechanical release of ATP and activation of purinoceptors. Cell Tissue Res 2017; 370:1-11. [PMID: 28434079 PMCID: PMC5610203 DOI: 10.1007/s00441-017-2618-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
There is abundant evidence that ATP (adenosine 5′-triphosphate) is released from a variety of cultured cells in response to mechanical stimulation. The release mechanism involved appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels. Purinergic receptors on cultured cells mediate both short-term purinergic signalling of secretion and long-term (trophic) signalling such as proliferation, migration, differentiation and apoptosis. We aim in this review to bring to the attention of non-purinergic researchers using tissue culture that the release of ATP in response to mechanical stress evoked by the unavoidable movement of the cells acting on functional purinergic receptors on the culture cells is likely to complicate the interpretation of their data.
Collapse
|
25
|
Sun Y, Huang P. Adenosine A2B Receptor: From Cell Biology to Human Diseases. Front Chem 2016; 4:37. [PMID: 27606311 PMCID: PMC4995213 DOI: 10.3389/fchem.2016.00037] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/11/2016] [Indexed: 12/26/2022] Open
Abstract
Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR's functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases, and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.
Collapse
Affiliation(s)
- Ying Sun
- Department of Biology, South University of Science and Technology of ChinaShenzhen, China; Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of ChinaShenzhen, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and TechnologyHong Kong, China; Division of Biomedical Engineering, Hong Kong University of Science and TechnologyHong Kong, China; State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and TechnologyHong Kong, China
| |
Collapse
|
26
|
Kanju P, Chen Y, Lee W, Yeo M, Lee SH, Romac J, Shahid R, Fan P, Gooden DM, Simon SA, Spasojevic I, Mook RA, Liddle RA, Guilak F, Liedtke WB. Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Sci Rep 2016; 6:26894. [PMID: 27247148 PMCID: PMC4887995 DOI: 10.1038/srep26894] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
TRPV4 ion channels represent osmo-mechano-TRP channels with pleiotropic function and wide-spread expression. One of the critical functions of TRPV4 in this spectrum is its involvement in pain and inflammation. However, few small-molecule inhibitors of TRPV4 are available. Here we developed TRPV4-inhibitory molecules based on modifications of a known TRPV4-selective tool-compound, GSK205. We not only increased TRPV4-inhibitory potency, but surprisingly also generated two compounds that potently co-inhibit TRPA1, known to function as chemical sensor of noxious and irritant signaling. We demonstrate TRPV4 inhibition by these compounds in primary cells with known TRPV4 expression - articular chondrocytes and astrocytes. Importantly, our novel compounds attenuate pain behavior in a trigeminal irritant pain model that is known to rely on TRPV4 and TRPA1. Furthermore, our novel dual-channel blocker inhibited inflammation and pain-associated behavior in a model of acute pancreatitis – known to also rely on TRPV4 and TRPA1. Our results illustrate proof of a novel concept inherent in our prototype compounds of a drug that targets two functionally-related TRP channels, and thus can be used to combat isoforms of pain and inflammation in-vivo that involve more than one TRP channel. This approach could provide a novel paradigm for treating other relevant health conditions.
Collapse
Affiliation(s)
| | - Yong Chen
- Dept of Neurology, Duke University, Durham NC USA
| | - Whasil Lee
- Dept of Neurology, Duke University, Durham NC USA
| | - Michele Yeo
- Dept of Neurology, Duke University, Durham NC USA
| | - Suk Hee Lee
- Dept of Neurology, Duke University, Durham NC USA
| | - Joelle Romac
- Dept of Medicine, Duke University, Durham NC USA
| | - Rafiq Shahid
- Dept of Medicine, Duke University, Durham NC USA
| | - Ping Fan
- Dept of Medicine, Duke University, Durham NC USA
| | | | | | | | - Robert A Mook
- Dept of Medicine, Duke University, Durham NC USA.,Dept of Chemistry, Duke University, Durham NC USA
| | | | - Farshid Guilak
- Dept of Orthopedic Surgery, Washington University in St Louis and Shriners Hospitals for Children, St Louis MO USA
| | - Wolfgang B Liedtke
- Dept of Neurology, Duke University, Durham NC USA.,Dept of Neurobiology, Duke University, Durham NC USA.,Dept of Anesthesiology, Duke University, Durham NC USA.,Neurology Clinics for Headache, Head-Pain and Trigeminal Sensory Disorders, Duke University, Durham NC USA
| |
Collapse
|
27
|
The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells. Pflugers Arch 2016; 468:1171-1181. [PMID: 26965147 PMCID: PMC4943985 DOI: 10.1007/s00424-016-1806-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl− channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (Vte) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl− currents in Capan-1 single cells. The effects of adenosine on Vte, an equivalent short-circuit current (Isc), and whole-cell Cl− currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased Isc and whole-cell Cl− currents through CFTR Cl− channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of Isc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl− currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl− channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion.
Collapse
|