1
|
Zhang WJ, Shi QM, Li TZ, Huang YW. G protein coupled P2Y2 receptor as a regulatory molecule in cancer progression. Arch Biochem Biophys 2024; 762:110194. [PMID: 39486566 DOI: 10.1016/j.abb.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The occurrence and development of cancer involves the participation of many factors, its pathological mechanism is far more complicated than other diseases, and the treatment is also extremely difficult. Although the treatment of cancer adopts diversified methods to improve the survival rate and quality of life of patients, but the drug resistance, metastasis and recurrence of cancer cause most patients to fail in treatment. Therefore, exploring new molecular targets in cancer pathology is of great value for improving and preventing the treatment of cancer. Fortunately, the P2Y2 purinergic receptor (P2Y2 receptor) in the G protein-coupled receptor family has been recognized for regulating cancer progression. Agonist activated P2Y2 receptor has a certain contribution to the growth and metastasis of tumor cells. P2Y2 receptor activation participates in cancer progression by regulating calcium ion channels and classical signaling pathways (such as PLC-PKC and PI3K/AKT). It has the effect of anti-tumor therapy by inhibiting the activation of P2Y2 receptor (the use of antagonist) and reducing its expression. Therefore, in this article, we focus on the expression patterns of P2Y2 receptor in cancer and potential pharmacological targets as anti-cancer treatments.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qing-Ming Shi
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Teng-Zheng Li
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Ya-Wei Huang
- Urology Department, The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang City, China.
| |
Collapse
|
2
|
Zhang Y, Tang Y, Illes P. Modification of Neural Circuit Functions by Microglial P2Y6 Receptors in Health and Neurodegeneration. Mol Neurobiol 2024:10.1007/s12035-024-04531-8. [PMID: 39400857 DOI: 10.1007/s12035-024-04531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Neural circuits consisting of neurons and glial cells help to establish all functions of the CNS. Microglia, the resident immunocytes of the CNS, are endowed with UDP-sensitive P2Y6 receptors (P2Y6Rs) which regulate phagocytosis/pruning of excessive synapses during individual development and refine synapses in an activity-dependent manner during adulthood. In addition, this type of receptor plays a decisive role in primary (Alzheimer's disease, Parkinson's disease, neuropathic pain) and secondary (epilepsy, ischemic-, mechanical-, or irradiation-induced) neurodegeneration. A whole range of microglial cytokines controlled by P2Y6Rs, such as the interleukins IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α), leads to neuroinflammation, resulting in neurodegeneration. Hence, small molecular antagonists of P2Y6Rs and genetic knockdown of this receptor provide feasible ways to alleviate inflammation-induced neurological disorders but might also interfere with the regulation of the synaptic circuitry. The present review aims at investigating this dual role of P2Y6Rs in microglia, both in shaping neural circuits by targeted phagocytosis and promoting neurodegenerative illnesses by fostering neuroinflammation through multiple transduction mechanisms.
Collapse
Affiliation(s)
- Yi Zhang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Peter Illes
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Adipocyte purinergic receptors activated by uracil nucleotides as obesity and type 2 diabetes targets. Curr Opin Pharmacol 2022; 63:102190. [PMID: 35231671 PMCID: PMC8995365 DOI: 10.1016/j.coph.2022.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022]
Abstract
Extracellular uridine nucleotides regulate physiological and pathophysiological metabolic processes through the activation of P2Y2, P2Y4, P2Y6 and P2Y14 purinergic receptors, which play a key role in adipogenesis, glucose uptake, lipolysis and adipokine secretion. Using adipocyte-specific knockout mouse models, it has been demonstrated that lack of the P2Y6R or P2Y14R can protect against diet-induced obesity and improve whole-body glucose metabolism. The P2Y2R facilitated adipogenesis and inflammation, and the loss of P2Y4R or P2Y14R raised the levels of the protective endocrine factor adiponectin. Hence, potent antagonists for these receptors may be tested to identify drug candidates for the treatment of obesity and type 2 diabetes. However, future studies are required to provide insight into purinergic regulation of brown adipocytes and their role in thermogenesis. This review summarizes the current studies on uridine nucleotide-activated P2YRs and their role in adipocyte function, diet-induced obesity and associated metabolic deficits.
Collapse
|
4
|
Neumann A, Attah I, Al-Hroub H, Namasivayam V, Müller CE. Discovery of P2Y 2 Receptor Antagonist Scaffolds through Virtual High-Throughput Screening. J Chem Inf Model 2022; 62:1538-1549. [DOI: 10.1021/acs.jcim.1c01235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Isaac Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
de Oliveira M, Mathias LS, de Sibio MT, Noronha-Matos JB, Costa MA, Nogueira CR, Correia-de-Sá P. Pitfalls and challenges of the purinergic signaling cascade in obesity. Biochem Pharmacol 2020; 182:114214. [PMID: 32905795 DOI: 10.1016/j.bcp.2020.114214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide health problem which have reached pandemic proportions, now also including low and middle-income countries. Excessive or abnormal fat deposition in the abdomen especially in the visceral compartment is tightly associated with a high metabolic risk for arterial hypertension, type II diabetes, cardiovascular diseases, musculoskeletal disorders (especially articular degeneration) and some cancers. Contrariwise, accumulation of fat in the subcutaneous compartment has been associated with a neutral metabolic impact, favoring a lower risk of insulin resistance. Obesity results more often from an avoidable imbalance between food consumption and energy expenditure. There are several recommended strategies for dealing with obesity, including pharmacological therapies, but their success remains incomplete and may not compensate the associated adverse effects. Purinergic signaling operated by ATP and its metabolite, adenosine, has attracted increasing attention in obesity. The extracellular levels of purines often reflect the energy status of a given cell population. Adenine nucleotides and nucleosides fine tuning control adipogenesis and mature adipocytes function via the activation of P2 and P1 purinoceptors, respectively. These features make the purinergic signaling cascade a putative target for therapeutic intervention in obesity and related metabolic syndromes. There are, however, gaps in our knowledge regarding the role of purines in adipocyte precursors differentiation and mature adipocytes functions, as well as their impact among distinct adipose tissue deposits (e.g. white vs. brown, visceral vs. subcutaneous), which warrants further investigations before translation to clinical trials can be made.
Collapse
Affiliation(s)
- Miriane de Oliveira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Lucas Solla Mathias
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Maria Teresa de Sibio
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Célia Regina Nogueira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
6
|
Carluccio M, Zuccarini M, Ziberi S, Giuliani P, Morabito C, Mariggiò MA, Lonardo MT, Adinolfi E, Orioli E, Di Iorio P, Caciagli F, Ciccarelli R. Involvement of P2X7 Receptors in the Osteogenic Differentiation of Mesenchymal Stromal/Stem Cells Derived from Human Subcutaneous Adipose Tissue. Stem Cell Rev Rep 2020; 15:574-589. [PMID: 30955192 DOI: 10.1007/s12015-019-09883-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ionotropic P2X7 receptor (P2X7R) is involved in bone homeostasis but its role in osteogenesis is controversial. Thus, we investigated the expression of P2X7R and the effects exerted by its modulation in mesenchymal stromal cells from human subcutaneous adipose tissue (S-ASCs), which have potential therapeutic application in bone regenerative medicine. We found that undifferentiated S-ASCs expressed P2X7R and its functional splice variants P2X7AR and P2X7BR. Cell stimulation by P2X7R agonist BzATP (100 μM) neither modified proliferation nor caused membrane pore opening while increasing intracellular Ca2+ levels and migration. The P2X7R antagonist A438079 reversed these effects. However, 25-100 μM BzATP, administered to S-ASCs undergoing osteogenic differentiation, dose-dependently decreased extracellular matrix mineralization and expression of osteogenic transcription factors Runx2, alkaline phosphatase and osteopontin. These effects were not coupled to cell proliferation reduction or to cell death increase, but were associated to decrease in P2X7AR and P2X7BR expression. In contrast, expression of P2X7R, especially P2X7BR isoform, significantly increased during the osteogenic process. Noteworthy, the antagonist A438079, administered alone, at first restrained cell differentiation, enhancing it later. Accordingly, A438079 reversed BzATP effects only in the second phase of S-ASCs osteogenic differentiation. Apyrase, a diphosphohydrolase converting ATP/ADP into AMP, showed a similar behavior. Altogether, findings related to A438079 or apyrase effects suggest an earlier and prevailing pro-osteogenic activity by endogenous ATP and a later one by adenosine derived from endogenous ATP metabolism. Conversely, P2X7R pharmacological stimulation by BzATP, mimicking the effects of high ATP levels occurring during tissue injuries, depressed receptor expression/activity impairing MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Caterina Morabito
- Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Maria A Mariggiò
- Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Elena Adinolfi
- Department of Morphology, Surgery end Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery end Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy. .,StemTeCh Group, Chieti, Italy.
| |
Collapse
|
7
|
Microglia Purinoceptor P2Y6: An Emerging Therapeutic Target in CNS Diseases. Cells 2020; 9:cells9071595. [PMID: 32630251 PMCID: PMC7407337 DOI: 10.3390/cells9071595] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The purinergic receptor P2Y6 is expressed in immune cells, including the microglia that are implicated in neurological disorders. Its ligand, UDP, is a signaling molecule that can serve as an “find-me” signal when released in significant quantities by damaged/dying cells. The binding of UDP by P2Y6R leads to the activation of different biochemical pathways, depending on the disease context and the pathological environment. Generally, P2Y6R stimulates phagocytosis. However, whether or not phagocytosis coincides with cell activation or the secretion of pro-inflammatory cytokines needs further investigation. The current review aims to discuss the various functions of P2Y6R in some CNS disorders. We present evidence that P2Y6R may have a detrimental or beneficial role in the nervous system, in the context of neurological pathologies, such as ischemic stroke, Alzheimer’s disease, Parkinson’s disease, radiation-induced brain injury, and neuropathic pain.
Collapse
|
8
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
9
|
Role of UDP-Sugar Receptor P2Y 14 in Murine Osteoblasts. Int J Mol Sci 2020; 21:ijms21082747. [PMID: 32326617 PMCID: PMC7216066 DOI: 10.3390/ijms21082747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The purinergic (P2) receptor P2Y14 is the only P2 receptor that is stimulated by uridine diphosphate (UDP)-sugars and its role in bone formation is unknown. We confirmed P2Y14 expression in primary murine osteoblasts (CB-Ob) and the C2C12-BMP2 osteoblastic cell line (C2-Ob). UDP-glucose (UDPG) had undiscernible effects on cAMP levels, however, induced dose-dependent elevations in the cytosolic free calcium concentration ([Ca2+]i) in CB-Ob, but not C2-Ob cells. To antagonize the P2Y14 function, we used the P2Y14 inhibitor PPTN or generated CRISPR-Cas9-mediated P2Y14 knockout C2-Ob clones (Y14KO). P2Y14 inhibition facilitated calcium signalling and altered basal cAMP levels in both models of osteoblasts. Importantly, P2Y14 inhibition augmented Ca2+ signalling in response to ATP, ADP and mechanical stimulation. P2Y14 knockout or inhibition reduced osteoblast proliferation and decreased ERK1/2 phosphorylation and increased AMPKα phosphorylation. During in vitro osteogenic differentiation, P2Y14 inhibition modulated the timing of osteogenic gene expression, collagen deposition, and mineralization, but did not significantly affect differentiation status by day 28. Of interest, while P2ry14-/- mice from the International Mouse Phenotyping Consortium were similar to wild-type controls in bone mineral density, their tibia length was significantly increased. We conclude that P2Y14 in osteoblasts reduces cell responsiveness to mechanical stimulation and mechanotransductive signalling and modulates osteoblast differentiation.
Collapse
|
10
|
The role of P2Y 6R in cardiovascular diseases and recent development of P2Y 6R antagonists. Drug Discov Today 2020; 25:568-573. [PMID: 31926135 DOI: 10.1016/j.drudis.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022]
Abstract
As a member of the P2Y receptor family with a typical 7-transmembrane structure, P2Y6 purinergic receptor (P2Y6R) belongs to the G-protein-coupled nucleotide receptor activating the phospholipase-C signaling pathway. P2Y6R is widely involved in a range of human diseases, including atherosclerosis and other cardiovascular diseases, gradually attracting attention owing to its inappropriate or excessive activation. In addition, it was reported that P2Y6R might regulate inflammatory responses by governing the maturation and secretion of proinflammatory cytokines. Hence, several P2Y6R antagonists have been subjected to evaluation as new therapeutic strategies in recent years. This review was aimed at summarizing the role of P2Y6R in the pathogenesis of cardiovascular diseases, with an insight into the recent progress on discovery of P2Y6R antagonists.
Collapse
|
11
|
Zhang Y, Ecelbarger CM, Lesniewski LA, Müller CE, Kishore BK. P2Y 2 Receptor Promotes High-Fat Diet-Induced Obesity. Front Endocrinol (Lausanne) 2020; 11:341. [PMID: 32582029 PMCID: PMC7283874 DOI: 10.3389/fendo.2020.00341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
P2Y2, a G protein-coupled receptor (R), is expressed in all organs involved in the development of obesity and insulin resistance. To explore the role of it in diet-induced obesity, we fed male P2Y2-R whole body knockout (KO) and wild type (WT) mice (B6D2 genetic background) with regular diet (CNT; 10% calories as fat) or high-fat diet (HFD; 60% calories as fat) with free access to food and water for 16 weeks, and euthanized them. Adjusted for body weights (BW), KO mice consumed modestly, but significantly more HFD vs. WT mice, and excreted well-formed feces with no taint of fat or oil. Starting from the 2nd week, HFD-WT mice displayed significantly higher BW with terminal mean difference of 22% vs. HFD-KO mice. Terminal weights of white adipose tissue (WAT) were significantly lower in the HFD-KO vs. HFD-WT mice. The expression of P2Y2-R mRNA in WAT was increased by 2-fold in HFD-fed WT mice. Serum insulin, leptin and adiponectin levels were significantly elevated in the HFD-WT mice, but not in the HFD-KO mice. When induced in vitro, preadipocytes derived from KO mice fed regular diet did not differentiate and mature as robustly as those from the WT mice, as assessed by cellular expansion and accumulation of lipid droplets. Blockade of P2Y2-R by AR-C118925 in preadipocytes derived from WT mice prevented differentiation and maturation. Under basal conditions, KO mice had significantly higher serum triglycerides and showed slightly impaired lipid tolerance as compared to the WT mice. HFD-fed KO mice had significantly better glucose tolerance (GTT) as compared to HFD-fed WT mice. Whole body insulin sensitivity and mRNA expression of insulin receptor, IRS-1 and GLUT4 in WAT was significantly higher in HFD-fed KO mice vs. HFD-fed WT mice. On the contrary, the expression of pro-inflammatory molecules MCP-1, CCR2, CD68, and F4/80 were significantly higher in the WAT of HFD-fed WT vs. HFD-fed KO mice. These data suggest that P2Y2-R plays a significant role in the development of diet-induced obesity by promoting adipogenesis and inflammation, and altering the production of adipokines and lipids and their metabolism in adipose tissue, and thereby facilitates HFD-induced insulin resistance.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Veterans Affairs Salt Lake City Health Care System, Nephrology Research, Salt Lake City, UT, United States
- Departments of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Carolyn M. Ecelbarger
- Division of Endocrinology and Metabolism, Department of Medicine, Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, Washington, DC, United States
| | - Lisa A. Lesniewski
- Departments of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Department of Veterans Affairs Salt Lake City Health Care System, Geriatric Research, Education and Clinical Center, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Bellamkonda K. Kishore
- Department of Veterans Affairs Salt Lake City Health Care System, Nephrology Research, Salt Lake City, UT, United States
- Departments of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
- *Correspondence: Bellamkonda K. Kishore
| |
Collapse
|
12
|
Stovall KE, Tran TDN, Suantawee T, Yao S, Gimble JM, Adisakwattana S, Cheng H. Adenosine triphosphate enhances osteoblast differentiation of rat dental pulp stem cells via the PLC-IP 3 pathway and intracellular Ca 2+ signaling. J Cell Physiol 2019; 235:1723-1732. [PMID: 31301074 DOI: 10.1002/jcp.29091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023]
Abstract
Intracellular Ca2+ signals are essential for stem cell function and play a significant role in the differentiation process. Dental pulp stem cells (DPSCs) are a potential source of stem cells; however, the mechanisms controlling cell differentiation remain largely unknown. Utilizing rat DPSCs, we examined the effect of adenosine triphosphate (ATP) on osteoblast differentiation and characterized its mechanism of action using real-time Ca 2+ imaging analysis. Our results revealed that ATP enhanced osteogenesis as indicated by Ca 2+ deposition in the extracellular matrix via Alizarin Red S staining. This was consistent with upregulation of osteoblast genes BMP2, Mmp13, Col3a1, Ctsk, Flt1, and Bgn. Stimulation of DPSCs with ATP (1-300 µM) increased intracellular Ca 2+ signals in a concentration-dependent manner, whereas histamine, acetylcholine, arginine vasopressin, carbachol, and stromal-cell-derived factor-1α failed to do so. Depletion of intracellular Ca 2+ stores in the endoplasmic reticulum by thapsigargin abolished the ATP responses which, nevertheless, remained detectable under extracellular Ca 2+ free condition. Furthermore, the phospholipase C (PLC) inhibitor U73122 and the inositol triphosphate (IP 3 ) receptor inhibitor 2-aminoethoxydiphenyl borate inhibited the Ca 2+ signals. Our findings provide a better understanding of how ATP controls osteogenesis in DPSCs, which involves a Ca 2+ -dependent mechanism via the PLC-IP 3 pathway. This knowledge could help improve osteogenic differentiation protocols for tissue regeneration of bone structures.
Collapse
Affiliation(s)
- Kelsie E Stovall
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Tran D N Tran
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Tanyawan Suantawee
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Jeffrey M Gimble
- LaCell LLC, New Orleans Bioinnovation Center, New Orleans, Louisiana.,Center for Stem Cell Research & Regenerative Medicine, Tulane University, New Orleans, Louisiana
| | - Sirichai Adisakwattana
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
13
|
Brockmann N, Sureechatchaiyan P, Müller D, Hennicke T, Hausmann R, Fritz G, Hamacher A, Kassack MU. Profiling of a suramin-derived compound library at recombinant human P2Y receptors identifies NF272 as a competitive but non-selective P2Y 2 receptor antagonist. Purinergic Signal 2019; 15:287-298. [PMID: 31270713 DOI: 10.1007/s11302-019-09663-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides mediate multiple physiological effects such as proliferation, differentiation, or induction of apoptosis through G protein-coupled P2Y receptors or P2X ion channels. Evaluation of the complete physiological role of nucleotides has long been hampered by a lack of potent and selective ligands for all P2 subtypes. Meanwhile, for most of the P2 receptors, selective ligands are available, but only a few potent and selective P2Y2 receptor antagonists are described. This limits the understanding of the role of P2Y2 receptors. The purpose of this study was to search for P2Y2 receptor antagonists by a combinatorial screening of a library of around 415 suramin-derived compounds. Calcium fluorescence measurements at P2Y2 receptors recombinantly expressed in human 1321N1 astrocytoma cells identified NF272 [8-(4-methyl-3-(3-phenoxycarbonylimino-benzamido)benzamido)-naphthalene-1,3,5-trisulfonic acid trisodium salt] as a competitive P2Y2 receptor antagonist with a Ki of 19 μM which is 14-fold more potent than suramin at this receptor subtype. The SCHILD analysis of competitive inhibition resulted in a pA2 value of 5.03 ± 0.22 (mean ± SEM) with a slope not significantly different from unity. Among uracil-nucleotide-preferring P2Y receptors, NF272 shows a moderate selectivity over P2Y4 (3.6-fold) and P2Y6 (5.7-fold). However, NF272 is equipotent at P2Y1, and even more potent at P2Y11 and P2Y12 receptors. Up to 250 μM, NF272 showed no cytotoxicity in MTT cell viability assays in 1321N1, HEK293, and OVCAR-3 cells. Further, NF272 was able to inhibit the ATP-induced calcium signal in OVCAR-3 cells demonstrated to express P2Y2 receptors. In conclusion, NF272 is a competitive but non-selective P2Y2 receptor antagonist with 14-fold higher potency than suramin lacking cytotoxic effects. Therefore, NF272 may serve as a lead structure for further development of P2Y2 receptor antagonists.
Collapse
Affiliation(s)
- Nicole Brockmann
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Parichat Sureechatchaiyan
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - David Müller
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tatiana Hennicke
- Institute of Toxicology, Heinrich-Heine-University of Duesseldorf, Duesseldorf, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule Aachen, RWTH Aachen University, Aachen, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Heinrich-Heine-University of Duesseldorf, Duesseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|