1
|
Dumbali SP, Horton PD, Moore TI, Wenzel PL. Mitochondrial permeability transition dictates mitochondrial maturation upon switch in cellular identity of hematopoietic precursors. Commun Biol 2024; 7:967. [PMID: 39122870 PMCID: PMC11316084 DOI: 10.1038/s42003-024-06671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The mitochondrial permeability transition pore (mPTP) is a supramolecular channel that regulates exchange of solutes across cristae membranes, with executive roles in mitochondrial function and cell death. The contribution of the mPTP to normal physiology remains debated, although evidence implicates the mPTP in mitochondrial inner membrane remodeling in differentiating progenitor cells. Here, we demonstrate that strict control over mPTP conductance shapes metabolic machinery as cells transit toward hematopoietic identity. Cells undergoing the endothelial-to-hematopoietic transition (EHT) tightly control chief regulatory elements of the mPTP. During EHT, maturing arterial endothelium restricts mPTP activity just prior to hematopoietic commitment. After transition in cellular identity, mPTP conductance is restored. In utero treatment with NIM811, a molecule that blocks sensitization of the mPTP to opening by Cyclophilin D (CypD), amplifies oxidative phosphorylation (OXPHOS) in hematopoietic precursors and increases hematopoiesis in the embryo. Additionally, differentiating pluripotent stem cells (PSCs) acquire greater organization of mitochondrial cristae and hematopoietic activity following knockdown of the CypD gene, Ppif. Conversely, knockdown of Opa1, a GTPase critical for proper cristae architecture, induces cristae irregularity and impairs hematopoiesis. These data elucidate a mechanism that regulates mitochondrial maturation in hematopoietic precursors and underscore a role for the mPTP in the acquisition of hematopoietic fate.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paulina D Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
2
|
Dias DA, Souza de Souza KF, Moslaves ISB, Buri MV, Basilio DCLS, Espinoça IT, Parisotto EB, Silva-Filho SE, Migliolo L, Jaques JAO, Franco DG, Chudzinski-Tavassi AM, Rita PHS, da Silva DB, Carollo CA, Toffoli-Kadri MC, Paredes-Gamero EJ. Identification of purinergic system components in the venom of Bothrops mattogrossensis and the inhibitory effect of specioside extracted from Tabebuia aurea. Purinergic Signal 2024:10.1007/s11302-024-10032-z. [PMID: 38958820 DOI: 10.1007/s11302-024-10032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Snake bites are a severe problem in the countryside of Brazil and are usually attributed to snakes of the genera Bothrops, Crotalus, and Lachesis. Snake venom can release ectoenzymes and nucleotidases that modulate the purinergic system. In addition to serum therapy against snake poisoning, medicinal plants with anti-inflammatory activities, such as Tabebuia aurea, is empirically applied in accidents that occur in difficult-to-access areas. This study aimed was to verify the presence and activity of nucleotidases in the crude venom of Bothrops mattogrossensis (BmtV) in vitro and characterize the modulation of purinergic components, myeloid differentiation, and inflammatory/oxidative stress markers by BmtV in vivo and in vitro. Moreover, our study assessed the inhibitory activities of specioside, an iridoid isolated from Tabebuia aurea, against the effects of BmtV. Proteomic analysis of venom content and nucleotidase activity confirm the presence of ectonucleotidase-like enzymes in BmtV. In in vivo experiments, BmtV altered purinergic component expression (P2X7 receptor, CD39 and CD73), increased neutrophil numbers in peripheral blood, and elevated oxidative stress/inflammatory parameters such as lipid peroxidation and myeloperoxidase activity. BmtV also decreased viability and increased spreading index and phagocytic activity on macrophages. Specioside inhibited nucleotidase activity, restored neutrophil numbers, and mediate the oxidative/inflammatory effects produced by BmtV. We highlight the effects produced by BmtV in purinergic system components, myeloid differentiation, and inflammatory/oxidative stress parameters, while specioside reduced the main BmtV-dependent effects.
Collapse
Affiliation(s)
- Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | | | - Iluska Senna Bonfá Moslaves
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Marcus Vinicius Buri
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, SP, Brazil
| | - Denise Caroline Luiz Soares Basilio
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Isabelly Teixeira Espinoça
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Saulo Euclides Silva-Filho
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Ludovico Migliolo
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | | | - Daniel Guerra Franco
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, SP, Brazil
- Development and Innovation Centre, Butantan Institute, São Paulo, SP, Brazil
| | | | - Denise Brentan da Silva
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Carlos Alexandre Carollo
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Mônica Cristina Toffoli-Kadri
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Edgar Julian Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
- Biochemistry Department, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
4
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
P2Y 12-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction. Basic Res Cardiol 2022; 117:16. [PMID: 35353230 PMCID: PMC8967792 DOI: 10.1007/s00395-022-00927-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 01/31/2023]
Abstract
Emergency hematopoiesis is the driving force of the inflammatory response to myocardial infarction (MI). Increased proliferation of hematopoietic stem and progenitor cells (LSK) after MI enhances cell production in the bone marrow (BM) and replenishes leukocyte supply for local cell recruitment to the infarct. Decoding the regulation of the inflammatory cascade after MI may provide new avenues to improve post-MI remodeling. In this study, we describe the influence of adenosine diphosphate (ADP)-dependent P2Y12-mediated signaling on emergency hematopoiesis and cardiac remodeling after MI. Permanent coronary ligation was performed to induce MI in a murine model. BM activation, inflammatory cell composition and cardiac function were assessed using global and platelet-specific gene knockout and pharmacological inhibition models for P2Y12. Complementary in vitro studies allowed for investigation of ADP-dependent effects on LSK cells. We found that ADP acts as a danger signal for the hematopoietic BM and fosters emergency hematopoiesis by promoting Akt phosphorylation and cell cycle progression. We were able to detect P2Y12 in LSK, implicating a direct effect of ADP on LSK via P2Y12 signaling. P2Y12 knockout and P2Y12 inhibitor treatment with prasugrel reduced emergency hematopoiesis and the excessive inflammatory response to MI, translating to lower numbers of downstream progeny and inflammatory cells in the blood and infarct. Ultimately, P2Y12 inhibition preserved cardiac function and reduced chronic adverse cardiac remodeling after MI. P2Y12-dependent signaling is involved in emergency hematopoiesis after MI and fuels post-ischemic inflammation, proposing a novel, non-canonical value for P2Y12 antagonists beyond inhibition of platelet-mediated atherothrombosis.
Collapse
|
6
|
Tung LT, Wang H, Belle JI, Petrov JC, Langlais D, Nijnik A. p53-dependent induction of P2X7 on hematopoietic stem and progenitor cells regulates hematopoietic response to genotoxic stress. Cell Death Dis 2021; 12:923. [PMID: 34625535 PMCID: PMC8501024 DOI: 10.1038/s41419-021-04202-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Stem and progenitor cells are the main mediators of tissue renewal and repair, both under homeostatic conditions and in response to physiological stress and injury. Hematopoietic system is responsible for the regeneration of blood and immune cells and is maintained by bone marrow-resident hematopoietic stem and progenitor cells (HSPCs). Hematopoietic system is particularly susceptible to injury in response to genotoxic stress, resulting in the risk of bone marrow failure and secondary malignancies in cancer patients undergoing radiotherapy. Here we analyze the in vivo transcriptional response of HSPCs to genotoxic stress in a mouse whole-body irradiation model and, together with p53 ChIP-Seq and studies in p53-knockout (p53KO) mice, characterize the p53-dependent and p53-independent branches of this transcriptional response. Our work demonstrates the p53-independent induction of inflammatory transcriptional signatures in HSPCs in response to genotoxic stress and identifies multiple novel p53-target genes induced in HSPCs in response to whole-body irradiation. In particular, we establish the direct p53-mediated induction of P2X7 expression on HSCs and HSPCs in response to genotoxic stress. We further demonstrate the role of P2X7 in hematopoietic response to acute genotoxic stress, with P2X7 deficiency significantly extending mouse survival in irradiation-induced hematopoietic failure. We also demonstrate the role of P2X7 in the context of long-term HSC regenerative fitness following sublethal irradiation. Overall our studies provide important insights into the mechanisms of HSC response to genotoxic stress and further suggest P2X7 as a target for pharmacological modulation of HSC fitness and hematopoietic response to genotoxic injury.
Collapse
Affiliation(s)
- Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jad I Belle
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jessica C Petrov
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Cuthbertson P, Geraghty NJ, Adhikary SR, Bird KM, Fuller SJ, Watson D, Sluyter R. Purinergic Signalling in Allogeneic Haematopoietic Stem Cell Transplantation and Graft-versus-Host Disease. Int J Mol Sci 2021; 22:8343. [PMID: 34361109 PMCID: PMC8348324 DOI: 10.3390/ijms22158343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for blood cancers and other haematological disorders. However, allo-HSCT leads to graft-versus-host disease (GVHD), a severe and often lethal immunological response, in the majority of transplant recipients. Current therapies for GVHD are limited and often reduce the effectiveness of allo-HSCT. Therefore, pro- and anti-inflammatory factors contributing to disease need to be explored in order to identify new treatment targets. Purinergic signalling plays important roles in haematopoiesis, inflammation and immunity, and recent evidence suggests that it can also affect haematopoietic stem cell transplantation and GVHD development. This review provides a detailed assessment of the emerging roles of purinergic receptors, most notably P2X7, P2Y2 and A2A receptors, and ectoenzymes, CD39 and CD73, in GVHD.
Collapse
Affiliation(s)
- Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nicholas J. Geraghty
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sam R. Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina M. Bird
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stephen J. Fuller
- Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, NSW 2747, Australia;
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Ratajczak MZ, Kucia M. The Nlrp3 inflammasome - the evolving story of its positive and negative effects on hematopoiesis. Curr Opin Hematol 2021; 28:251-261. [PMID: 33901136 PMCID: PMC8169640 DOI: 10.1097/moh.0000000000000658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Hematopoiesis is co-regulated by innate immunity, which is an ancient evolutionary defense mechanism also involved in the development and regeneration of damaged tissues. This review seeks to shed more light on the workings of the Nlrp3 inflammasome, which is an intracellular innate immunity pattern recognition receptor and sensor of changes in the hematopoietic microenvironment, and focus on its role in hematopoieisis. RECENT FINDINGS Hematopoietic stem progenitor cells (HSPCs) are exposed to several external mediators of innate immunity. Moreover, since hemato/lymphopoietic cells develop from a common stem cell, their behavior and fate are coregulated by intracellular innate immunity pathways. Therefore, the Nlrp3 inflammasome is functional both in immune cells and in HSPCs and affects hematopoiesis in either a positive or negative way, depending on its activity level. Specifically, while a physiological level of activation regulates the trafficking of HSPCs and most likely maintains their pool in the bone marrow, hyperactivation may lead to irreversible cell damage by pyroptosis and HSPC senescence and contribute to the origination of myelodysplasia and hematopoietic malignancies. SUMMARY Modulation of the level of Nrp3 inflammasome activation will enable improvements in HSPC mobilization, homing, and engraftment strategies. It may also control pathological activation of this protein complex during HSPC senescence, graft-versus-host disease, the induction of cytokine storms, and the development of hematopoietic malignancies.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Magdalena Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| |
Collapse
|
9
|
De Marchi E, Pegoraro A, Adinolfi E. P2X7 Receptor in Hematological Malignancies. Front Cell Dev Biol 2021; 9:645605. [PMID: 33763425 PMCID: PMC7982859 DOI: 10.3389/fcell.2021.645605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
The P2X7 receptor is an ion channel gated by the nucleotide ATP, known for its role in immune responses and recently emerging as a critical onco-promoting factor. Lymphocytes, myeloid cells, and their precursors were among the first cells proved to express a functional P2X7 receptor; therefore, it is not surprising that lymphoproliferative and myeloproliferative diseases, also known as hematological malignancies, were shown to be related in their insurgence and progression to P2X7 alterations. Here, we overview established and recent literature relating P2X7 with the biological mechanisms underlying leukemias, lymphomas, and multiple myeloma development. Particular attention is paid to studies published in the very recent past correlating P2X7 with ATP concentration in the leukemic microenvironment and P2X7 overexpression to acute myeloid leukemia aggressiveness and response to chemotherapy. The described literature strongly suggests that P2X7 and its genetic variants could be regarded as potential new biomarkers in hematological malignancies and that both P2X7 antagonists and agonists could emerge as new therapeutic tools alone or in combination with traditional chemotherapy.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Yang L, Hu M, Lu Y, Han S, Wang J. Inflammasomes and the Maintenance of Hematopoietic Homeostasis: New Perspectives and Opportunities. Molecules 2021; 26:molecules26020309. [PMID: 33435298 PMCID: PMC7827629 DOI: 10.3390/molecules26020309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) regularly produce various blood cells throughout life via their self-renewal, proliferation, and differentiation abilities. Most HSCs remain quiescent in the bone marrow (BM) and respond in a timely manner to either physiological or pathological cues, but the underlying mechanisms remain to be further elucidated. In the past few years, accumulating evidence has highlighted an intermediate role of inflammasome activation in hematopoietic maintenance, post-hematopoietic transplantation complications, and senescence. As a cytosolic protein complex, the inflammasome participates in immune responses by generating a caspase cascade and inducing cytokine secretion. This process is generally triggered by signals from purinergic receptors that integrate extracellular stimuli such as the metabolic factor ATP via P2 receptors. Furthermore, targeted modulation/inhibition of specific inflammasomes may help to maintain/restore adequate hematopoietic homeostasis. In this review, we will first summarize the possible relationships between inflammasome activation and homeostasis based on certain interesting phenomena. The cellular and molecular mechanism by which purinergic receptors integrate extracellular cues to activate inflammasomes inside HSCs will then be described. We will also discuss the therapeutic potential of targeting inflammasomes and their components in some diseases through pharmacological or genetic strategies.
Collapse
|
11
|
Jiang L, Zhang Y, Jing F, Long T, Qin G, Zhang D, Chen L, Zhou J. P2X7R-mediated autophagic impairment contributes to central sensitization in a chronic migraine model with recurrent nitroglycerin stimulation in mice. J Neuroinflammation 2021; 18:5. [PMID: 33402188 PMCID: PMC7786980 DOI: 10.1186/s12974-020-02056-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Central sensitization is an important pathophysiological mechanism of chronic migraine (CM). According to our previous studies, microglial activation and subsequent inflammation in the trigeminal nucleus caudalis (TNC) contribute to the central sensitization. The P2X7 receptor (P2X7R) is a purinergic receptor expressed in microglia and participates in central sensitization in chronic pain, but its role in CM is unclear. Numerous studies have shown that P2X7R regulates the level of autophagy and that autophagy affects the microglial activation and inflammation. Recently, autophagy has been shown to be involved in neuropathic pain, but there is no information about autophagy in CM. Therefore, the current study investigated the role of P2X7R in CM and its underlying mechanism, focusing on autophagy regulation. METHODS The CM model was established by repeated intraperitoneal injection of nitroglycerin (NTG) in mice. A Von Frey filament and radiant heat were used to assess the mechanical and thermal hypersensitivity. Western blotting and immunofluorescence assays were performed to detect the expression of P2X7R, autophagy-related proteins, and the cellular localization of P2X7R. To determine the role of P2X7R and autophagy in CM, we detected the effects of the autophagy inducer, rapamycin (RAPA) and P2X7R antagonist, Brilliant Blue G (BBG), on pain behavior and the expression of calcitonin gene-related peptide (CGRP) and c-fos. In addition, the effect of RAPA and BBG on microglial activation and subsequent inflammation were investigated. RESULTS The expression of P2X7R was increased and was mainly colocalized with microglia in the TNC following recurrent NTG administration. The autophagic flux was blocked in CM, which was characterized by upregulated LC3-II, and accumulated autophagy substrate protein, p62. RAPA significantly improved the basal rather than acute hyperalgesia. BBG alleviated both basal and acute hyperalgesia. BBG activated the level of autophagic flux. RAPA and BBG inhibited the activation of microglia, limited the inflammatory response, and reduced the expression of CGRP and c-fos. CONCLUSIONS Our results demonstrate the dysfunction of the autophagic process in CM. Activated autophagy may have a preventive effect on migraine chronification. P2X7R contributes to central sensitization through mediating autophagy regulation and might become a potential target for CM.
Collapse
Affiliation(s)
- Li Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Feng Jing
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Ting Long
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
12
|
Extracellular Adenine Nucleotides and Adenosine Modulate the Growth and Survival of THP-1 Leukemia Cells. Int J Mol Sci 2020; 21:ijms21124425. [PMID: 32580317 PMCID: PMC7352165 DOI: 10.3390/ijms21124425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022] Open
Abstract
A new approach to improve the effectiveness of acute myeloid leukemia (AML) treatment is to use the properties of purinergic signaling molecules secreted into the bone marrow milieu in response to leukemic cell growth. Therefore, our study aimed to evaluate the effects of extracellular adenine nucleotides and adenosine on the growth and death parameters in the leukemic THP-1 cell line. Cells were exposed to ATP, ADP, AMP, adenosine and nonhydrolyzable analogues of ATP and ADP (ATPγS and ADPβS) in a 1–1000 μM broad concentration range. The basal mRNA expression of the P1 and P2 receptors was evaluated by real-time PCR. Changes in the processes of cell growth and death were assessed by flow cytometry analysis of proliferation, cell cycle and apoptosis. Chemotaxis toward stromal cell-derived factor-1 (SDF-1) was performed using the modified Boyden chamber assay, and chemokine receptor type 4 (CXCR4) surface expression was quantified by flow cytometry. We indicated several antileukemic actions. High micromolar concentrations (100–1000 μM) of extracellular adenine nucleotides and adenosine inhibit the growth of cells by arresting the cell cycle and/or inducing apoptosis. ATP is characterized by the highest potency and widest range of effects, and is responsible for the cell cycle arrest and the apoptosis induction. Compared to ATP, the effect of ADP is slightly weaker. Adenosine mostly has a cytotoxic effect, with the induction of apoptosis. The last studied nucleotide, AMP, demonstrated only a weak cytotoxic effect without affecting the cell cycle. In addition, cell migration towards SDF-1 was inhibited by low micromolar concentrations (10 μM). One of the reasons for this action of ATPγS and adenosine was a reduction in CXCR4 surface expression, but this only partially explains the mechanism of antimigratory action. In summary, extracellular adenine nucleotides and adenosine inhibit THP-1 cell growth, cause death of cells and modulate the functioning of the SDF-1/CXCR4 axis. Thus, they negatively affect the processes that are responsible for the progression of AML and the difficulties in AML treatment.
Collapse
|
13
|
Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling-an update. Purinergic Signal 2020; 16:153-166. [PMID: 32415576 DOI: 10.1007/s11302-020-09698-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bone marrow (BM) as an active hematopoietic organ is highly sensitive to changes in body microenvironments and responds to external physical stimuli from the surrounding environment. In particular, BM tissue responds to several cues related to infections, strenuous exercise, tissue/organ damage, circadian rhythms, and physical challenges such as irradiation. These multiple stimuli affect BM cells to a large degree through a coordinated response of the innate immunity network as an important guardian for maintaining homeostasis of the body. In this review, we will foc++us on the role of purinergic signaling and innate immunity in the trafficking of hematopoietic stem/progenitor cells (HSPCs) during their egression from the BM into peripheral blood (PB), as seen along pharmacological mobilization, and in the process of homing and subsequent engraftment into BM after hematopoietic transplantation. Innate immunity mediates these processes by engaging, in addition to certain peptide-based factors, other important non-peptide mediators, including bioactive phosphosphingolipids and extracellular nucleotides, as the main topic of this review. Elucidation of these mechanisms will allow development of more efficient stem cell mobilization protocols to harvest the required number of HSPCs for transplantation and to accelerate hematopoietic reconstitution in transplanted patients.
Collapse
|