1
|
Ma X, Li M, Liu Y, Zhang X, Yang X, Wang Y, Li Y, Wang J, Liu X, Yan Z, Yu X, Wu C. ARTC1-mediated VAPB ADP-ribosylation regulates calcium homeostasis. J Mol Cell Biol 2024; 15:mjad043. [PMID: 37381178 PMCID: PMC10928986 DOI: 10.1093/jmcb/mjad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023] Open
Abstract
Mono-ADP-ribosylation (MARylation) is a post-translational modification that regulates a variety of biological processes, including DNA damage repair, cell proliferation, metabolism, and stress and immune responses. In mammals, MARylation is mainly catalyzed by ADP-ribosyltransferases (ARTs), which consist of two groups: ART cholera toxin-like (ARTCs) and ART diphtheria toxin-like (ARTDs, also known as PARPs). The human ARTC (hARTC) family is composed of four members: two active mono-ADP-ARTs (hARTC1 and hARTC5) and two enzymatically inactive enzymes (hARTC3 and hARTC4). In this study, we systematically examined the homology, expression, and localization pattern of the hARTC family, with a particular focus on hARTC1. Our results showed that hARTC3 interacted with hARTC1 and promoted the enzymatic activity of hARTC1 by stabilizing hARTC1. We also identified vesicle-associated membrane protein-associated protein B (VAPB) as a new target of hARTC1 and pinpointed Arg50 of VAPB as the ADP-ribosylation site. Furthermore, we demonstrated that knockdown of hARTC1 impaired intracellular calcium homeostasis, highlighting the functional importance of hARTC1-mediated VAPB Arg50 ADP-ribosylation in regulating calcium homeostasis. In summary, our study identified a new target of hARTC1 in the endoplasmic reticulum and suggested that ARTC1 plays a role in regulating calcium signaling.
Collapse
Affiliation(s)
- Xueyao Ma
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Mengyuan Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yi Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xuefang Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xiaoyun Yang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yun Wang
- Department of Public Health, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Yipeng Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Jiayue Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xiuhua Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zhenzhen Yan
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Rack JGM, Ahel I. A Simple Method to Study ADP-Ribosylation Reversal: From Function to Drug Discovery. Methods Mol Biol 2023; 2609:111-132. [PMID: 36515833 DOI: 10.1007/978-1-0716-2891-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ADP-ribosylation is an ancient modification of proteins, nucleic acids, and other biomolecules found in all kingdoms of life as well as in certain viruses. The regulation of fundamental (patho)physiological processes by ADP-ribosylation, including the cellular stress response, inflammation, and immune response to bacterial and viral pathogens, has created a strong interest into the study of modification establishment and removal to explore novel therapeutic approaches. Beyond ADP-ribosylation in humans, direct targeting of factors that alter host ADP-ribosylation signaling (e.g., viral macrodomains) or utilize ADP-ribosylation to manipulate host cell behavior (e.g., bacterial toxins) were shown to reduce virulence and disease severity. However, the realization of these therapeutic potentials is thus far hampered by the unavailability of simple, high-throughput methods to study the modification "writers" and "erasers" and screen for novel inhibitors.Here, we describe a scalable method for the measurement of (ADP-ribosyl)hydrolase activity. The assay relies on the conversion of ADP-ribose released from a modified substrate by the (ADP-ribosyl)hydrolase under investigation into AMP by the phosphodiesterase NudT5 into bioluminescence via a commercially available detection assay. Moreover, this method can be utilized to study the role of nudix- or ENPP-type phosphodiesterases in ADP-ribosylation processing and may also be adapted to investigate the activity of (ADP-ribosyl)transferases. Overall, this method is applicable for both basic biochemical characterization and screening of large drug libraries; hence, it is highly adaptable to diverse project needs.
Collapse
Affiliation(s)
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Gregory S, Xu Y, Xie P, Fan J, Gao B, Mani N, Iyer R, Tang A, Wei J, Chaudhuri SM, Wang S, Liu H, Zhang B, Fang D. The ubiquitin-specific peptidase 22 is a deubiquitinase of CD73 in breast cancer cells. Am J Cancer Res 2022; 12:5564-5575. [PMID: 36628293 PMCID: PMC9827093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/12/2022] [Indexed: 01/12/2023] Open
Abstract
Cancer cells evade the immune system by expressing inhibitory immune checkpoint receptors such as ecto-5'-nucleotidase (NT5E), also known as CD73, which consequently suppress tumor neoantigen-specific immune response. Blockade of CD73 in mouse models of breast cancer showed a reduction in tumor growth and metastasis. CD73 expression is elevated in a variety of human tumors including breast cancer. While the regulation of CD73 expression at the transcriptional level has been well understood, the factors involved in regulating CD73 expression at the post-transcriptional level have not been identified. Herein, we discovered that the ubiquitin-specific peptidase 22 (USP22), a deubiquitinase associated with poor prognosis and overexpressed in breast cancers, is a positive regulator for CD73. Targeted USP22 deletion resulted in a statistically significant reduction in CD73 protein expression. In contrast, CD73 mRNA expression levels were not reduced, but even slightly increased by USP22 deletion. Further analysis demonstrated that USP22 is a deubiquitinase that specifically interacts with and inhibits CD73 ubiquitination. Consequently, USP22 protects CD73 from ubiquitin-mediated proteasomal degradation in breast cancer cells. Targeted USP22 deletion, inhibits syngeneic breast cancer growth. Collectively, our study reveals USP22 as a positive regulator to promote CD73 expression in breast cancer and provides a rationale to target USP22 in antitumor immune therapy.
Collapse
Affiliation(s)
- Shana Gregory
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Yanan Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Ping Xie
- Department of Medicine (Hematology and Oncology), Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Jie Fan
- Department of Medicine (Hematology and Oncology), Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Amy Tang
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Shuvam Mohan Chaudhuri
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine303 E. Superior St, Chicago, IL 60611, USA
| | - Bin Zhang
- Department of Medicine (Hematology and Oncology), Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine303 E. Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Schrader J. Ectonucleotidases as bridge between the ATP and adenosine world: reflections on Geoffrey Burnstock. Purinergic Signal 2022; 18:193-198. [PMID: 35522386 PMCID: PMC9123149 DOI: 10.1007/s11302-022-09862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Historically, mainly by the work of Robert Berne, extracellular adenosine was the first purine compound recognized as an important signaling molecule linking energy metabolism to function by acting on membrane bound receptors. Geoffrey Burnstock by his vision and endurance pioneered the idea that cells release ATP that also acts as an extracellular signaling molecule under many physiological and pathophysiological circumstances. Only later, it was appreciated that extracellular ATP and adenosine are metabolically linked by the activity of several ectoenzymes which critically determine the concentrations of these purines at their respective receptors. In this brief review, I will report some personal recollections on Geoffrey Burnstock and his impressive personality. In addition, I will give a brief overview on our present knowledge of extracellular purine metabolism and its control and will address some still open issues.
Collapse
Affiliation(s)
- Jürgen Schrader
- Department of Molecular Cardiology, University of Düsseldorf, Medical Faculty, Universitaetsstr. 1, 40225, Duesseldorf, Germany.
| |
Collapse
|