1
|
Roux CG, Mason S, du Toit LDV, Nel JG, Rossouw TM, Steel HC. Comparative Effects of Efavirenz and Dolutegravir on Metabolomic and Inflammatory Profiles, and Platelet Activation of People Living with HIV: A Pilot Study. Viruses 2024; 16:1462. [PMID: 39339938 PMCID: PMC11437493 DOI: 10.3390/v16091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Antiretroviral therapy (ART) has reduced the mortality and morbidity associated with HIV. However, irrespective of treatment, people living with HIV remain at a higher risk of developing non-AIDS-associated diseases. In 2019, the World Health Organization recommended the transition from efavirenz (EFV)- to dolutegravir (DTG)-based ART. Data on the impact of this transition are still limited. The current study therefore investigated the metabolic profiles, cytokine inflammatory responses, and platelet activation before and after the treatment transition. Plasma samples from nine virally suppressed adults living with HIV and sixteen healthy, HIV-uninfected individuals residing in Gauteng, South Africa were compared. Metabolite and cytokine profiles, and markers associated with platelet activation, were investigated with untargeted proton magnetic resonance metabolomics, multiplex suspension bead array immunoassays, and sandwich enzyme-linked immunosorbent assays, respectively. In those individuals with normal C-reactive protein levels, the transition to a DTG-based ART regimen resulted in decreased concentrations of acetoacetic acid, creatinine, adenosine monophosphate, 1,7-dimethylxanthine, glycolic acid, 3-hydroxybutyric acid, urea, and lysine. Moreover, increased levels of formic acid, glucose, lactic acid, myo-inositol, valine, glycolic acid, and 3-hydroxybutyric acid were observed. Notably, levels of interleukin-6, platelet-derived growth factor-BB, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, soluble cluster of differentiation 40 ligand, as well as regulated on activation, normal T-cell expressed and secreted (RANTES) reached levels close to those observed in the healthy control participants. The elevated concentration of macrophage inflammatory protein-1 alpha was the only marker indicative of elevated levels of inflammation associated with DTG-based treatment. The transition from EFV- to DTG-based regimens therefore appears to be of potential benefit with metabolic and inflammatory markers, as well as those associated with cardiovascular disease and other chronic non-AIDS-related diseases, reaching levels similar to those observed in individuals not living with HIV.
Collapse
Affiliation(s)
- Crystal G. Roux
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (L.D.V.d.T.); (T.M.R.); (H.C.S.)
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Louise D. V. du Toit
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (L.D.V.d.T.); (T.M.R.); (H.C.S.)
| | - Jan-Gert Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (L.D.V.d.T.); (T.M.R.); (H.C.S.)
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (L.D.V.d.T.); (T.M.R.); (H.C.S.)
| |
Collapse
|
2
|
du Toit LDV, Mason S, van Reenen M, Rossouw TM, Louw R. Metabolic Alterations in Mothers Living with HIV and Their HIV-Exposed, Uninfected Infants. Viruses 2024; 16:313. [PMID: 38400088 PMCID: PMC10892778 DOI: 10.3390/v16020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
HIV-exposed, uninfected (HEU) children present with suboptimal growth and a greater susceptibility to infection in early life when compared to HIV-unexposed, uninfected (HUU) children. The reasons for these findings are poorly understood. We used a metabolomics approach to investigate the metabolic differences between pregnant women living with HIV (PWLWH) and their HEU infants compared to the uninfected and unexposed controls. Untargeted metabolomic profiling was performed using 1H-NMR spectroscopy on maternal plasma at 28 weeks' gestation and infant plasma at birth, 6/10 weeks, and 6 months. PWLWH were older but, apart from a larger 28 week mid-upper-arm circumference, anthropometrically similar to the controls. At all the time points, HEU infants had a significantly reduced growth compared to HUU infants. PWLWH had lower plasma 3-hydroxybutyric acid, acetoacetic acid, and acetic acid levels. In infants at birth, threonine and myo-inositol levels were lower in the HEU group while formic acid levels were higher. At 6/10 weeks, betaine and tyrosine levels were lower in the HEU group. Finally, at six months, 3-hydroxyisobutyric acid levels were lower while glycine levels were higher in the HEU infants. The NMR analysis has provided preliminary information indicating differences between HEU and HUU infants' plasma metabolites involved in energy utilization, growth, and protection from infection.
Collapse
Affiliation(s)
- Louise D. V. du Toit
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa; (S.M.); (M.v.R.); (R.L.)
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa; (S.M.); (M.v.R.); (R.L.)
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa; (S.M.); (M.v.R.); (R.L.)
| |
Collapse
|
3
|
Domingo-Ortí I, Ferrer-Torres P, Armiñán A, Vicent MJ, Pineda-Lucena A, Palomino-Schätzlein M. NMR-Based Mitochondria Metabolomic Profiling: A New Approach To Reveal Cancer-Associated Alterations. Anal Chem 2023; 95:16539-16548. [PMID: 37906730 DOI: 10.1021/acs.analchem.3c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Studying metabolism may assist in understanding the relationship between normal and dysfunctional mitochondrial activity and various diseases, such as neurodegenerative, cardiovascular, autoimmune, psychiatric, and cancer. Nuclear magnetic resonance-based metabolomics represents a powerful method to characterize the chemical content of complex samples and has been successfully applied to studying a range of conditions. However, an optimized methodology is lacking for analyzing isolated organelles, such as mitochondria. In this study, we report the development of a protocol to metabolically profile mitochondria from healthy, tumoral, and metastatic tissues. Encouragingly, this approach provided quantitative information about up to 45 metabolites in one comprehensive and robust analysis. Our results revealed significant differences between whole-cell and mitochondrial metabolites, which supports a more refined approach to metabolic analysis. We applied our optimized methodology to investigate aggressive and metastatic breast cancer in mouse tissues, discovering that lung mitochondria exhibit an altered metabolic fingerprint. Specific amino acids, organic acids, and lipids showed significant increases in levels when compared with mitochondria from healthy tissues. Our optimized methodology could promote a better understanding of the molecular mechanisms underlying breast cancer aggressiveness and mitochondrial-related diseases and support the optimization of new advanced therapies.
Collapse
Affiliation(s)
- Inés Domingo-Ortí
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory and CIBERONC, Valencia 46012, Spain
- NMR Facility, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
| | | | - Ana Armiñán
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory and CIBERONC, Valencia 46012, Spain
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory and CIBERONC, Valencia 46012, Spain
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
- Molecular Therapeutics Program, CIMA Universidad de Navarra, Pamplona 31008, Spain
| | - Martina Palomino-Schätzlein
- NMR Facility, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
- ProtoQSAR, CEEI, Parque Tecnológico Valencia, Paterna 46980, Spain
| |
Collapse
|
4
|
Ma M, Pan XF, Pan A, Jiang L. Effects of Sample Dilution on Nuclear Magnetic Resonance-Derived Metabolic Profiles of Human Urine. Anal Chem 2023; 95:13769-13778. [PMID: 37681715 DOI: 10.1021/acs.analchem.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Traditionally, a relatively big urine volume (e.g., 500 μL) is used in nuclear magnetic resonance (NMR)-based human metabolomics, which is not feasible for studies with limited/precious samples. Although urine may be diluted before conventional high-throughput metabolomics analysis, the comprehensive effect of urine dilution on metabolic profiles is unknown. Here, for the first time, we systematically investigated the effect of urine dilution on 1H NMR metabolic profiles, by evaluating signal detectability, integration, signal-to-noise ratio (SNR), chemical shift (δ) and its variation, and signal overlapping of 47 metabolites in 10 volunteers. We observed significant linear changes along with increased dilution, including decreased integration and SNR, altered δ, decreased intersample variation of δ, and increased separation between overlapped signals, e.g., lactate and threonine, β-d-glucose and an unassigned signal, and histidine and 3-methylhistidine. We further tested the 40% dilution level (i.e., employing 300 μL urine) in an epidemiological study containing 1018 pregnant women from the Tongji-Shuangliu Birth Cohort, showing acceptable detectability and chemical shift variability for most of the 47 metabolites profiled. It indicated that mild (e.g., 40%) dilution of human urine can largely preserve the high-abundance metabolites profiled, reduce intersample chemical shift variations, and increase separations of overlapped signals, which is an improvement of routine sample preparation methods in NMR-based metabolomics and is applicable for studies with limited urine volumes, including large-scale epidemiological studies.
Collapse
Affiliation(s)
- Mengnan Ma
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital & West China Biomedical Big Data Center, West China Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan 610041, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Limiao Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
5
|
Bester R, Stander Z, Mason S, Keane KM, Howatson G, Clifford T, Stevenson EJ, Loots DT. The metabolic recovery of marathon runners: an untargeted 1H-NMR metabolomics perspective. Front Physiol 2023; 14:1117687. [PMID: 37215177 PMCID: PMC10192615 DOI: 10.3389/fphys.2023.1117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Extreme endurance events may result in numerous adverse metabolic, immunologic, and physiological perturbations that may diminish athletic performance and adversely affect the overall health status of an athlete, especially in the absence of sufficient recovery. A comprehensive understanding of the post-marathon recovering metabolome, may aid in the identification of new biomarkers associated with marathon-induced stress, recovery, and adaptation, which can facilitate the development of improved training and recovery programs and personalized monitoring of athletic health/recovery/performance. Nevertheless, an untargeted, multi-disciplinary elucidation of the complex underlying biochemical mechanisms involved in recovery after such an endurance event is yet to be demonstrated. Methods: This investigation employed an untargeted proton nuclear magnetic resonance metabolomics approach to characterize the post-marathon recovering metabolome by systematically comparing the pre-, immediately post, 24, and 48 h post-marathon serum metabolite profiles of 15 athletes. Results and Discussion: A total of 26 metabolites were identified to fluctuate significantly among post-marathon and recovery time points and were mainly attributed to the recovery of adenosine triphosphate, redox balance and glycogen stores, amino acid oxidation, changes to gut microbiota, and energy drink consumption during the post-marathon recovery phase. Additionally, metabolites associated with delayed-onset muscle soreness were observed; however, the mechanisms underlying this commonly reported phenomenon remain to be elucidated. Although complete metabolic recovery of the energy-producing pathways and fuel substrate stores was attained within the 48 h recovery period, several metabolites remained perturbed throughout the 48 h recovery period and/or fluctuated again following their initial recovery to pre-marathon-related levels.
Collapse
Affiliation(s)
- Rachelle Bester
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Zinandré Stander
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Karen M. Keane
- Department of Sport Exercise and Nutrition, School of Science and Computing, Atlantic Technological University, Galway, Ireland
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Emma J. Stevenson
- Human and Exercise Nutrition Research Centre, School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Du Toit Loots
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Willemse L, Terburgh K, Louw R. A ketogenic diet alters mTOR activity, systemic metabolism and potentially prevents collagen degradation associated with chronic alcohol consumption in mice. Metabolomics 2023; 19:43. [PMID: 37076659 PMCID: PMC10115735 DOI: 10.1007/s11306-023-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION A ketogenic diet (KD), which is a high fat, low carbohydrate diet has been shown to inhibit the mammalian target of rapamycin (mTOR) pathway and alter the redox state. Inhibition of the mTOR complex has been associated with the attenuation and alleviation of various metabolic and- inflammatory diseases such as neurodegeneration, diabetes, and metabolic syndrome. Various metabolic pathways and signalling mechanisms have been explored to assess the therapeutic potential of mTOR inhibition. However, chronic alcohol consumption has also been reported to alter mTOR activity, the cellular redox- and inflammatory state. Thus, a relevant question that remains is what effect chronic alcohol consumption would have on mTOR activity and overall metabolism during a KD-based intervention. OBJECTIVES The aim of this study was to evaluate the effect of alcohol and a KD on the phosphorylation of the mTORC1 target p70S6K, systemic metabolism as well as the redox- and inflammatory state in a mouse model. METHODS Mice were fed either a control diet with/without alcohol or a KD with/without alcohol for three weeks. After the dietary intervention, samples were collected and subjected towards western blot analysis, multi-platform metabolomics analysis and flow cytometry. RESULTS Mice fed a KD exhibited significant mTOR inhibition and reduction in growth rate. Alcohol consumption alone did not markedly alter mTOR activity or growth rate but moderately increased mTOR inhibition in mice fed a KD. In addition, metabolic profiling showed alteration of several metabolic pathways as well as the redox state following consumption of a KD and alcohol. A KD was also observed to potentially prevent bone loss and collagen degradation associated with chronic alcohol consumption, as indicated by hydroxyproline metabolism. CONCLUSION This study sheds light on the influence that a KD alongside alcohol intake can exert on not just mTOR, but also their effect on metabolic reprogramming and the redox state.
Collapse
Affiliation(s)
- Luciano Willemse
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
7
|
van Zyl CDW, van Reenen M, Osthoff G, du Preez I. Evaluation of BAYESIL for automated annotation of 1H NMR data using limited sample volumes: application to African elephant serum. Metabolomics 2023; 19:31. [PMID: 36995481 PMCID: PMC10063514 DOI: 10.1007/s11306-023-02001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Technological advancements enabled the analyses of limited sample volumes on 1H NMR. Manual spectral profiling of the data is, however, complex, and timely. OBJECTIVE To evaluate the performance of BAYESIL for automated identification and quantification of 1H NMR spectra of limited volume samples. METHOD Aliquots of a pooled African elephant serum sample were analyzed using standard and reduced volumes. Performance was evaluated on confidence scores, non-detects and laboratory CV. RESULTS Of the 47 compounds detected, 28 had favorable performances. The approach could differentiate samples based on biological variation. CONCLUSIONS BAYESIL is valuable for limited sample 1H NMR data analyses.
Collapse
Affiliation(s)
| | - Mari van Reenen
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Gernot Osthoff
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ilse du Preez
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
8
|
Phenylalanine metabolism and tetrahydrobiopterin bio-availability in COVID-19 and HIV. Heliyon 2023; 9:e15010. [PMID: 37009248 PMCID: PMC10043972 DOI: 10.1016/j.heliyon.2023.e15010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Various metabolomics studies have reported increased phenylalanine serum concentrations in SARS-CoV-2 positive cases and have correlated increased phenylalanine with COVID-19 severity. In this study, we report similar results based upon metabolomics analysis of serum collected from a South African cohort of adults with confirmed COVID-19. The novelty of this study is the inclusion of HIV positive cases in the African context. We found that pre-existing HIV co-infection exacerbates the disruption of phenylalanine metabolism in COVID-19. What is lacking in literature is biological context and deeper understanding of perturbed phenylalanine metabolism in COVID-19. We delve deep into the metabolism of phenylalanine in COVID-19 and posit new insights for COVID-19 cases co-infected with HIV; namely, HIV-COVID-19 co-infected individuals do not have sufficient bioavailability of tetrahydrobiopterin (BH4). Hence, we identify BH4 as a potential supplement to alleviate/lessen COVID-19 symptoms.
Collapse
|
9
|
Smith AP, Lindeque JZ, van der Walt MM. Untargeted Metabolomics Reveals the Potential Antidepressant Activity of a Novel Adenosine Receptor Antagonist. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072094. [PMID: 35408500 PMCID: PMC9000263 DOI: 10.3390/molecules27072094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022]
Abstract
Depression is the most common mental illness, affecting approximately 4.4% of the global population. Despite many available treatments, some patients exhibit treatment-resistant depression. Thus, the need to develop new and alternative treatments cannot be overstated. Adenosine receptor antagonists have emerged as a promising new class of antidepressants. The current study investigates a novel dual A1/A2A adenosine receptor antagonist, namely 2-(3,4-dihydroxybenzylidene)-4-methoxy-2,3-dihydro-1H-inden-1-one (1a), for antidepressant capabilities by determining its metabolic profiles and comparing them to those of two reference compounds (imipramine and KW-6002). The metabolic profiles were obtained by treating male Sprague-Dawley rats with 1a and the reference compounds and subjecting them to the forced swim test. Serum and brain material was consequently collected from the animals following euthanasia, after which the metabolites were extracted and analyzed through untargeted metabolomics using both 1H-NMR and GC-TOFMS. The current study provides insight into compound 1a's metabolic profile. The metabolic profile of 1a was similar to those of the reference compounds. They potentially exhibit their antidepressive capabilities via downstream effects on amino acid and lipid metabolism.
Collapse
|
10
|
van de Wal M, Adjobo-Hermans M, Keijer J, Schirris T, Homberg J, Wieckowski MR, Grefte S, van Schothorst EM, van Karnebeek C, Quintana A, Koopman WJH. Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. Brain 2021; 145:45-63. [PMID: 34849584 PMCID: PMC8967107 DOI: 10.1093/brain/awab426] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce ‘mitochondrial complex I deficiency, nuclear type 1’ (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.
Collapse
Affiliation(s)
- Melissa van de Wal
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Merel Adjobo-Hermans
- Department of Biochemistry (286), RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom Schirris
- Department of Pharmacology and Toxicology, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Judith Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Clara van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands.,Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Quintana
- Mitochondrial Neuropathology Laboratory, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
11
|
van der Walt G, Lindeque JZ, Mason S, Louw R. Sub-Cellular Metabolomics Contributes Mitochondria-Specific Metabolic Insights to a Mouse Model of Leigh Syndrome. Metabolites 2021; 11:metabo11100658. [PMID: 34677373 PMCID: PMC8537744 DOI: 10.3390/metabo11100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Direct injury of mitochondrial respiratory chain (RC) complex I by Ndufs4 subunit mutations results in complex I deficiency (CID) and a progressive encephalomyopathy, known as Leigh syndrome. While mitochondrial, cytosolic and multi-organelle pathways are known to be involved in the neuromuscular LS pathogenesis, compartment-specific metabolomics has, to date, not been applied to murine models of CID. We thus hypothesized that sub-cellular metabolomics would be able to contribute organelle-specific insights to known Ndufs4 metabolic perturbations. To that end, whole brains and skeletal muscle from late-stage Ndufs4 mice and age/sex-matched controls were harvested for mitochondrial and cytosolic isolation. Untargeted 1H-NMR and semi-targeted LC-MS/MS metabolomics was applied to the resulting cell fractions, whereafter important variables (VIPs) were selected by univariate statistics. A predominant increase in multiple targeted amino acids was observed in whole-brain samples, with a more prominent effect at the mitochondrial level. Similar pathways were implicated in the muscle tissue, showing a greater depletion of core metabolites with a compartment-specific distribution, however. The altered metabolites expectedly implicate altered redox homeostasis, alternate RC fueling, one-carbon metabolism, urea cycling and dysregulated proteostasis to different degrees in the analyzed tissues. A first application of EDTA-chelated magnesium and calcium measurement by NMR also revealed tissue- and compartment-specific alterations, implicating stress response-related calcium redistribution between neural cell compartments, as well as whole-cell muscle magnesium depletion. Altogether, these results confirm the ability of compartment-specific metabolomics to capture known alterations related to Ndufs4 KO and CID while proving its worth in elucidating metabolic compartmentalization in said pathways that went undetected in the diluted whole-cell samples previously studied.
Collapse
|
12
|
Characterizing Marathon-Induced Metabolic Changes Using 1H-NMR Metabolomics. Metabolites 2021; 11:metabo11100656. [PMID: 34677371 PMCID: PMC8541139 DOI: 10.3390/metabo11100656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Although physical activity is a health-promoting, popular global pastime, regular engagement in strenuous exercises, such as long-distance endurance running races, has been associated with a variety of detrimental physiological and immunological health effects. The resulting altered physiological state has previously been associated with fluctuations in various key metabolite concentrations; however, limited literature exists pertaining to the global/holistic metabolic changes that are induced by such. This investigation subsequently aims at elucidating the metabolic changes induced by a marathon by employing an untargeted proton nuclear magnetic resonance (1H-NMR) spectrometry metabolomics approach. A principal component analysis (PCA) plot revealed a natural differentiation between pre- and post-marathon metabolic profiles of the 30-athlete cohort, where 17 metabolite fluctuations were deemed to be statistically significant. These included reduced concentrations of various amino acids (AA) along with elevated concentrations of ketone bodies, glycolysis, tricarboxylic acid (TCA) cycle, and AA catabolism intermediates. Moreover, elevated concentrations of creatinine and creatine in the post-marathon group supports previous findings of marathon-induced muscle damage. Collectively, the results of this investigation characterize the strenuous metabolic load induced by a marathon and the consequential regulation of main energy-producing pathways to accommodate this, and a better description of the cause of the physiological changes seen after the completion of a marathon.
Collapse
|
13
|
Miller HC, Louw R, Mereis M, Venter G, Boshoff JD, Mienie L, van Reenen M, Venter M, Lindeque JZ, Domínguez-Martínez A, Quintana A, van der Westhuizen FH. Metallothionein 1 Overexpression Does Not Protect Against Mitochondrial Disease Pathology in Ndufs4 Knockout Mice. Mol Neurobiol 2021; 58:243-262. [PMID: 32918239 DOI: 10.1007/s12035-020-02121-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/05/2020] [Indexed: 01/24/2023]
Abstract
Mitochondrial diseases (MD), such as Leigh syndrome (LS), present with severe neurological and muscular phenotypes in patients, but have no known cure and limited treatment options. Based on their neuroprotective effects against other neurodegenerative diseases in vivo and their positive impact as an antioxidant against complex I deficiency in vitro, we investigated the potential protective effect of metallothioneins (MTs) in an Ndufs4 knockout mouse model (with a very similar phenotype to LS) crossed with an Mt1 overexpressing mouse model (TgMt1). Despite subtle reductions in the expression of neuroinflammatory markers GFAP and IBA1 in the vestibular nucleus and hippocampus, we found no improvement in survival, growth, locomotor activity, balance, or motor coordination in the Mt1 overexpressing Ndufs4-/- mice. Furthermore, at a cellular level, no differences were detected in the metabolomics profile or gene expression of selected one-carbon metabolism and oxidative stress genes, performed in the brain and quadriceps, nor in the ROS levels of macrophages derived from these mice. Considering these outcomes, we conclude that MT1, in general, does not protect against the impaired motor activity or improve survival in these complex I-deficient mice. The unexpected absence of increased oxidative stress and metabolic redox imbalance in this MD model may explain these observations. However, tissue-specific observations such as the mildly reduced inflammation in the hippocampus and vestibular nucleus, as well as differential MT1 expression in these tissues, may yet reveal a tissue- or cell-specific role for MTs in these mice.
Collapse
Affiliation(s)
- Hayley Christy Miller
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Michelle Mereis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Gerda Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - John-Drew Boshoff
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Liesel Mienie
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Marianne Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Adán Domínguez-Martínez
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Quintana
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francois Hendrikus van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
14
|
van Zyl CDW, Loots DT, Solomons R, van Reenen M, Mason S. Metabolic characterization of tuberculous meningitis in a South African paediatric population using 1H NMR metabolomics. J Infect 2020; 81:743-752. [PMID: 32712206 DOI: 10.1016/j.jinf.2020.06.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To better characterize the cerebrospinal fluid (CSF) metabolic profile of tuberculous meningitis (TBM) cases using a South African paediatric cohort. METHODS 1H NMR metabolomics was used to analyse the CSF of a South African paediatric cohort. Univariate and multivariate statistical analyses were performed to compare a homogeneous control group with a well-defined TBM group. RESULTS Twenty metabolites were identified to discriminate TBM cases from controls. As expected, reduced glucose and elevated lactate were the dominating discriminators. A closer investigation of the CSF metabolic profile yielded 18 metabolites of statistical significance. Ten metabolites (acetate, alanine, choline, citrate, creatinine, isoleucine, lysine, myo-inositol, pyruvate and valine) overlapped with two other prior investigations. Eight metabolites (2-hydroxybutyrate, carnitine, creatine, creatine phosphate, glutamate, glutamine, guanidinoacetate and proline) were unique to our paediatric TBM cohort. CONCLUSIONS Through strict exclusion criteria, quality control checks and data filtering, eight unique CSF metabolites associated with TBM were identified for the first time and linked to: uncontrolled glucose metabolism, upregulated proline and creatine metabolism, detoxification and disrupted glutamate-glutamine cycle in the TBM samples. Associated with oxidative stress and chronic neuroinflammation, our findings collectively imply destabilization, and hence increased permeability, of the blood-brain barrier in the TBM cases.
Collapse
Affiliation(s)
- Christiaan De Wet van Zyl
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa.
| |
Collapse
|
15
|
van der Walt G, Louw R. Novel mitochondrial and cytosolic purification pipeline for compartment-specific metabolomics in mammalian disease model tissues. Metabolomics 2020; 16:78. [PMID: 32577914 DOI: 10.1007/s11306-020-01697-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/13/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Mitochondria represent an important milieu for studying the pathogenesis of several major diseases. The need for organelle-level metabolic resolution exists, as mitochondrial/cytosolic metabolites are often diluted beyond detection limits in complex samples. Compartment-specific studies are still hindered by the lack of efficient, cost-effective fractioning methods-applicable to laboratories of all financial/analytical standing. OBJECTIVES We established a novel mitochondrial/cytosolic purification pipeline for complimentary GC-TOF-MS and 1H-NMR metabolomics using robust, commercially available fractionation strategies. METHODS Magnetic based mitochondria isolation kits (MACS) were adapted for this purpose, accompanied by cytosolic filtering. Yield was assessed through the percentage recovery of citrate synthase (CS; a mitochondrial marker), purity by immunoblotting against compartment-specific proteins and integrity interrogated through the respiratory coupling ratio (RCR). The effects of the kit-based buffers on MS/NMR analyses of pure metabolite standards were evaluated. Finally, biological applicability to mammalian disease models was shown using Ndufs4 mouse brain tissue. RESULTS With minor modifications, MACS produced around 60% more mitochondria compared to a differential centrifugation method. Less than 15% of lysosomal LAMP-2 protein was found in the MACS isolates, confirming relative purity-while RCR's above 6 indicate sufficient mitochondrial integrity. The filtering approach effectively depleted mitochondria from the cytosolic fraction, as indicated by negligible Hsp60 and CS levels. Our GC-MS pilot yielded 60-70 features per fraction, while NMR analyses could quantify 6-10 of the most abundant compounds in each fraction. CONCLUSION This study provides a simple and flexible solution for mitochondrial and cytosolic metabolomics in animal model tissues, towards large-scale application of such methodologies in disease research.
Collapse
Affiliation(s)
- Gunter van der Walt
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
16
|
Terburgh K, Lindeque Z, Mason S, van der Westhuizen F, Louw R. Metabolomics of Ndufs4 -/- skeletal muscle: Adaptive mechanisms converge at the ubiquinone-cycle. Biochim Biophys Acta Mol Basis Dis 2018; 1865:98-106. [PMID: 30391276 DOI: 10.1016/j.bbadis.2018.10.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023]
Abstract
Leigh syndrome is one of the most common childhood-onset neurometabolic disorders resulting from a primary oxidative phosphorylation dysfunction and affecting mostly brain tissues. Ndufs4-/- mice have been widely used to study the neurological responses in this syndrome, however the reason why these animals do not display strong muscle involvement remains elusive. We combined biochemical strategies and multi-platform metabolomics to gain insight into the metabolism of both glycolytic (white quadriceps) and oxidative (soleus) skeletal muscles from Ndufs4-/- mice. Enzyme assays confirmed severely reduced (80%) CI activity in both Ndufs4-/- muscle types, compared to WTs. No significant alterations were evident in other respiratory chain enzyme activities; however, Ndufs4-/- solei displayed moderate decreases in citrate synthase (12%) and CIII (18%) activities. Through hypothesis-generating metabolic profiling, we provide the first evidence of adaptive responses to CI dysfunction involving non-classical pathways fueling the ubiquinone (Q) cycle. We report a respective 48 and 34 discriminatory metabolites between Ndufs4-/- and WT white quadriceps and soleus muscles, among which the most prominent alterations indicate the involvement of the glycerol-3-phosphate shuttle, electron transfer flavoprotein system, CII, and proline cycle in fueling the Q cycle. By restoring the electron flux to CIII via the Q cycle, these adaptive mechanisms could maintain adequate oxidative ATP production, despite CI deficiency. Taken together, our results shed light on the underlying pathogenic mechanisms of CI dysfunction in skeletal muscle. Upon further investigation, these pathways could provide novel targets for therapeutic intervention in CI deficiency and potentially lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Francois van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa.
| |
Collapse
|