1
|
Evin D, Evinová A, Baranovičová E, Šarlinová M, Jurečeková J, Kaplán P, Poláček H, Halašová E, Dušenka R, Briš L, Brožová MK, Sivoňová MK. Integrative Metabolomic Analysis of Serum and Selected Serum Exosomal microRNA in Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2024; 25:2630. [PMID: 38473877 DOI: 10.3390/ijms25052630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease due to the absence of effective therapies. A more comprehensive understanding of molecular events, encompassing the dysregulation of microRNAs (miRs) and metabolic reprogramming, holds the potential to unveil precise mechanisms underlying mCRPC. This study aims to assess the expression of selected serum exosomal miRs (miR-15a, miR-16, miR-19a-3p, miR-21, and miR-141a-3p) alongside serum metabolomic profiling and their correlation in patients with mCRPC and benign prostate hyperplasia (BPH). Blood serum samples from mCRPC patients (n = 51) and BPH patients (n = 48) underwent metabolome analysis through 1H-NMR spectroscopy. The expression levels of serum exosomal miRs in mCRPC and BPH patients were evaluated using a quantitative real-time polymerase chain reaction (qRT-PCR). The 1H-NMR metabolomics analysis revealed significant alterations in lactate, acetate, citrate, 3-hydroxybutyrate, and branched-chain amino acids (BCAAs, including valine, leucine, and isoleucine) in mCRPC patients compared to BPH patients. MiR-15a, miR-16, miR-19a-3p, and miR-21 exhibited a downregulation of more than twofold in the mCRPC group. Significant correlations were predominantly observed between lactate, citrate, acetate, and miR-15a, miR-16, miR-19a-3p, and miR-21. The importance of integrating metabolome analysis of serum with selected serum exosomal miRs in mCRPC patients has been confirmed, suggesting their potential utility for distinguishing of mCRPC from BPH.
Collapse
Affiliation(s)
- Daniel Evin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
- Clinic of Nuclear Medicine, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Andrea Evinová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Miroslava Šarlinová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jana Jurečeková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Hubert Poláček
- Clinic of Nuclear Medicine, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erika Halašová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Róbert Dušenka
- Clinic of Urology, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lukáš Briš
- Clinic of Urology, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Martina Knoško Brožová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Monika Kmeťová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
2
|
Domingo-Ortí I, Ferrer-Torres P, Armiñán A, Vicent MJ, Pineda-Lucena A, Palomino-Schätzlein M. NMR-Based Mitochondria Metabolomic Profiling: A New Approach To Reveal Cancer-Associated Alterations. Anal Chem 2023; 95:16539-16548. [PMID: 37906730 DOI: 10.1021/acs.analchem.3c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Studying metabolism may assist in understanding the relationship between normal and dysfunctional mitochondrial activity and various diseases, such as neurodegenerative, cardiovascular, autoimmune, psychiatric, and cancer. Nuclear magnetic resonance-based metabolomics represents a powerful method to characterize the chemical content of complex samples and has been successfully applied to studying a range of conditions. However, an optimized methodology is lacking for analyzing isolated organelles, such as mitochondria. In this study, we report the development of a protocol to metabolically profile mitochondria from healthy, tumoral, and metastatic tissues. Encouragingly, this approach provided quantitative information about up to 45 metabolites in one comprehensive and robust analysis. Our results revealed significant differences between whole-cell and mitochondrial metabolites, which supports a more refined approach to metabolic analysis. We applied our optimized methodology to investigate aggressive and metastatic breast cancer in mouse tissues, discovering that lung mitochondria exhibit an altered metabolic fingerprint. Specific amino acids, organic acids, and lipids showed significant increases in levels when compared with mitochondria from healthy tissues. Our optimized methodology could promote a better understanding of the molecular mechanisms underlying breast cancer aggressiveness and mitochondrial-related diseases and support the optimization of new advanced therapies.
Collapse
Affiliation(s)
- Inés Domingo-Ortí
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory and CIBERONC, Valencia 46012, Spain
- NMR Facility, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
| | | | - Ana Armiñán
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory and CIBERONC, Valencia 46012, Spain
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory and CIBERONC, Valencia 46012, Spain
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
- Molecular Therapeutics Program, CIMA Universidad de Navarra, Pamplona 31008, Spain
| | - Martina Palomino-Schätzlein
- NMR Facility, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
- ProtoQSAR, CEEI, Parque Tecnológico Valencia, Paterna 46980, Spain
| |
Collapse
|
3
|
Amaro F, Carvalho M, Bastos MDL, Guedes de Pinho P, Pinto J. Metabolic signature biomarkers for predicting the recurrence of urological cancers. Clin Chim Acta 2023; 549:117553. [PMID: 37690663 DOI: 10.1016/j.cca.2023.117553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
A significant number of patients diagnosed with localized urological cancers experience relapse and disease progression after surgery. Hence, molecular markers for patient risk stratification are needed to improve the current management guidelines. This article critically reviews for the first time, to our knowledge, the promise of metabolomics-based approaches to identify metabolic signatures as candidate prognostic biomarkers to predict recurrences at the time of surgery in prostate cancer (PCa), bladder cancer (BCa), and renal cell carcinoma (RCC). Dysregulations in the levels of several tumoral, circulating, and excreted metabolites have been reported in PCa patients experiencing recurrence within 1.5 to 8 years of follow-up. The combination of these metabolic biomarkers with clinical parameters (e.g., pathological T stage, Gleason score) has shown great potential to improve the predictive ability of PCa recurrence. In contrast, predictive biomarkers of recurrence in BCa and RCC have been poorly explored. Overall, this review highlights the great potential of metabolomics in discovering prognostic biomarkers for a more accurate patient risk stratification in urological cancers.
Collapse
Affiliation(s)
- Filipa Amaro
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Márcia Carvalho
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; FP-I3ID, FP-BHS, University Fernando Pessoa, 4200-150 Porto, Portugal; Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Schmidt JA, Huybrechts I, Overvad K, Eriksen AK, Tjønneland A, Kaaks R, Katzke V, Schulze MB, Pala V, Sacerdote C, Tumino R, Bueno‐de‐Mesquita B, Sánchez M, Huerta JM, Barricarte A, Amiano P, Agudo A, Bjartell A, Stocks T, Thysell E, Wennberg M, Weiderpass E, Travis RC, Key TJ, Perez‐Cornago A. Protein and amino acid intakes in relation to prostate cancer risk and mortality-A prospective study in the European Prospective Investigation into Cancer and Nutrition. Cancer Med 2023; 12:4725-4738. [PMID: 36148781 PMCID: PMC9972153 DOI: 10.1002/cam4.5289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The association between protein intake and prostate cancer risk remains unclear. AIMS To prospectively investigate the associations of dietary intakes of total protein, protein from different dietary sources, and amino acids with prostate cancer risk and mortality. METHODS In 131,425 men from the European Prospective Investigation into Cancer and Nutrition, protein and amino acid intakes were estimated using validated dietary questionnaires. Multivariable-adjusted Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS During a mean follow-up of 14.2 years, 6939 men were diagnosed with prostate cancer and 914 died of the disease. Dairy protein was positively associated with overall prostate cancer risk in the three highest fifths compared to the lowest (HRQ3 =1.14 (95% CI 1.05-1.23); HRQ 4=1.09 (1.01-1.18); HRQ5 =1.10 (1.02-1.19)); similar results were observed for yogurt protein (HRQ3 =1.14 (1.05-1.24); HRQ4 =1.09 (1.01-1.18); HRQ5 =1.12 (1.04-1.21)). For egg protein intake and prostate cancer mortality, no association was observed by fifths, but there was suggestive evidence of a positive association in the analysis per standard deviation increment. There was no strong evidence of associations with different tumour subtypes. DISCUSSION Considering the weak associations and many tests, the results must be interpreted with caution. CONCLUSION This study does not provide strong evidence for an association of intakes of total protein, protein from different dietary sources or amino acids with prostate cancer risk or mortality. However, our results may suggest some weak positive associations, which need to be confirmed in large-scale, pooled analyses of prospective data.
Collapse
Affiliation(s)
- Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Department of Clinical Epidemiology, Department of Clinical MedicineAarhus University Hospital and Aarhus UniversityAarhus NDenmark
| | | | - Kim Overvad
- Department of Public HealthAarhus UniversityAarhusDenmark
| | | | - Anne Tjønneland
- Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Verena Katzke
- Department of Molecular EpidemiologyGerman Institute of Human Nutrition Potsdam‐RehbrueckeNuthetalGermany
| | - Matthias B. Schulze
- Department of Molecular EpidemiologyGerman Institute of Human Nutrition Potsdam‐RehbrueckeNuthetalGermany
- Institute of Nutritional Science, University of PotsdamPotsdamGermany
| | - Valeria Pala
- Epidemiology and Prevention UnitFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Carlotta Sacerdote
- Unit of Cancer EpidemiologyCittà della Salute e della Scienza University‐HospitalTurinItaly
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE ONLUSRagusaItaly
| | - Bas Bueno‐de‐Mesquita
- Former senior scientist, Centre for Nutrition, Prevention and Health ServicesNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Maria‐Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP)GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Department of Preventive Medicine and Public HealthUniversity of GranadaGranadaSpain
| | - José M. Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Department of EpidemiologyMurcia Regional Health Council, IMIB‐ArrixacaMurciaSpain
| | | | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of GipuzkoaSan SebastianSpain
- Biodonostia Health Research InstituteEpidemiology of Chronic and Communicable Diseases GroupSan SebastiánSpain
| | - Antonio Agudo
- Unit of Nutrition and CancerCatalan Institute of Oncology ‐ ICOL'Hospitalet de LlobregatSpain
- Nutrition and Cancer GroupEpidemiology, Public Health, Cancer Prevention and Palliative Care Program; Bellvitge Biomedical Research Institute—IDIBELLL'Hospitalet de LlobregatSpain
| | - Anders Bjartell
- Department of Translational Medicine, Medical FacultyLund UniversityMalmöSweden
| | - Tanja Stocks
- Department of Clinical Sciences LundLund UniversityLundSweden
| | - Elin Thysell
- Department of Medical BiosciencesPathology, Umeå UniversityUmeåSweden
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Section of Sustainable HealthUmeå UniversityUmeåSweden
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health OrganizationLyonFrance
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Aurora Perez‐Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Bort A, G. Sánchez B, León C, Nozal L, Mora-Rodríguez JM, Castro F, Crego AL, Díaz-Laviada I. Metabolic fingerprinting of chemotherapy-resistant prostate cancer stem cells. An untargeted metabolomic approach by liquid chromatography-mass spectrometry. Front Cell Dev Biol 2022; 10:1005675. [PMID: 36325358 PMCID: PMC9618794 DOI: 10.3389/fcell.2022.1005675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Chemoresistance is one of the most important challenges in cancer therapy. The presence of cancer stem cells within the tumor may contribute to chemotherapy resistance since these cells express high levels of extrusion pumps and xenobiotic metabolizing enzymes that inactivate the therapeutic drug. Despite the recent advances in cancer cell metabolism adaptations, little is known about the metabolic adaptations of the cancer stem cells resistant to chemotherapy. In this study, we have undertaken an untargeted metabolomic analysis by liquid chromatography–high-resolution spectrometry combined with cytotoxicity assay, western blot, quantitative real-time polymerase chain reaction (qPCR), and fatty acid oxidation in a prostate cancer cell line resistant to the antiandrogen 2-hydroxiflutamide with features of cancer stem cells, compared to its parental androgen-sensitive cell line. Metabolic fingerprinting revealed 106 out of the 850 metabolites in ESI+ and 67 out of 446 in ESI- with significant differences between the sensitive and the resistant cell lines. Pathway analysis performed with the unequivocally identified metabolites, revealed changes in pathways involved in energy metabolism as well as posttranscriptional regulation. Validation by enzyme expression analysis indicated that the chemotherapy-resistant prostate cancer stem cells were metabolically dormant with decreased fatty acid oxidation, methionine metabolism and ADP-ribosylation. Our results shed light on the pathways underlying the entry of cancer cells into dormancy that might contribute to the mechanisms of drug resistance.
Collapse
Affiliation(s)
- Alicia Bort
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, United states
| | - Belén G. Sánchez
- Alcala University, School of Medicine, Department of Systems Biology and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), Madrid, Spain
| | - Carlos León
- Carlos III University, Department of Bioengineering and Aerospatial Engineering, Madrid, Spain
| | - Leonor Nozal
- Alcala University and General Foundation of Alcalá University, Center of Applied Chemistry and Biotechnology, Madrid, Spain
| | - José M. Mora-Rodríguez
- Alcala University, School of Medicine, Department of Systems Biology and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), Madrid, Spain
| | - Florentina Castro
- Alcala University and General Foundation of Alcalá University, Center of Applied Chemistry and Biotechnology, Madrid, Spain
| | - Antonio L. Crego
- Alcala University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Madrid, Spain
- *Correspondence: Antonio L. Crego, ; Inés Díaz-Laviada,
| | - Inés Díaz-Laviada
- Alcala University, School of Medicine, Department of Systems Biology and Research Institute in Chemistry “Andrés M. Del Río” (IQAR), Madrid, Spain
- *Correspondence: Antonio L. Crego, ; Inés Díaz-Laviada,
| |
Collapse
|
6
|
NMR-Based Metabolomic Analysis of Plasma in Patients with Adult Congenital Heart Disease and Associated Pulmonary Arterial Hypertension: A Pilot Study. Metabolites 2022; 12:metabo12090845. [PMID: 36144249 PMCID: PMC9504385 DOI: 10.3390/metabo12090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with unrepaired congenital heart disease (CHD) are prone to pulmonary arterial hypertension (PAH). The ovine pulmonary arterial smooth muscle cells exposed to increased pulmonary blood flow (PBF) exhibited hyperproliferation and metabolic alterations, but the metabolic disorders of patients with CHD and associated PAH (PAH-CHD) have not yet been fully understood. Adult CHD patients were prospectively included and divided into the PAH-CHD group (n = 24) and CHD group (n = 38), while healthy adults were included as healthy control (HC) group (n = 29). Plasma from each subject was prepared for nuclear magnetic resonance (NMR) detection. 1H-NMR spectra were acquired using 850 MHz NMR spectrometer. A total of 28 metabolites were identified from the NMR spectra and their relative concentrations were calculated and analyzed by multivariate and univariate statistical analyses and metabolic pathway analysis. Receiver operating characteristic (ROC) curve analysis and correlation analysis were performed to identify potential biomarkers and assess their roles in clinical assessment. Multivariate statistical analysis showed that the metabolic profile of PAH-CHD was altered relative to CHD or HC, while that of CHD was altered relative to HC. The identified characteristic metabolites were alanine, glucose, glycine, threonine and lactate, and the areas under the ROC curves (AUCs) were 0.769, 0.808, 0.711, 0.842 and 0.817, respectively. Multivariate ROC curve analysis showed AUCs ranging from 0.895 to 0.955 for the combination of these characteristic metabolites. The correlation analysis indicated that lactate and threonine were significantly correlated with mean pulmonary arterial pressure, pulmonary vascular resistance and N-terminal pro-B-type natriuretic peptide. The increased PBF could trigger global metabolic alterations in patients with CHD, which were more severe in patients with PAH-CHD. The characteristic metabolites have the potential to be biomarkers of PAH-CHD, which could be used for its noninvasive diagnosis, severity and prognosis assessment, thereby improving the management of PAH-CHD.
Collapse
|
7
|
Zhang J, Liu Q, Li J, Liu Z, Wang X, Li N, Huang Z, Xu H. Magnetic resonance spectroscopy associations with clinicopathologic features of estrogen-dependent endometrial cancer. BMC Med Imaging 2022; 22:127. [PMID: 35850646 PMCID: PMC9295509 DOI: 10.1186/s12880-022-00856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We studied the magnetic resonance spectroscopy (MRS) associations with clinicopathologic features of estrogen-dependent endometrial cancer (type I EC). METHODS Totally 45 patients with type I EC who underwent preoperative multi-voxel MRS at 3.0 T were enrolled. The mean ratio of the Cho peak integral to the unsuppressed water peak integral (Cho/water) of the tumor was calculated. The Cho/water and apparent diffusion coefficient (ADC) of type I EC with and without local invasion, as well as with different levels of Ki-67 staining index (SI) (≤ 40% and > 40%), were compared. Correlation test was used to examine the relationship of Cho/water, as well as mean ADC, with Ki-67 SI, tumor stage, and tumor grade. RESULTS The mean Cho/water of EC with Ki-67 SI ≤ 40% (2.28 ± 0.93) × 10-3 was lower than that with Ki-67 SI > 40% (4.08 ± 1.00) × 10-3 (P < 0.001). The mean Cho/water of EC with deep and superficial myometrial invasion was (3.41 ± 1.26) × 10-3 and (2.43 ± 1.11) × 10-3, respectively (P = 0.011). There was no significant difference in Cho/water between type I EC with and without cervical invasioin ([2.68 ± 1.00] × 10-3 and [2.77 ± 1.28] × 10-3, P = 0.866). The mean Cho/water of type I EC with and without lymph node metastasis was (4.02 ± 1.90) × 10-3 and (2.60 ± 1.06) × 10-3, respectively (P = 0.014). The Cho/water was positively correlated with the Ki-67 SI (r = 0.701, P < 0.001). There were no significant differences in ADC among groups (all P > 0.05). CONCLUSION MRS is helpful for preoperative assessment of clinicopathological features of type I EC.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Qingwei Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Jie Li
- Special Inspection Department, Taian City Central Hospital Branch, No. 336, Wanguan Road, Taian, 271000, Shandong, China
| | - Zhiling Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Na Li
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
| | - Han Xu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
8
|
Nunes-Xavier CE, Mingo J, Emaldi M, Flem-Karlsen K, Mælandsmo GM, Fodstad Ø, Llarena R, López JI, Pulido R. Heterogeneous Expression and Subcellular Localization of Pyruvate Dehydrogenase Complex in Prostate Cancer. Front Oncol 2022; 12:873516. [PMID: 35692804 PMCID: PMC9174590 DOI: 10.3389/fonc.2022.873516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pyruvate dehydrogenase (PDH) complex converts pyruvate into acetyl-CoA by pyruvate decarboxylation, which drives energy metabolism during cell growth, including prostate cancer (PCa) cell growth. The major catalytic subunit of PDH, PDHA1, is regulated by phosphorylation/dephosphorylation by pyruvate dehydrogenase kinases (PDKs) and pyruvate dehydrogenase phosphatases (PDPs). There are four kinases, PDK1, PDK2, PDK3 and PDK4, which can phosphorylate and inactivate PDH; and two phosphatases, PDP1 and PDP2, that dephosphorylate and activate PDH. Methods We have analyzed by immunohistochemistry the expression and clinicopathological correlations of PDHA1, PDP1, PDP2, PDK1, PDK2, PDK3, and PDK4, as well as of androgen receptor (AR), in a retrospective PCa cohort of patients. A total of 120 PCa samples of representative tumor areas from all patients were included in tissue microarray (TMA) blocks for analysis. In addition, we studied the subcellular localization of PDK2 and PDK3, and the effects of the PDK inhibitor dichloroacetate (DCA) in the growth, proliferation, and mitochondrial respiration of PCa cells. Results We found heterogeneous expression of the PDH complex components in PCa tumors. PDHA1, PDP1, PDK1, PDK2, and PDK4 expression correlated positively with AR expression. A significant correlation of PDK2 immunostaining with biochemical recurrence and disease-free survival was revealed. In PCa tissue specimens, PDK2 displayed cytoplasmic and nuclear immunostaining, whereas PDK1, PDK3 and PDK4 showed mostly cytoplasmic staining. In cells, ectopically expressed PDK2 and PDK3 were mainly localized in mitochondria compartments. An increase in maximal mitochondrial respiration was observed in PCa cells upon PDK inhibition by DCA, in parallel with less proliferative capacity. Conclusion Our findings support the notion that expression of specific PDH complex components is related with AR signaling in PCa tumors. Furthermore, PDK2 expression associated with poor PCa prognosis. This highlights a potential for PDH complex components as targets for intervention in PCa.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Janire Mingo
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Maite Emaldi
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Roberto Llarena
- Department of Urology, Cruces University Hospital, Barakaldo, Spain
| | - José I López
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Ex Vivo High-Resolution Magic Angle Spinning (HRMAS) 1H NMR Spectroscopy for Early Prostate Cancer Detection. Cancers (Basel) 2022; 14:cancers14092162. [PMID: 35565290 PMCID: PMC9103328 DOI: 10.3390/cancers14092162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Prostate cancer is the second leading cancer diagnosed in men worldwide. Current diagnostic standards lack sufficient reliability in detecting and characterizing prostate cancer. Due to the cancer’s multifocality, prostate biopsies are associated with high numbers of false negatives. Whereas several studies have already shown the potential of metabolomic information for PCa detection and characterization, in this study, we focused on evaluating its predictive power for future PCa diagnosis. In our study, metabolomic information differed substantially between histobenign patients based on their risk for receiving a future PCa diagnosis, making metabolomic information highly valuable for the individualization of active surveillance strategies. Abstract The aim of our study was to assess ex vivo HRMAS (high-resolution magic angle spinning) 1H NMR spectroscopy as a diagnostic tool for early PCa detection by testing whether metabolomic alterations in prostate biopsy samples can predict future PCa diagnosis. In a primary prospective study (04/2006–10/2018), fresh biopsy samples of 351 prostate biopsy patients were NMR spectroscopically analyzed (Bruker 14.1 Tesla, Billerica, MA, USA) and histopathologically evaluated. Three groups of 16 patients were compared: group 1 and 2 represented patients whose NMR scanned biopsy was histobenign, but patients in group 1 were diagnosed with cancer before the end of the study period, whereas patients in group 2 remained histobenign. Group 3 included cancer patients. Single-metabolite concentrations and metabolomic profiles were not only able to separate histobenign and malignant prostate tissue but also to differentiate between samples of histobenign patients who received a PCa diagnosis in the following years and those who remained histobenign. Our results support the hypothesis that metabolomic alterations significantly precede histologically visible changes, making metabolomic information highly beneficial for early PCa detection. Thanks to its predictive power, metabolomic information can be very valuable for the individualization of PCa active surveillance strategies.
Collapse
|
10
|
Lima AR, Carvalho M, Aveiro SS, Melo T, Domingues MR, Macedo-Silva C, Coimbra N, Jerónimo C, Henrique R, Bastos MDL, Guedes de Pinho P, Pinto J. Comprehensive Metabolomics and Lipidomics Profiling of Prostate Cancer Tissue Reveals Metabolic Dysregulations Associated with Disease Development. J Proteome Res 2021; 21:727-739. [PMID: 34813334 DOI: 10.1021/acs.jproteome.1c00754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) is a global health problem that affects millions of men every year. In the past decade, metabolomics and related subareas, such as lipidomics, have demonstrated an enormous potential to identify novel mechanisms underlying PCa development and progression, providing a good basis for the development of new and more effective therapies and diagnostics. In this study, a multiplatform metabolomics and lipidomics approach, combining untargeted mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based techniques, was applied to PCa tissues to investigate dysregulations associated with PCa development, in a cohort of 40 patients submitted to radical prostatectomy for PCa. Results revealed significant alterations in the levels of 26 metabolites and 21 phospholipid species in PCa tissue compared with adjacent nonmalignant tissue, suggesting dysregulation in 13 metabolic pathways associated with PCa development. The most affected metabolic pathways were amino acid metabolism, nicotinate and nicotinamide metabolism, purine metabolism, and glycerophospholipid metabolism. A clear interconnection between metabolites and phospholipid species participating in these pathways was observed through correlation analysis. Overall, these dysregulations may reflect the reprogramming of metabolic responses to produce high levels of cellular building blocks required for rapid PCa cell proliferation.
Collapse
Affiliation(s)
- Ana Rita Lima
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,FP-I3ID, FP-ENAS, CEBIMED, University Fernando Pessoa, 4249-004 Porto, Portugal.,Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| | - Susana S Aveiro
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,GreenCoLab - Green Ocean Association, University of Algarve, 8005-139 Faro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina Macedo-Silva
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Nuno Coimbra
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Akbari Z, Dijojin RT, Zamani Z, Hosseini RH, Arjmand M. Aromatic amino acids play a harmonizing role in prostate cancer: A metabolomics-based cross-sectional study. Int J Reprod Biomed 2021; 19:741-750. [PMID: 34568735 PMCID: PMC8458921 DOI: 10.18502/ijrm.v19i8.9622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/19/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a common health problem worldwide. The rate of this disease is likely to grow by 2021. PCa is a heterogeneous disorder, and various biochemical factors contribute to the development of this disease. The metabolome is the complete set of metabolites in a cell or biological sample and represents the downstream end product of the omics. Hence, to model PCa by computational systems biology, a preliminary metabolomics-based study was used to compare the metabolome profile pattern between healthy and PCa men. OBJECTIVE This study was carried out to highlight energy metabolism modification and assist the prognosis and treatment of disease with unique biomarkers. MATERIALS AND METHODS In this cross-sectional research, 26 men diagnosed with stage-III PCa and 26 healthy men with normal PSA levels were enrolled. Urine was analyzed with proton nuclear magnetic resonance (1 H-NMR) spectroscopy, accompanied by the MetaboAnalyst web-based platform tool for metabolomics data analysis. Partial least squares regression discriminant analysis was applied to clarify the separation between the two groups. Outliers were documented and metabolites determined, followed by identifying biochemical pathways. RESULTS Our findings reveal that modifications in aromatic amino acid metabolism and some of their metabolites have a high potential for use as urinary PCa biomarkers. Tryptophan metabolism (p < 0.001), tyrosine metabolism (p < 0.001), phenylalanine, tyrosine and tryptophan biosynthesis (p < 0.001), phenylalanine metabolism (p = 0.01), ubiquinone and other terpenoid-quinone biosynthesis (p = 0.19), nitrogen metabolism (p = 0.21), and thiamine metabolism (p = 0.41) with Q2 (0.198) and R2 (0.583) were significantly altered. CONCLUSION The discriminated metabolites and their pathways play an essential role in PCa causes and harmony.
Collapse
Affiliation(s)
- Ziba Akbari
- Biochemistry Department, Metabolomics Lab, Pasture Institute of Iran, Tehran, Iran
| | - Roghayeh Taghipour Dijojin
- Biochemistry Department, Metabolomics Lab, Pasture Institute of Iran, Tehran, Iran
- Biology Department, Payame Noor University, Tehran, Iran
| | - Zahra Zamani
- Biochemistry Department, Metabolomics Lab, Pasture Institute of Iran, Tehran, Iran
| | | | - Mohammad Arjmand
- Biochemistry Department, Metabolomics Lab, Pasture Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Aru V, Khakimov B, Sørensen KM, Chikwati EM, Kortner TM, Midtlyng P, Krogdahl Å, Engelsen SB. The plasma metabolome of Atlantic salmon as studied by 1H NMR spectroscopy using standard operating procedures: effect of aquaculture location and growth stage. Metabolomics 2021; 17:50. [PMID: 33999285 DOI: 10.1007/s11306-021-01797-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Metabolomics applications to the aquaculture research are increasing steadily. The use of standardized proton nuclear magnetic resonance (1H NMR) spectroscopy can provide the aquaculture industry with an unbiased, reproducible, and high-throughput screening tool, which can help to diagnose nutritional and disease-related metabolic disorders in farmed fish. OBJECTIVE Standard operating procedures developed for analysing (human) plasma by 1H NMR were applied to fingerprint the metabolome in plasma samples collected from Atlantic salmon. The aim was to explore the metabolome of salmon plasma in relation to growth stage and sampling site. METHODS A total of 72 salmon were collected from three aquaculture sites in Norway (Lat. 65, 67, and 70 °N) and over two sampling events (December 2017 and November 2018). Plasma drawn from each salmon was measured by 1H NMR and metabolites were quantified using the SigMa software. The NMR data was analysed by principal component analysis (PCA) and ANOVA-simultaneous component analysis (ASCA). RESULTS Important metabolic differences were evidenced, with adult salmon having a much higher content of very low-density lipoproteins and cholesterol in their plasma, while smolts displayed significantly higher levels of propylene glycol. Overall, 24% of the metabolite variation was due to the growth stage, whereas 12% of the metabolite variation was related to the aquaculture site and practice (p < 0.001). CONCLUSION This study provides a baseline investigation of the plasma metabolome of the Atlantic salmon and demonstrates how 1H NMR metabolomics can be used in future investigations for comparing aquaculture practices and their influence on the fish metabolome.
Collapse
Affiliation(s)
- Violetta Aru
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| | - Bekzod Khakimov
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Klavs Martin Sørensen
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Elvis Mashingaidze Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Aquamedic AS, Gaustadallèen 21, 0349, Oslo, Norway
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Søren Balling Engelsen
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
13
|
Peng Q, Wong CYP, Cheuk IWY, Teoh JYC, Chiu PKF, Ng CF. The Emerging Clinical Role of Spermine in Prostate Cancer. Int J Mol Sci 2021; 22:ijms22094382. [PMID: 33922247 PMCID: PMC8122740 DOI: 10.3390/ijms22094382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Spermine, a member of polyamines, exists in all organisms and is essential for normal cell growth and function. It is highly expressed in the prostate compared with other organs and is detectable in urine, tissue, expressed prostatic secretions, and erythrocyte. A significant reduction of spermine level was observed in prostate cancer (PCa) tissue compared with benign prostate tissue, and the level of urinary spermine was also significantly lower in men with PCa. Decreased spermine level may be used as an indicator of malignant phenotype transformation from normal to malignant tissue in prostate. Studies targeting polyamines and key rate-limiting enzymes associated with spermine metabolism as a tool for PCa therapy and chemoprevention have been conducted with various polyamine biosynthesis inhibitors and polyamine analogues. The mechanism between spermine and PCa development are possibly related to the regulation of polyamine metabolism, cancer-driving pathways, oxidative stress, anticancer immunosurveillance, and apoptosis regulation. Although the specific mechanism of spermine in PCa development is still unclear, ongoing research in spermine metabolism and its association with PCa pathophysiology opens up new opportunities in the diagnostic and therapeutic roles of spermine in PCa management.
Collapse
Affiliation(s)
| | | | | | | | | | - Chi-Fai Ng
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +85-235-052-625 (C.-F.N.)
| |
Collapse
|
14
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy offers reproducible quantitative analysis and structural identification of metabolites in various complex biological samples, such as biofluids (plasma, serum, and urine), cells, tissue extracts, and even intact organs. Therefore, NMR-based metabolomics, a mainstream metabolomic platform, has been extensively applied in many research fields, including pharmacology, toxicology, pathophysiology, nutritional intervention, disease diagnosis/prognosis, and microbiology. In particular, NMR-based metabolomics has been successfully used for cancer research to investigate cancer metabolism and identify biomarker and therapeutic targets. This chapter highlights the innovations and challenges of NMR-based metabolomics platform and its applications in cancer research.
Collapse
|
15
|
Lima AR, Pinto J, Amaro F, Bastos MDL, Carvalho M, Guedes de Pinho P. Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics. Metabolites 2021; 11:181. [PMID: 33808897 PMCID: PMC8003702 DOI: 10.3390/metabo11030181] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its screening, serum prostate specific antigen (PSA) test has been largely performed over the past decade, despite its lack of accuracy and inability to distinguish indolent from aggressive disease. Metabolomics has been widely applied in cancer biomarker discovery due to the well-known metabolic reprogramming characteristic of cancer cells. Most of the metabolomic studies have reported alterations in urine of PCa patients due its noninvasive collection, but the analysis of prostate tissue metabolome is an ideal approach to disclose specific modifications in PCa development. This review aims to summarize and discuss the most recent findings from tissue and urine metabolomic studies applied to PCa biomarker discovery. Eighteen metabolites were found consistently altered in PCa tissue among different studies, including alanine, arginine, uracil, glutamate, fumarate, and citrate. Urine metabolomic studies also showed consistency in the dysregulation of 15 metabolites and, interestingly, alterations in the levels of valine, taurine, leucine and citrate were found in common between urine and tissue studies. These findings unveil that the impact of PCa development in human metabolome may offer a promising strategy to find novel biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Joana Pinto
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Filipa Amaro
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| |
Collapse
|
16
|
Struck-Lewicka W, Wawrzyniak R, Artymowicz M, Kordalewska M, Markuszewski M, Matuszewski M, Gutknecht P, Siebert J, Markuszewski MJ. GC-MS-based untargeted metabolomics of plasma and urine to evaluate metabolic changes in prostate cancer. J Breath Res 2020; 14:047103. [DOI: 10.1088/1752-7163/abaeca] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Zheng H, Zhu Y, Shao X, Cai A, Dong B, Xue W, Gao H. Distinct Metabolic Signatures of Hormone-Sensitive and Castration-Resistant Prostate Cancer Revealed by a 1H NMR-Based Metabolomics of Biopsy Tissue. J Proteome Res 2020; 19:3741-3749. [PMID: 32702989 DOI: 10.1021/acs.jproteome.0c00282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Aimin Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
18
|
Franko A, Shao Y, Heni M, Hennenlotter J, Hoene M, Hu C, Liu X, Zhao X, Wang Q, Birkenfeld AL, Todenhöfer T, Stenzl A, Peter A, Häring HU, Lehmann R, Xu G, Lutz SZ. Human Prostate Cancer is Characterized by an Increase in Urea Cycle Metabolites. Cancers (Basel) 2020; 12:E1814. [PMID: 32640711 PMCID: PMC7408908 DOI: 10.3390/cancers12071814] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite it being the most common incident of cancer among men, the pathophysiological mechanisms contributing to prostate cancer (PCa) are still poorly understood. Altered mitochondrial metabolism is postulated to play a role in the development of PCa. To determine the key metabolites (which included mitochondrial oncometabolites), benign prostatic and cancer tissues of patients with PCa were analyzed using capillary electrophoresis and liquid chromatography coupled with mass spectrometry. Gene expression was studied using real-time PCR. In PCa tissues, we found reduced levels of early tricarboxylic acid cycle metabolites, whereas the contents of urea cycle metabolites including aspartate, argininosuccinate, arginine, proline, and the oncometabolite fumarate were higher than that in benign controls. Fumarate content correlated positively with the gene expression of oncogenic HIF1α and NFκB pathways, which were significantly higher in the PCa samples than in the benign controls. Furthermore, data from the TCGA database demonstrated that prostate cancer patients with activated NFκB pathway had a lower survival rate. In summary, our data showed that fumarate content was positively associated with carcinogenic genes.
Collapse
Affiliation(s)
- Andras Franko
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Yaping Shao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Martin Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Tilman Todenhöfer
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Stefan Z. Lutz
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Clinic for Geriatric and Orthopedic Rehabilitation Bad Sebastiansweiler, 72116 Mössingen, Germany
| |
Collapse
|