1
|
Shukla AK, Ahamad S, Kukshal P. Computational insights into maternal environmental pollutants and folate pathway regulation. Reprod Toxicol 2024:108825. [PMID: 39732410 DOI: 10.1016/j.reprotox.2024.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets. Molecular modeling, docking, and dynamics simulations revealed that folate receptors (FOLR1, FOLR2, and FOLR3) and transporters (SLC19A1 and SLC46) are major targets. Among these, FOLR3 exhibited the strongest interactions with toxicants such as Dichlorodiphenyltrichloroethane (DDT), Bisphenols, Dioxin, and other investigated toxicants. Toxicity profiling showed that even minimal exposure to these pollutants significantly impacts maternal health and disrupts folate metabolism, leading to fetal malformations. This study highlights the critical role of maternal toxicants in hindering the folate pathway, with severe implications for fetal development.
Collapse
Affiliation(s)
- Adarsh Kumar Shukla
- Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102.
| | - Shadab Ahamad
- Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102
| | - Prachi Kukshal
- Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102.
| |
Collapse
|
2
|
Pan W, Wang F, Xu J, Li J, Gao J, Zhao Y, Wang Q. Betaine Supplementation Into High-Carbohydrate Diets Improves Feed Efficiency and Liver Health of Megalobrama amblycephala by Increasing Taurine Synthesis. AQUACULTURE NUTRITION 2024; 2024:9632883. [PMID: 39555516 PMCID: PMC11469934 DOI: 10.1155/2024/9632883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 11/19/2024]
Abstract
Dietary betaine supplementation has been reported to alleviate the adverse effects of high-carbohydrate diets on Megalobrama amblycephala, while the regulatory mechanism remains largely unknown. In the present study, a 79-day feeding trial was conducted with 450 juvenile Megalobrama amblycephala (average weight 6.75 ± 0.10 g), which were fed with five high-carbohydrate diets (43%) supplementing betaine at 0% (CD group), 0.2% (0.2Bet group), 0.4% (0.4Bet group), 0.8% (0.8Bet group), and 1.6% (1.6Bet group), respectively. Results showed M. amblycephala in 0.8Bet group exhibited the best growth performance, indicated by the largest weight gain ratio (142.88%) and least feed conversion ratio (1.63). Moreover, liver health was promoted in 0.8Bet group, with decreased number of non-nucleated cells and less lipid accumulation, which was accompanied by the lowest hepatosomatic index (1.38%). In order to further illustrate the regulatory mechanism, metabolites assay indicated that dietary betaine supplementation significantly increased plasma contents of methionine, serine, hypotaurine, and taurine, but did not affect plasma contents of cystathionine, cystine, or cysteic acid. Accordingly, the mRNA expressions of cysteine sulfinate decarboxylase in cysteine sulfinic acid pathway and cysteamine dioxygenase (ADO) in sulfinic acid (CS) pathway, which were both involved in taurine synthesis, were also upregulated in the liver. Meanwhile, the microbial communities in M. amblycephala intestine were more stable and uniform with betaine supplementation. Therefore, dietary betaine supplementation may exert its protective roles in improving feed efficiency and liver health of M. amblycephala via promoting de novo taurine synthesis and stabilizing intestinal microbial communities.
Collapse
Affiliation(s)
- Wenbo Pan
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| | - Fan Wang
- Guangxi Key Laboratory of Marine Environmental ScienceGuangxi Academy of Marine SciencesGuangxi Academy of Sciences, Nanning 530012, China
| | - Jia Xu
- Guangxi Key Laboratory of Marine Environmental ScienceGuangxi Academy of Marine SciencesGuangxi Academy of Sciences, Nanning 530012, China
| | - Juntao Li
- Institute of Tropical Bioscience and BiotechnologyHainan Institute for Tropical Agricultural ResourcesChinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
| | - Jian Gao
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| | - Yuhua Zhao
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| | - Qingchao Wang
- College of FisheriesKey Lab of Freshwater Animal BreedingMinistry of AgricultureHuazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Huang W, Hua Y, Wang F, Xu J, Yuan L, Jing Z, Wang W, Zhao Y. Dietary betaine and/or TMAO affect hepatic lipid accumulation and glycometabolism of Megalobrama amblycephala exposed to a high-carbohydrate diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:59-75. [PMID: 36580207 DOI: 10.1007/s10695-022-01160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A 12-week experiment was conducted to explore the effects of betaine and/or TMAO on growth, hepatic health, gut microbiota, and serum metabolites in Megalobrama amblycephala fed with high-carbohydrate diets. The diets were as follows: CD group (control diet, 28.5% carbohydrate), HCD group (high-carbohydrate diet, 38.2% carbohydrate), HBD group (betaine-added diet, 38.3% carbohydrate + 1.2% betaine), HTD group (TMAO-added diet, 38.2% carbohydrate + 0.2% TMAO), and HBT group (diet added with both betaine and TMAO, 38.2% carbohydrate + 1.2% betaine + 0.2% TMAO). The results showed that the hepatosomatic index (HSI); whole-body crude fat; hepatic lipid accumulation; messenger RNA expression levels of gk, fpbase, g6pase, ahas, and bcat; serum branched-chain amino acids (BCAAs); ratio of Firmicutes-to-Bacteroidetes; and abundance of the genus Aeromonas were all significantly increased, while the abundance levels of the genus Lactobacillus and phyla Tenericutes and Bacteroidetes were drastically decreased in the HCD group. Compared with the HCD group, the HSI; whole-body crude fat; hepatic lipid accumulation; expression levels of fbpase, g6pase, pepck, ahas, and bcat; circulating BCAA; ratio of Firmicutes-to-Bacteroidetes; and abundance levels of the genus Aeromonas and phyla Tenericutes and Bacteroidetes were significantly downregulated in the HBD, HTD, and HBT groups. Meanwhile, the expression levels of pk were drastically upregulated in the HBD, HTD, and HBT groups as well as the abundance of Lactobacillus in the HBT group. These results indicated that the supplementation of betaine and/or TMAO in high-carbohydrate diets could affect the hepatic lipid accumulation and glycometabolism of M. amblycephala by promoting glycolysis, inhibiting gluconeogenesis and biosynthesis of BCAA, and mitigating the negative alteration of gut microbiota. Among them, the combination of betaine and TMAO had the best effect.
Collapse
Affiliation(s)
- Wangwang Huang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yizhuo Hua
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Fan Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jia Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Lv Yuan
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Zhao Jing
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Weimin Wang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yuhua Zhao
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Hua Y, Huang W, Wang F, Jing Z, Li J, Wang Q, Zhao Y. Metabolites, gene expression, and gut microbiota profiles suggest the putative mechanisms via which dietary creatine increases the serum taurine and g-ABA contents in Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:253-274. [PMID: 36897433 DOI: 10.1007/s10695-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 05/04/2023]
Abstract
A 90-day experiment was conducted to explore the effects of creatine on growth performance, liver health status, metabolites, and gut microbiota in Megalobrama amblycephala. There were 6 treatments as follows: control (CD, 29.41% carbohydrates), high carbohydrate (HCD, 38.14% carbohydrates), betaine (BET, 1.2% betaine + 39.76% carbohydrates), creatine 1 (CRE1, 0.5% creatine + 1.2% betaine + 39.29% carbohydrates), creatine 2 (CRE2, 1% creatine + 1.2% betaine + 39.50% carbohydrates), and creatine 3 (CRE3, 2% creatine + 1.2% betaine + 39.44% carbohydrates). The results showed that supplementing creatine and betaine together reduced the feed conversion ratio significantly (P < 0.05, compared to CD and HCD) and improved liver health (compared to HCD). Compared with the BET group, dietary creatine significantly increased the abundances of Firmicutes, Bacteroidota, ZOR0006, and Bacteroides and decreased the abundances of Proteobacteria, Fusobacteriota, Vibrio, Crenobacter, and Shewanella in the CRE1 group. Dietary creatine increased the content of taurine, arginine, ornithine, γ-aminobutyric acid (g-ABA), and creatine (CRE1 vs. BET group) and the expression of creatine kinase (ck), sulfinoalanine decarboxylase (csad), guanidinoacetate N-methyltransferase (gamt), glycine amidinotransferase (gatm), agmatinase (agmat), diamine oxidase1 (aoc1), and glutamate decarboxylase (gad) in the CRE1 group. Overall, these results suggested that dietary supplementation of creatine (0.5-2%) did not affect the growth performance, but it altered the gut microbial composition at the phylum and genus levels, which might be beneficial to the gut health of M. amblycephala; dietary creatine also increased the serum content of taurine by enhancing the expressions of ck and csad and increased the serum content of g-ABA by enhancing the arginine content and the expressions of gatm, agmat, gad, and aoc1.
Collapse
Affiliation(s)
- Yizhuo Hua
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Wangwang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Fan Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Zhao Jing
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Juntao Li
- Institute of Tropical Bioscience and Biotechnology, Haikou, 570102, China
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Yuhua Zhao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
5
|
Zhang Y, Liang XF, He S, Wang J, Li L, Zhang Z, Li J, Chen X, Li L, Alam MS. Metabolic responses of Chinese perch (Siniperca chuatsi) to different levels of dietary carbohydrate. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1449-1465. [PMID: 34324096 DOI: 10.1007/s10695-021-00965-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
There are great differences in metabolic responses to different levels of carbohydrate among different carnivorous fish species. To explore metabolic responses of Chinese perch to moderate and high level of dietary carbohydrates, three diets containing 7.3% (LC), 17.5% (MC), and 27.5% (HC) of carbohydrates were provided to Chinese perch for 56 days. The results showed that MC and HC groups exhibited an increase in weight gain (WG) and hepatic glycogen content, and a decrease in feed conversion efficiency, compared with the LC group. The MC and HC groups also showed the increase in mRNA levels of phosphofructokinase and citrate synthase related to the aerobic oxidation pathway, which might be responsible for the increase in WG. Moreover, compared with the LC group, the HC group exhibited high levels of plasma indices (glucose, pyruvic acid, lactic acid, total triglyceride, total cholesterol, and low-density lipoprotein) and liver lipid resulting from the increased mRNA levels of fatty acid synthesis-related genes (ATP citrate lyase, acetyl-CoA carboxylase α, and fatty acid synthase), low level of crude protein caused by inhibition of TOR pathway, and liver damage induced by low antioxidant capacity and infiltration of inflammatory cells, but the MC group did not. The above results indicated that 17.5% dietary carbohydrate might be utilized effectively in Chinese perch and part carbohydrates were converted into glycogen to maintain glucose homeostasis; 27.5% dietary carbohydrate could not be fully utilized. The 27.5% carbohydrate diet induced the up-regulation of aerobic oxidation, glycogen synthesis, and fat synthesis pathways which might not be sufficient to maintain glucose homeostasis.
Collapse
Affiliation(s)
- Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Jie Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Zhen Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Jiao Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Lu Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Muhammad Shoaib Alam
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
6
|
Yang C, Du X, Hao R, Wang Q, Deng Y, Sun R. Effect of vitamin D3 on immunity and antioxidant capacity of pearl oyster Pinctada fucata martensii after transplantation: Insights from LC-MS-based metabolomics analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 94:271-279. [PMID: 31499202 DOI: 10.1016/j.fsi.2019.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Postoperative care is a critical step of pearl culture that ultimately determines culture success. To determine the effect of dietary vitamin D3 (VD3) levels on immunity and antioxidant capacity of pearl oyster Pinctada fucata martensii during postoperative care and explore the mechanisms behind this phenomenon, five isonitrogenous and isolipidic experimental diets were formulated by adding different levels of dietary VD3 (0, 500, 1000, 3000, and 10000 IU/kg), and the diets were fed to five experimental groups (EG1, EG2, EG3, EG4, and EG5) in turn and cultured indoors. The control group (CG) was cultured in the natural sea. Pearl oysters that were 1.5 years old were subjected to nucleus insertion. After culturing for 30 days, EG3 exhibited significantly higher survival rates than those in CG and EG5 (P < 0.05). Moreover, EG3 exhibited the highest activities of alkaline phosphatase, acid phosphatase, catalase, superoxide dismutase, and lysozyme. However, EG5 achieved the highest activities of glutathione peroxidase. Metabolomics-based profiling of pearl oysters fed with high levels of dietary VD3 (EG5) and optimum levels of dietary VD3 (EG3) revealed 76 significantly differential metabolites (SDMs) (VIP > 1 and P < 0.05). Pathway analysis indicated that SDMs were involved in 21 pathways. Furthermore, integrated key metabolic pathway analysis suggested that pearl oysters in EG5 regulated the pentose phosphate pathway, glutathione metabolism, sphingolipid metabolism, and arachidonic acid metabolism in response to stress generated from excessive VD3. These findings had significant implications on strengthening the future development and application of VD3 in aquaculture of pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
| | - Ruijiao Sun
- Zhejiang Hengxing Food Co., Ltd, Jiaxing, 314100, China
| |
Collapse
|
7
|
Jiang W, Tian X, Fang Z, Li L, Dong S, Li H, Zhao K. Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:465-474. [PMID: 30412891 DOI: 10.1016/j.scitotenv.2018.10.404] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Salinity is an important environmental factor affecting fish physiology. Tongue sole (Cynoglossus semilaevis) is a euryhaline species that can survive in a wide range of salinity, and might be used as a promising model animal for environmental science. In this study, by using the nuclear magnetic resonance (1H NMR)-based metabolomics, amino acids analysis and real-time quantitative PCR assay, we investigated the metabolic responses in the gills and plasma of tongue sole subjected to hypo- (0 ppt, S0) and hyper-osmotic stress (50 ppt, S50) from isosmotic environment (30 ppt, S30). The results showed that the metabolic profiles of S50 were significantly different from those of S0 and S30 groups, and a clear overlap was found between the latter two groups. Ten metabolites were significantly different between the salt stress groups and the isosmotic group. Taurine and creatine elevated in both S0 and S50 groups. Choline decreased in S50 group while increased in S0 group. Amino acids and energy compounds were higher in the gills of S50 group. The metabolic network showed that ten metabolic pathways were all found in S50 group, while seven pathways were observed in S0 group. Meanwhile, the transcript levels of the Tau-T and ATP synthase in the gills increased with increasing salinity. Aspartate and methionine exhibited significant differences in the plasma among the groups, but did not show differences in the gills. Comparatively, glutamate exhibited significant differences both in the plasma and the gills. Overall, these findings provide a preliminary profile of osmotic regulation in euryhaline fish.
Collapse
Affiliation(s)
- Wenwen Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China.
| | - Ziheng Fang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Li Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Haidong Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Kun Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| |
Collapse
|
8
|
Yang C, Hao R, Du X, Wang Q, Deng Y, Sun R. Response to different dietary carbohydrate and protein levels of pearl oysters (Pinctada fucata martensii) as revealed by GC-TOF/MS-based metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2614-2623. [PMID: 30373048 DOI: 10.1016/j.scitotenv.2018.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Land-based culturing can avoid the effects of environmental pollution and natural disasters, thus ensuring food safety for shellfish. However, food availability, in this case, is limited. To achieve the optimum balance of dietary carbohydrates and proteins and explore the mechanisms behind the phenomenon, we formulated five isoenergetic and isolipidic diets (C30P40, C35P35, C40P30, C45P25, and C50P20) with different levels of carbohydrates (C) and proteins (P). There were five experimental groups (C30P40, C35P35, C40P30, C45P25, and C50P20) and two control groups (CG1 and CG2). CG1 was fed with mixed powders of yeast and Chlorella sp., and CG2 was cultured in natural sea. After 60-day feeding, the highest rates of survival and absolute growth appeared in C45P25. C45P25 exhibited significantly higher activities of amylase, protease, alkaline phosphatase, acid phosphatase, superoxide dismutase, catalase, glutathione peroxidase, and phenoloxidase and significantly lower malondialdehyde content than C30P40, C35P35, C40P30, C50P20, and CG1. No significant differences were observed between C45P25 and CG2. Furthermore, the total antioxidant capacity of the pearl oysters in C45P25 was significantly higher than that in C30P40, C35P35, C40P30, and C50P20. On the basis of these results, the optimal balance of proteins and carbohydrates for pearl oysters was the C45P25 diet. Metabolomics-based profiling of the pearl oysters fed with high-carbohydrate/low-protein diet (C45P25) and low-carbohydrate/high-protein diet (C30P40) revealed 80 significantly different metabolites (VIP > 1 and P < 0.05). Furthermore, integrated key metabolic pathway analysis showed that C45P25 regulated starch and sucrose metabolism, alanine, aspartate and glutamate metabolism and glycine, serine and threonine metabolism to meet the energy demand and increase the glucogenic amino acid, thereby promoting protein synthesis and reducing fatty acid β-oxidation in comparison with C30P40. This finding helps elucidate the underlying mechanisms leading to the high-carbohydrate/low-protein diet characteristic of the optimal dietary carbohydrate and protein levels of P. f. martensii.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China.
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Ruijiao Sun
- Zhejiang Hengxing Food Co., Ltd., Jiaxing 314100, China
| |
Collapse
|
9
|
Wang F, Xu J, Jakovlić I, Wang WM, Zhao YH. Dietary betaine reduces liver lipid accumulationviaimprovement of bile acid and trimethylamine-N-oxide metabolism in blunt-snout bream. Food Funct 2019; 10:6675-6689. [DOI: 10.1039/c9fo01853k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary betaine decreased liver lipid accumulation caused by dietary carbohydrate through changes of TMA formation and TMAO and bile acid metabolism.
Collapse
Affiliation(s)
- Fan Wang
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | - Jia Xu
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | | | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| |
Collapse
|