1
|
Shangguan L, Liu Z, Xu L, Yang Q, Zhang X, Yao L, Li P, Chen X, Dai J. Effect of Corynebacterium glutamicum Fermentation on the Volatile Flavors of the Enzymatic Hydrolysate of Soybean Protein Isolate. Foods 2024; 13:2591. [PMID: 39200518 PMCID: PMC11354154 DOI: 10.3390/foods13162591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
This study focused on improving the flavor quality of seasonings, and enzymatic hydrolysis of soybean protein isolate (SPI) seasoning via traditional technology may lead to undesirable flavors. Herein, we aimed to develop a new type of SPI seasoning through microbial fermentation to improve its flavor quality. The effect of Corynebacterium glutamicum fermentation on the flavoring compounds of seasonings in SPI enzymatic hydrolysate was examined. Sensory evaluation showed that the SPI seasoning had mainly aromatic and roasted flavor, and the response signals of S18 (aromatic compounds), S24 (alcohols and aldehydes), and S25 (esters and ketones) sensors of the electronic nose differed significantly. Overall, 91 volatile compounds were identified via gas chromatography-mass spectrometry. SPI seasonings contained a higher number of alcohols, ketones, aromatics, and heterocyclic compounds than traditional seasonings, which had stronger cheese, fatty, and roasted aromas. According to the relative odor activity value (ROAV) analysis, n-pentylpyrzine, 2,6-dimethylpyrazine, and tetramethylpyrazine are the key flavoring compounds (ROAV ≥ 1) of SPI seasoning, which may impart a unique roasted and meaty aroma. Therefore, the fermentation of SPI enzymatic hydrolysate with C. glutamicum may improve the flavor quality of its products, providing a new method for the development and production of new seasoning products.
Collapse
Affiliation(s)
- Lingling Shangguan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life Sciences and Health, Hubei University of Technology, Wuhan 430068, China; (L.S.); (Z.L.); (L.X.); (L.Y.)
| | - Zixiong Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life Sciences and Health, Hubei University of Technology, Wuhan 430068, China; (L.S.); (Z.L.); (L.X.); (L.Y.)
| | - Linglong Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life Sciences and Health, Hubei University of Technology, Wuhan 430068, China; (L.S.); (Z.L.); (L.X.); (L.Y.)
| | - Qiao Yang
- ABI Group, Laboratory of Phycosphere Microbiology, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
| | - Xiaoling Zhang
- ABI Group, Laboratory of Phycosphere Microbiology, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life Sciences and Health, Hubei University of Technology, Wuhan 430068, China; (L.S.); (Z.L.); (L.X.); (L.Y.)
| | - Pei Li
- Hubei Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., Yichang 443000, China;
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life Sciences and Health, Hubei University of Technology, Wuhan 430068, China; (L.S.); (Z.L.); (L.X.); (L.Y.)
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life Sciences and Health, Hubei University of Technology, Wuhan 430068, China; (L.S.); (Z.L.); (L.X.); (L.Y.)
- ABI Group, Laboratory of Phycosphere Microbiology, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
| |
Collapse
|
2
|
Iman MN, Haslam DE, Liang L, Guo K, Joshipura K, Pérez CM, Clish C, Tucker KL, Manson JE, Bhupathiraju SN, Fukusaki E, Lasky-Su J, Putri SP. Multidisciplinary approach combining food metabolomics and epidemiology identifies meglutol as an important bioactive metabolite in tempe, an Indonesian fermented food. Food Chem 2024; 446:138744. [PMID: 38432131 PMCID: PMC11247955 DOI: 10.1016/j.foodchem.2024.138744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
This study introduces a multidisciplinary approach to investigate bioactive food metabolites often overlooked due to their low concentrations. We integrated an in-house food metabolite library (n = 494), a human metabolite library (n = 891) from epidemiological studies, and metabolite pharmacological databases to screen for food metabolites with potential bioactivity. We identified six potential metabolites, including meglutol (3-hydroxy-3-methylglutarate), an understudied low-density lipoprotein (LDL)-lowering compound. We further focused on meglutol as a case study to showcase the range of characterizations achievable with this approach. Green pea tempe was identified to contain the highest meglutol concentration (21.8 ± 4.6 mg/100 g). Furthermore, we identified a significant cross-sectional association between plasma meglutol (per 1-standard deviation) and lower LDL cholesterol in two Hispanic adult cohorts (n = 1,628) (β [standard error]: -5.5 (1.6) mg/dl, P = 0.0005). These findings highlight how multidisciplinary metabolomics can serve as a systematic tool for discovering and enhancing bioactive metabolites in food, such as meglutol, with potential applications in personalized dietary approaches for disease prevention.
Collapse
Affiliation(s)
- Marvin N Iman
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | - Danielle E Haslam
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kai Guo
- Center for Clinical Research and Health Promotion, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, Puerto Rico, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Center for Clinical Research and Health Promotion, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, Puerto Rico, USA
| | - Cynthia M Pérez
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, Puerto Rico, USA
| | - Clary Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shilpa N Bhupathiraju
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Japan
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sastia P Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Japan.
| |
Collapse
|
3
|
Rahbar M, Safari R, Perez-Rostro CI. Defining desired genetic gains for Pacific white shrimp (Litopenaeus vannamei) breeding objective using participatory approaches. J Anim Breed Genet 2024; 141:390-402. [PMID: 38240192 DOI: 10.1111/jbg.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 06/12/2024]
Abstract
The objective of this study was to define desired genetic gains from economically important traits of Pacific white shrimp (Litopenaeus vannamei) using participatory approaches. Two questionnaires were sent out to 100 Pacific white shrimp farmers in all five Iranian shrimp farming provinces. Questionnaire A (Q-A) includes management factors and farming environments. Moreover, in this questionnaire, farmers were asked to rank the fourth most important traits in shrimp among 10 economic traits in the list for genetic improvement. In questionnaire B (Q-B), priorities of the four traits with the highest value were obtained using pairwise comparison. The results showed that the four most important traits were white spot syndrome virus resistance (WSSV), growth rate before 4 months (GR), acute hepatopancreatic necrosis disease resistance (AHPND), and female total weight at ablation (FTW). Medians of the best individual preference values were WSSV (0.222), GR (0.173), AHPND (0.157), and FTW (0.053). Most disagreements were found between the social group preference values in the commercial products and water salinity categories. Desired genetic gains were 1.71%, 1.57%, 0.53% and 0.31% for GR, AHPND, WSSV and FTW, respectively. This study highlighted that despite environmental and management differences, participatory approaches can achieve desired genetic results for Pacific white shrimp breeding programme.
Collapse
Affiliation(s)
- Mina Rahbar
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Roghieh Safari
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Carlos I Perez-Rostro
- Genetic Improvement and Aquaculture Production Lab, Instituto Tecnologico de Boca del Rio, Boca del Río, Mexico
| |
Collapse
|
4
|
Hanifah A, Firmanto H, Putri SP, Fukusaki E. Unique metabolite profiles of Indonesian cocoa beans from different origins and their correlation with temperature. J Biosci Bioeng 2022; 134:125-132. [PMID: 35654674 DOI: 10.1016/j.jbiosc.2022.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
Chocolate flavors vary depending on the origin of the cocoa beans used. Differences in soil, microorganisms, and environmental factors contribute to the formation of flavor precursors in cocoa beans. During cocoa bean fermentation, environmental temperature has been shown to alter metabolite concentrations. However, the correlation between the metabolite profile of cocoa beans and the temperature of their region of origin has not been fully defined. In this study, the metabolite profiles of Indonesian cocoa beans of various origins were evaluated using gas chromatography/mass spectrometry-based analysis, and were found to differ depending on the origin of the bean. Subsequently, the correlation between metabolite profile and environmental temperature of the origin was assessed using orthogonal projection to latent structure regression (OPLS-R) analysis. The analysis revealed that seven metabolites were associated with temperature: γ-aminobutyric acid (GABA), ethanolamine, glycerol, isocitric acid + citric acid, succinic acid, malic acid, and saccharic acid. The findings of this study will be valuable to chocolate industries for the production of single-origin chocolates.
Collapse
Affiliation(s)
- Abu Hanifah
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hendy Firmanto
- Indonesian Coffee and Cocoa Research Institute, Jl. PB. Sudirman 90, Jember, Jawa Timur 68118, Indonesia
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Putri SLE, Suantika G, Situmorang ML, Putri SP, Fukusaki E. Metabolomics approach to elucidate the importance of count size in commercial penaeid shrimps: white leg shrimp (Litopenaeus vannamei) and black tiger shrimp (Penaeus monodon). J Biosci Bioeng 2022; 133:459-466. [DOI: 10.1016/j.jbiosc.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
6
|
Yu J, Lu K, Dong X, Xie W. Virgibacillus sp. SK37 and Staphylococcus nepalensis JS11 as potential starters to improve taste of shrimp paste. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Ikram MMM, Mizuno R, Putri SP, Fukusaki E. Comparative metabolomics and sensory evaluation of pineapple (Ananas comosus) reveal the importance of ripening stage compared to cultivar. J Biosci Bioeng 2021; 132:592-598. [PMID: 34593317 DOI: 10.1016/j.jbiosc.2021.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
The pineapple ripening stage is determined at the time of harvest and can be classified into the C0 to C4 stage based on its peel color. C1 and C4 pineapples are the most commonly exported products with high demand. Pineapple also has many cultivars with different tastes and appearances. However, there are limited studies regarding the metabolite and taste profiles of pineapple from different cultivars and ripening stages using a metabolomics approach. Therefore, the objective of this study was to investigate the metabolite and sensory profiles of pineapple from different cultivars and different ripening stages. Three cultivars of pineapple (Red Spanish, Smooth Cayenne, and Queen) and C1, C3, and C4 stages from Indonesia, Japan, the Philippines, and Taiwan, respectively, were analyzed by gas chromatography/mass spectrometry (GC/MS). The data obtained from GC/MS analysis were combined with the data obtained from sensory evaluation, which showed that sourness and firmness contributed to C1 fruits with metabolites correlated to isocitric acid+citric acid, malic acid, ascorbic acid, and quinic acid, while sweetness, juiciness, and high acceptability contributed to C4 fruits with metabolites that correlated were asparagine, serine, glycine, threonic acid, sucrose, and 5-hydroxytryptamine. GC/MS analysis using different pineapple cultivars also showed characteristic metabolites for each cultivar. Prediction of the sensory profile was performed by investigating the relative intensity of taste-related metabolites. This information can provide a basis for improving pineapple taste quality related to metabolites, depending on the cultivar and ripening stage.
Collapse
Affiliation(s)
- Muhammad Maulana Malikul Ikram
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Reo Mizuno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Suita, Osaka, Japan
| |
Collapse
|