1
|
Mehta SK, Diak DM, Bustos-Lopez S, Nelman-Gonzalez M, Chen X, Plante I, Stray SJ, Tandon R, Crucian BE. Effect of Simulated Cosmic Radiation on Cytomegalovirus Reactivation and Lytic Replication. Int J Mol Sci 2024; 25:10337. [PMID: 39408667 PMCID: PMC11477029 DOI: 10.3390/ijms251910337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Human exploration of the solar system will expose crew members to galactic cosmic radiation (GCR), with a potential for adverse health effects. GCR particles (protons and ions) move at nearly the speed of light and easily penetrate space station walls, as well as the human body. Previously, we have shown reactivation of latent herpesviruses, including herpes simplex virus, Varicella zoster virus, Epstein-Barr virus, and cytomegalovirus (CMV), during stays at the International Space Station. Given the prevalence of latent CMV and the known propensity of space radiation to cause alterations in many cellular processes, we undertook this study to understand the role of GCR in reactivating latent CMV. Latently infected Kasumi cells with CMV were irradiated with 137Cs gamma rays, 150 MeV protons, 600 MeV/n carbon ions, 600 MeV/n iron ions, proton ions, and simulated GCR. The CMV copy number increased significantly in the cells exposed to radiation as compared with the non-irradiated controls. Viral genome sequencing did not reveal significant nucleotide differences among the compared groups. However, transcriptome analysis showed the upregulation of transcription of the UL49 ORF, implicating it in the switch from latent to lytic replication. These findings support our hypothesis that GCR may be a strong contributor to the reactivation of CMV infection seen in ISS crew members.
Collapse
Affiliation(s)
- Satish K. Mehta
- JES Tech, NASA, Johnson Space Center, Houston, TX 77058, USA
| | | | - Sara Bustos-Lopez
- Department of Health and Human Performance, University of Houston, Houston, TX 77004, USA;
| | | | - Xi Chen
- KBR, Houston, TX 77002, USA; (M.N.-G.); (X.C.); (I.P.)
| | - Ianik Plante
- KBR, Houston, TX 77002, USA; (M.N.-G.); (X.C.); (I.P.)
| | - Stephen J. Stray
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.J.S.); (R.T.)
| | - Ritesh Tandon
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.J.S.); (R.T.)
| | | |
Collapse
|
2
|
Al‐Bahrani M, Asavarut P, Waramit S, Suwan K, Hajitou A. Transmorphic phage-guided systemic delivery of TNFα gene for the treatment of human pediatric medulloblastoma. FASEB J 2023; 37:e23038. [PMID: 37331004 PMCID: PMC10947044 DOI: 10.1096/fj.202300045r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Medulloblastoma is the most common childhood brain tumor with an unfavorable prognosis and limited options of harmful treatments that are associated with devastating long-term side effects. Therefore, the development of safe, noninvasive, and effective therapeutic approaches is required to save the quality of life of young medulloblastoma survivors. We postulated that therapeutic targeting is a solution. Thus, we used a recently designed tumor-targeted bacteriophage (phage)-derived particle, named transmorphic phage/AAV, TPA, to deliver a transgene expressing the tumor necrosis factor-alpha (TNFα) for targeted systemic therapy of medulloblastoma. This vector was engineered to display the double-cyclic RGD4C ligand to selectively target tumors after intravenous administration. Furthermore, the lack of native phage tropism in mammalian cells warrants safe and selective systemic delivery to the tumor microenvironment. In vitro RGD4C.TPA.TNFα treatment of human medulloblastoma cells generated efficient and selective TNFα expression, subsequently triggering cell death. Combination with the chemotherapeutic drug cisplatin used clinically against medulloblastoma resulted in augmented effect through the enhancement of TNFα gene expression. Systemic administration of RGD4C.TPA.TNFα to mice-bearing subcutaneous medulloblastoma xenografts resulted in selective tumor homing of these particles and consequently, targeted tumor expression of TNFα, apoptosis, and destruction of the tumor vasculature. Thus, our RGD4C.TPA.TNFα particle provides selective and efficient systemic delivery of TNFα to medulloblastoma, yielding a potential TNFα anti-medulloblastoma therapy while sparing healthy tissues from the systemic toxicity of this cytokine.
Collapse
Affiliation(s)
- Mariam Al‐Bahrani
- Phage Therapy Group, Department of Brain SciencesImperial College LondonLondonUK
- Present address:
Department of Medical Laboratory Sciences, Faculty of Allied Health SciencesKuwait UniversityKuwait CityKuwait
| | - Paladd Asavarut
- Phage Therapy Group, Department of Brain SciencesImperial College LondonLondonUK
| | - Sajee Waramit
- Phage Therapy Group, Department of Brain SciencesImperial College LondonLondonUK
| | - Keittisak Suwan
- Phage Therapy Group, Department of Brain SciencesImperial College LondonLondonUK
| | - Amin Hajitou
- Phage Therapy Group, Department of Brain SciencesImperial College LondonLondonUK
| |
Collapse
|
3
|
Kos S, Bosnjak M, Jesenko T, Markelc B, Kamensek U, Znidar K, Matkovic U, Rencelj A, Sersa G, Hudej R, Tuljak A, Peterka M, Cemazar M. Non-Clinical In Vitro Evaluation of Antibiotic Resistance Gene-Free Plasmids Encoding Human or Murine IL-12 Intended for First-in-Human Clinical Study. Pharmaceutics 2021; 13:pharmaceutics13101739. [PMID: 34684032 PMCID: PMC8539770 DOI: 10.3390/pharmaceutics13101739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Interleukin 12 (IL-12) is a key cytokine that mediates antitumor activity of immune cells. To fulfill its clinical potential, the development is focused on localized delivery systems, such as gene electrotransfer, which can provide localized delivery of IL-12 to the tumor microenvironment. Gene electrotransfer of the plasmid encoding human IL-12 is already in clinical trials in USA, demonstrating positive results in the treatment of melanoma patients. To comply with EU regulatory requirements for clinical application, which recommend the use of antibiotic resistance gene-free plasmids, we constructed and developed the production process for the clinical grade quality antibiotic resistance gene-free plasmid encoding human IL-12 (p21-hIL-12-ORT) and its ortholog encoding murine IL-12 (p21-mIL-12-ORT). To demonstrate the suitability of the p21-hIL-12-ORT or p21-mIL-12-ORT plasmid for the first-in-human clinical trial, the biological activity of the expressed transgene, its level of expression and plasmid copy number were determined in vitro in the human squamous cell carcinoma cell line FaDu and the murine colon carcinoma cell line CT26. The results of the non-clinical evaluation in vitro set the basis for further in vivo testing and evaluation of antitumor activity of therapeutic molecules in murine models as well as provide crucial data for further clinical trials of the constructed antibiotic resistance gene-free plasmid in humans.
Collapse
Affiliation(s)
- Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
| | - Masa Bosnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Pharmacy, University of Ljubljana, Aškerceva ulica 7, SI-1000 Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, SI-1000 Ljubljana, Slovenia
| | - Katarina Znidar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
| | - Urska Matkovic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
| | - Andrej Rencelj
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Rosana Hudej
- Center Odličnosti za Biosenzoriko, Instrumentacijo in Procesno Kontrolo, Mirce 21, SI-5270 Ajdovscina, Slovenia; (R.H.); (A.T.); (M.P.)
| | - Aneja Tuljak
- Center Odličnosti za Biosenzoriko, Instrumentacijo in Procesno Kontrolo, Mirce 21, SI-5270 Ajdovscina, Slovenia; (R.H.); (A.T.); (M.P.)
| | - Matjaz Peterka
- Center Odličnosti za Biosenzoriko, Instrumentacijo in Procesno Kontrolo, Mirce 21, SI-5270 Ajdovscina, Slovenia; (R.H.); (A.T.); (M.P.)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
- Correspondence: ; Tel.: +386-1-5879-544
| |
Collapse
|
4
|
Bioprofiling TS/A Murine Mammary Cancer for a Functional Precision Experimental Model. Cancers (Basel) 2019; 11:cancers11121889. [PMID: 31783695 PMCID: PMC6966465 DOI: 10.3390/cancers11121889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
The TS/A cell line was established in 1983 from a spontaneous mammary tumor arisen in an inbred BALB/c female mouse. Its features (heterogeneity, low immunogenicity and metastatic ability) rendered the TS/A cell line suitable as a preclinical model for studies on tumor-host interactions and for gene therapy approaches. The integrated biological profile of TS/A resulting from the review of the literature could be a path towards the description of a precision experimental model of mammary cancer.
Collapse
|
5
|
Constraints to counting bioluminescence producing cells by a commonly used transgene promoter and its implications for experimental design. Sci Rep 2019; 9:11334. [PMID: 31383876 PMCID: PMC6683182 DOI: 10.1038/s41598-019-46916-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/02/2019] [Indexed: 01/15/2023] Open
Abstract
It is routine to genetically modify cells to express fluorescent or bioluminescent reporter proteins to enable tracking or quantification of cells in vitro and in vivo. Herein, we characterized the stability of luciferase reporter systems in C4-2B prostate cancer cells in mono-culture and in co-culture with bone marrow-derived mesenchymal stem/stromal cells (BMSC). An assumption made when employing the luciferase reporter is that the luciferase expressing cell number and bioluminescence signal are linearly proportional. We observed instances where luciferase expression was significantly upregulated in C4-2B cell populations when co-cultured with BMSC, resulting in a significant disconnect between bioluminescence signal and cell number. We subsequently characterized luciferase reporter stability in a second C4-2B reporter cell line, and six other cancer cell lines. All but the single C4-2B reporter cell population had stable luciferase reporter expression in mono-culture and BMSC co-culture. Whole-genome sequencing revealed that relative number of luciferase gene insertions per genome in the unstable C4-2B reporter cell population was lesser than stable C4-2B, PC3 and MD-MBA-231 luciferase reporter cell lines. We reasoned that the low luciferase gene copy number and genome insertion locations likely contributed to the reporter gene expression being exquisitely sensitive BMSC paracrine signals. In this study, we show that it is possible to generate a range of stable and reliable luciferase reporter prostate- and breast- cancer cell populations but advise not to assume stability across different culture conditions. Reporter stability should be validated, on a case-by-case basis, for each cell line and culture condition.
Collapse
|
6
|
Abstract
Calcium electroporation (CaEP) is a novel anti-tumour treatment that induces cell death by internalization of large quantities of calcium. The anti-tumour effectiveness of CaEP has been demonstrated in vitro, in vivo, and in preliminary clinical trials; however, its effects on the vasculature have not been previously investigated. Using a dorsal window chamber tumour model, we observed that CaEP affected to the same degree normal and tumour blood vessels in vivo, as it disrupted the vessels and caused tumour eradication by necrosis. In all cases, the effect was more pronounced in small vessels, similar to electrochemotherapy (ECT) with bleomycin. In vitro studies in four different cell lines (the B16F1 melanoma, HUVEC endothelial, FADU squamous cell carcinoma, and CHO cell lines) confirmed that CaEP causes necrosis associated with acute and severe ATP depletion, a picture different from bleomycin with electroporation. Furthermore, CaEP considerably inhibited cell migratory capabilities of endothelial cells and their potential to form capillary-like structures. The finding that CaEP has anti-vascular effects and inhibits cell migration capabilities may contribute to the explanation of the high efficacy observed in preclinical and clinical studies.
Collapse
|
7
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
8
|
Kamensek U, Tesic N, Sersa G, Cemazar M. Clinically Usable Interleukin 12 Plasmid without an Antibiotic Resistance Gene: Functionality and Toxicity Study in Murine Melanoma Model. Cancers (Basel) 2018; 10:cancers10030060. [PMID: 29495490 PMCID: PMC5876635 DOI: 10.3390/cancers10030060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/12/2018] [Accepted: 02/24/2018] [Indexed: 12/22/2022] Open
Abstract
Plasmids, which are currently used in interleukin 12 (IL-12) gene electrotransfer (GET) clinical trials in the USA, contain antibiotic resistance genes and are thus, according to the safety recommendation of the European Medicines Agency (EMA), not suitable for clinical trials in the EU. In the current study, our aim was to prepare an IL-12 plasmid without an antibiotic resistance gene and test its functionality and toxicity after GET in a preclinical B16F10 mouse melanoma model. The antibiotic resistance-free plasmid encoding the human IL-12 fusion gene linked to the p21 promoter, i.e., p21-hIL-12-ORT, was constructed using operator-repressor titration (ORT) technology. Next, the expression profile of the plasmid after GET was determined in B16F10 cells and tumors. Additionally, blood chemistry, hematological and histological changes, and antitumor response were evaluated after GET of the plasmid in melanoma tumors. The results demonstrated a good expression and safety profile of the p21-hIL-12-ORT GET and indications of efficacy. We hope that the obtained results will help to accelerate the transfer of this promising treatment from preclinical studies to clinical application in the EU.
Collapse
Affiliation(s)
- Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Natasa Tesic
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Isola, Slovenia.
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Isola, Slovenia.
| |
Collapse
|
9
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
10
|
Herzog N, Katzenberger N, Martin F, Schmidtke KU, K JH. Generation of cytochrome P450 3A4-overexpressing HepG2 cell clones for standardization of hepatocellular testosterone 6β-hydroxylation activity. ACTA ACUST UNITED AC 2015. [DOI: 10.3233/jcb-15002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Kos S, Tesic N, Kamensek U, Blagus T, Cemazar M, Kranjc S, Lavrencak J, Sersa G. Improved Specificity of Gene Electrotransfer to Skin Using pDNA Under the Control of Collagen Tissue-Specific Promoter. J Membr Biol 2015; 248:919-28. [PMID: 25840832 DOI: 10.1007/s00232-015-9799-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Abstract
In order to ensure safe, efficient and controlled gene delivery to skin, the improvement of delivery methods together with proper design of DNA is required. Non-viral delivery methods, such as gene electrotransfer, and the design of tissue-specific promoters are promising tools to ensure the safety of gene delivery to the skin. In the scope of our study, we evaluated a novel skin-specific plasmid DNA with collagen (COL) promoter, delivered to skin cells and skin tissue by gene electrotransfer. In vitro, we determined the specificity of the COL promoter in fibroblast cells. The specific expression under the control of COL promoter was obtained for the reporter gene DsRed as well as for therapeutic gene encoding cytokine IL-12. In vivo, the plasmid with COL promoter encoding the reporter gene DsRed was efficiently transfected to mouse skin. It resulted in the notable and controlled manner, however, in lower and shorter expression, compared to that obtained with ubiquitous promoter. The concentration of the IL-12 in the skin after the in vivo transfection of plasmid with COL promoter was in the same range as after the treatment in control conditions (injection of distilled water followed by the application of electric pulses). Furthermore, this gene delivery was local, restricted to the skin, without any evident systemic shedding of IL-12. Such specific targeting of skin cells, observed with tissue-specific COL promoter, would improve the effectiveness and safety of cutaneous gene therapies and DNA vaccines.
Collapse
Affiliation(s)
- Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Blagus T, Zager V, Cemazar M, Sersa G, Kamensek U, Zegura B, Nunic J, Filipic M. A cell-based biosensor system HepG2CDKN1A–DsRed for rapid and simple detection of genotoxic agents. Biosens Bioelectron 2014; 61:102-11. [DOI: 10.1016/j.bios.2014.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023]
|
13
|
Hemphill J, Govan J, Uprety R, Tsang M, Deiters A. Site-specific promoter caging enables optochemical gene activation in cells and animals. J Am Chem Soc 2014; 136:7152-8. [PMID: 24802207 PMCID: PMC4333597 DOI: 10.1021/ja500327g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
In
cell and molecular biology, double-stranded circular DNA constructs,
known as plasmids, are extensively used to express a gene of interest.
These gene expression systems rely on a specific promoter region to
drive the transcription of genes either constitutively (i.e., in a
continually “ON” state) or conditionally (i.e., in response
to a specific transcription initiator). However, controlling plasmid-based
expression with high spatial and temporal resolution in cellular environments
and in multicellular organisms remains challenging. To overcome this
limitation, we have site-specifically installed nucleobase-caging
groups within a plasmid promoter region to enable optochemical control
of transcription and, thus, gene expression, via photolysis of the
caging groups. Through the light-responsive modification of plasmid-based
gene expression systems, we have demonstrated optochemical activation
of an exogenous fluorescent reporter gene in both tissue culture and
a live animal model, as well as light-induced overexpression of an
endogenous signaling protein.
Collapse
Affiliation(s)
- James Hemphill
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | | | |
Collapse
|
14
|
Powers JF, Korgaonkar PG, Fliedner S, Giubellino A, Sahagian KPGG, Tischler AS. Cytocidal activities of topoisomerase 1 inhibitors and 5-azacytidine against pheochromocytoma/paraganglioma cells in primary human tumor cultures and mouse cell lines. PLoS One 2014; 9:e87807. [PMID: 24516563 PMCID: PMC3917832 DOI: 10.1371/journal.pone.0087807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022] Open
Abstract
There is currently no effective treatment for metastatic pheochromocytomas and paragangliomas. A deficiency in current chemotherapy regimens is that the metastases usually grow very slowly. Drugs that target dividing tumor cells have therefore had limited success. To improve treatment, new strategies and valid experimental models are required for pre-clinical testing. However, development of models has itself been hampered by the absence of human pheochromocytoma/paraganglioma cell lines for cultures or xenografts. Topoisomerase 1 (TOP1) inhibitors are drugs that interfere with mechanisms that maintain DNA integrity during transcription in both quiescent and dividing cells. We used primary cultures of representative human tumors to establish the cytotoxicity of camptothecin, a prototypical TOP1 inhibitor, against non-dividing pheochromocytoma/paraganglioma cells, and then employed a mouse pheochromocytoma model (MPC) to show that efficacy of low concentrations of camptothecin and other TOP1 inhibitors is increased by intermittent coadministration of sub-toxic concentrations of 5-azacytidine, a DNA methylation inhibitor that modulates transcription. We then tested the same drugs against a clonal MPC derivative that expresses CMV reporter-driven luciferase and GFP, intended for in vivo drug testing. Unexpectedly, luciferase expression, bioluminescence and GFP expression were paradoxically increased by both camptothecin and SN38, the active metabolite of irinotecan, thereby masking cell death. Expression of chromogranin A, a marker for neuroendocrine secretory granules, was not increased, indicating that the drug effects on levels of luciferase and GFP are specific to the GFP-luciferase construct rather than generalized cellular responses. Our findings provide proof of principle for use of TOP1 inhibitors against pheochromocytoma/paraganglioma and suggest novel strategies for enhancing efficacy and reducing toxicity by optimizing the combination and timing of their use in conjunction with other drugs. The paradoxical effects of TOP1 inhibitors on luciferase and GFP dictate a need for caution in the use of CMV promoter-regulated constructs for cancer-related imaging studies.
Collapse
Affiliation(s)
- James F. Powers
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| | - Parimal G. Korgaonkar
- Small Animal Imaging/Preclinical Testing Facility, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephanie Fliedner
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- 1 Department of Medicine, University Medical Center Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Alessio Giubellino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Arthur S. Tischler
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Kamensek U, Sersa G, Cemazar M. Evaluation of p21 promoter for interleukin 12 radiation induced transcriptional targeting in a mouse tumor model. Mol Cancer 2013; 12:136. [PMID: 24219565 PMCID: PMC3832904 DOI: 10.1186/1476-4598-12-136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Radiation induced transcriptional targeting is a gene therapy approach that takes advantage of the targeting abilities of radiotherapy by using radio inducible promoters to spatially and temporally limit the transgene expression. Cyclin dependent kinase inhibitor 1 (CDKN1A), also known as p21, is a crucial regulator of the cell cycle, mediating G1 phase arrest in response to a variety of stress stimuli, including DNA damaging agents like irradiation. The aim of the study was to evaluate the suitability of the p21 promoter for radiation induced transcriptional targeting with the objective to test the therapeutic effectiveness of the combined radio-gene therapy with p21 promoter driven therapeutic gene interleukin 12. METHODS To test the inducibility of the p21 promoter, three reporter gene experimental models with green fluorescent protein (GFP) under the control of p21 promoter were established by gene electrotransfer of plasmid DNA: stably transfected cells, stably transfected tumors, and transiently transfected muscles. Induction of reporter gene expression after irradiation was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging using fluorescence stereomicroscope in vivo. The antitumor effect of the plasmid encoding the p21 promoter driven interleukin 12 after radio-gene therapy was determined by tumor growth delay assay and by quantification of intratumoral and serum levels of interleukin 12 protein and intratumoral concentrations of interleukin 12 mRNA. RESULTS Using the reporter gene experimental models, p21 promoter was proven to be inducible with radiation, the induction was not dose dependent, and it could be re-induced. Furthermore radio-gene therapy with interleukin 12 under control of the p21 promoter had a good antitumor therapeutic effect with the statistically relevant tumor growth delay, which was comparable to that of the same therapy using a constitutive promoter. CONCLUSIONS In this study p21 promoter was proven to be a suitable candidate for radiation induced transcriptional targeting. As a proof of principle the therapeutic value was demonstrated with the radio-inducible interleukin 12 plasmid providing a synergistic antitumor effect to radiotherapy alone, which makes this approach feasible for the combined treatment with radiotherapy.
Collapse
Affiliation(s)
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| |
Collapse
|
16
|
Tesic N, Cemazar M. In Vitro Targeted Gene Electrotransfer to Endothelial Cells with Plasmid DNA Containing Human Endothelin-1 Promoter. J Membr Biol 2013; 246:783-91. [DOI: 10.1007/s00232-013-9548-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/17/2013] [Indexed: 01/03/2023]
|
17
|
Generation of a genome scale lentiviral vector library for EF1α promoter-driven expression of human ORFs and identification of human genes affecting viral titer. PLoS One 2012; 7:e51733. [PMID: 23251614 PMCID: PMC3520899 DOI: 10.1371/journal.pone.0051733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023] Open
Abstract
The bottleneck in elucidating gene function through high-throughput gain-of-function genome screening is the limited availability of comprehensive libraries for gene overexpression. Lentiviral vectors are the most versatile and widely used vehicles for gene expression in mammalian cells. Lentiviral supernatant libraries for genome screening are commonly generated in the HEK293T cell line, yet very little is known about the effect of introduced sequences on the produced viral titer, which we have shown to be gene dependent. We have generated an arrayed lentiviral vector library for the expression of 17,030 human proteins by using the GATEWAY® cloning system to transfer ORFs from the Mammalian Gene Collection into an EF1alpha promoter-dependent lentiviral expression vector. This promoter was chosen instead of the more potent and widely used CMV promoter, because it is less prone to silencing and provides more stable long term expression. The arrayed lentiviral clones were used to generate viral supernatant by packaging in the HEK293T cell line. The efficiency of transfection and virus production was estimated by measuring the fluorescence of IRES driven GFP, co-expressed with the ORFs. More than 90% of cloned ORFs produced sufficient virus for downstream screening applications. We identified genes which consistently produced very high or very low viral titer. Supernatants from select clones that were either high or low virus producers were tested on a range of cell lines. Some of the low virus producers, including two previously uncharacterized proteins were cytotoxic to HEK293T cells. The library we have constructed presents a powerful resource for high-throughput gain-of-function screening of the human genome and drug-target discovery. Identification of human genes that affect lentivirus production may lead to improved technology for gene expression using lentiviral vectors.
Collapse
|
18
|
Cemazar M, Golzio M, Sersa G, Escoffre JM, Coer A, Vidic S, Teissie J. Hyaluronidase and collagenase increase the transfection efficiency of gene electrotransfer in various murine tumors. Hum Gene Ther 2011; 23:128-37. [PMID: 21797718 DOI: 10.1089/hum.2011.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the applications of electroporation/electropulsation in biomedicine is gene electrotransfer, the wider use of which is hindered by low transfection efficiency in vivo compared with viral vectors. The aim of our study was to determine whether modulation of the extracellular matrix in solid tumors, using collagenase and hyaluronidase, could increase the transfection efficiency of gene electrotransfer in histologically different solid subcutaneous tumors in mice. Tumors were treated with enzymes before electrotransfer of plasmid DNA encoding either green fluorescent protein or luciferase. Transfection efficiency was determined 3, 9, and 15 days posttransfection. We demonstrated that pretreatment of tumors with a combination of enzymes significantly increased the transfection efficiency of electrotransfer in tumors with a high extracellular matrix area (LPB fibrosarcoma). In tumors with a smaller extracellular matrix area and less organized collagen lattice, the increase was not so pronounced (SA-1 fibrosarcoma and EAT carcinoma), whereas in B16 melanoma, in which only traces of collagen are present, pretreatment of tumors with hyaluronidase alone was more efficient than pretreatment with both enzymes. In conclusion, our results suggest that modification of the extracellular matrix could improve distribution of plasmid DNA in solid subcutaneous tumors, demonstrated by an increase in transfection efficiency, and thus have important clinical implications for electrogene therapy.
Collapse
Affiliation(s)
- Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana , SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|